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Abstract 

Background:  Studies on the associations between ambient temperature and asthma hospitalizations are limited, 
and the results are controversial. We aimed to assess the short-term effects of ambient temperature on the risk of 
asthma hospitalizations and quantify the hospitalization burdens of asthma attributable to non-optimal temperature 
in adults in Beijing, China.

Methods:  We collected daily asthma hospitalizations, meteorological factors and air quality data in Beijing from 
2012 to 2015. We applied a time-stratified case-crossover design and fitted a distributed lag non-linear model with 
a conditional quasi-Poisson regression to explore the association between ambient temperature and adult asthma 
hospitalizations. The effect modifications of these associations by gender and age were assessed by stratified analyses. 
We also computed the attributable fractions and numbers with 95% empirical confidence intervals (eCI) of asthma 
hospitalizations due to extreme and moderate temperatures.

Results:  From 2012 to 2015, we identified a total of 18,500 hospitalizations for asthma among adult residents in Bei-
jing, China. Compared with the optimal temperature (22 °C), the cumulative relative risk (CRR) over lag 0–30 days was 
2.32 with a 95% confidence interval (CI) of 1.57–3.42 for extreme cold corresponding to the 2.5th percentile (− 6.5 °C) 
of temperature distribution and 2.04 (95% CI 1.52–2.74) for extreme heat corresponding to the 97.5th percentile 
(29 °C) of temperature distribution. 29.1% (95% eCI 17.5–38.0%) of adult asthma hospitalizations was attributable to 
non-optimum temperatures. Moderate cold temperatures yielded most of the burdens, with an attributable frac-
tion of 20.3% (95% eCI 9.1–28.7%). The temperature-related risks of asthma hospitalizations were more prominent in 
females and younger people (19–64 years old).

Conclusions:  There was a U-shaped association between ambient temperature and the risk of adult asthma hos-
pitalizations in Beijing, China. Females and younger patients were more vulnerable to the effects of non-optimum 
temperatures. Most of the burden was attributable to moderate cold. Our findings may uncover the potential impact 
of climate changes on asthma exacerbations.
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Background
Asthma is among the most prevalent chronic airway 
diseases with significant public health consequences. 
According to the Global Burden of Disease, asthma 
affected about 358  million people in 2015, leading to 
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an enormous disease burden worldwide [1]. In China, 
approximately 4.2% of the adult population is suffer-
ing from asthma, representing 45.7  million Chinese 
adults [2]. Asthma is characterized by reversible air-
flow obstruction with symptoms of coughing, wheezing, 
breathlessness and chest stuffiness [3]. As there is no 
definitive cure, the disease tends to recur and seriously 
affect patients’ quality of life. Considering the high preva-
lence of asthma and the difficulty in control and interven-
tion, a comprehensive understanding of the risk factors 
of asthma exacerbations is imperative. Many environ-
mental risk factors, such as air pollution, pollen, tobacco 
smoke and meteorological factors have been reported to 
contribute to asthma exacerbations, leading to hospitali-
zation [4–6].

Among numerous meteorological factors, tempera-
ture has been the most studied [7]. Although some epi-
demiological studies have reported that both cold and 
heat exposures are associated with increased risks of 
asthma [8–10], the association between ambient tem-
perature and asthma hospitalizations is still inconclu-
sive. The majority of studies have only found significant 
cold effects on asthma hospital visits or admissions [11–
16], while limited studies have provided evidence for 
increased risks of asthma caused by heat exposures 
[17–19]. With global climate changes, extreme weather 
events, especially heatwaves, are expected to increase in 
frequency and intensity [20]. The growing public con-
cern about a warming climate urges health practitioners 
to further clarify the relationships between potential dis-
ease risks and heat exposures. Moreover, most previous 
studies only quantified the association between asthma 
and ambient temperature by ratio measures, such as rela-
tive risk or odds ratio. Yet, few studies have estimated the 
attributable burden as well [21, 22]. Compared with ratio 
measures, the attributable burden may provide more spe-
cific information on the actual influence of the exposures 
and benefits of prevention and intervention by calculat-
ing attributable risk measures, involving attributable 
fraction (AF) and attributable number (AN) [23].

The study aimed to explore the exposure–response 
relationship between ambient temperature and daily 
hospitalizations for asthma among adults in Beijing, 
China, and how the relationship varied within different 
sex and age groups. We also calculated the total hospi-
talization burden of asthma attributed to non-optimum 
temperature and the relative contributions separated into 
different temperature ranges, including extreme heat, 
moderate heat, moderate cold and extreme cold. Our 
findings may assist in developing suitable public health 
interventions and risk assessment methods for reducing 
asthma exacerbations resulting from abnormal ambient 
temperatures.

Methods
Data source
Our study area was Beijing, which is located in north 
China (39° 56′ N, 116° 20′ E). As the capital city of China, 
it covers an area of 16,410.54  km2, with more than 
21 million residents in 2015. Beijing’s climate belongs to 
a temperate semi-humid continental monsoon climate 
characterized by hot, rainy summer and cold, dry win-
ter. In 2015, a cross-sectional study conducted in Bei-
jing among 26,166 Chinese adults aged 20 years or older 
showed that the prevalence of doctor-diagnosed asthma 
was 2.8% in males and 2.1% in females [24].

We obtained daily records of hospitalizations for 
asthma (emergency department or outpatient visits were 
not included) from January 1, 2012 to December 31, 
2015 from the Beijing Public Health Information Center 
(http://​www.​phic.​org.​cn/). The center collected inpa-
tient data from all the tertiary and secondary hospitals in 
Beijing by the electronic disease reporting system. Each 
record contained the hospital’s name, date of admission 
and discharge, patient’s gender, date of birth, residential 
address, and discharge diagnoses. The hospitalization 
data included in our study were identified by asthma as 
a primary discharge diagnosis according to the 10th ver-
sion of the International Classification of Diseases (ICD-
10, code J45-46). Further, individuals residing outside of 
Beijing or aged ≤ 18  years old were excluded from this 
study. The study was approved and exempt from the 
full ethical review by the Institutional Review Board of 
Peking Union Medical College Hospital because all the 
records included were anonymous.

We acquired daily meteorological data during the 
same period from the China Meteorological Data Shar-
ing Service System (http://​data.​cma.​cn/), including daily 
minimum, maximum, and mean temperature (°C), mean 
relative humidity (%), and mean wind speed (m/s). To 
adjust for the potential effects of air pollutants, daily air 
quality index (AQI) data were extracted from the China 
National Environmental Monitoring Centre (http://​www.​
cnemc.​cn/). The daily AQI value is a comprehensive indi-
cator of air quality, determined by the maximum value of 
individual air quality indexes of six regularly monitored 
air pollutants (fine particulate matter, inhalable particu-
late matter, sulfur dioxide, nitrogen dioxide, ozone, and 
carbon monoxide).

Since influenza has been associated with asthma exac-
erbations [25], we also collected information on influenza 
epidemics defined as the proportion of isolates positive 
for influenza surpassed 30% of the maximum seasonal 
level (Influenza surveillance season was defined from the 
27th week of the previous year to the 26th week of the 
following year) [26] from the Chinese National Influenza 
Center (http://​www.​china​ivdc.​cn/​cnic/).

http://www.phic.org.cn/
http://data.cma.cn/
http://www.cnemc.cn/
http://www.cnemc.cn/
http://www.chinaivdc.cn/cnic/
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Study design and data analysis
We used a time-stratified case-crossover design to esti-
mate the association between ambient temperature and 
daily hospitalizations for asthma in adults. In contrast 
with the traditional case–control study, the case-crosso-
ver design has superiority in controlling the time-invar-
iant confounders of individual characteristics because 
each person serves as his or her own control. For each 
admission, the case day was specified as the admission 
date. To minimize the bias of long-term trend, season-
ality, and “weekday effects”, we matched 3 or 4 control 
days by the same day of the week earlier or later within 
the same month and year to the case days. A conditional 
quasi-Poisson regression model was applied to allow for 
over-dispersion in daily counts of asthma hospitaliza-
tions [27].

Previous studies have shown that the relationships 
between ambient temperature and asthma hospitaliza-
tions were non-linear with a lagged effect [8, 11]. Thus, 
a distributed lag non-linear model (DLNM) was adopted 
to assess the complicated non-linear and delayed tem-
perature-health dependencies simultaneously [28] after 
adjusting for relative humidity, wind speed, AQI and 
influenza epidemics. We modeled the temperature expo-
sure–response with a natural cubic spline with 4 degrees 
of freedom (df ) and the lag-response with a natural 
cubic spline with 3 df in the log scale. We set a maxi-
mum lag of 30 days to explore the long delay of the effects 
because the effects of cold temperatures could last about 
2–3  weeks with no substantial effects after more than 
1 month [29], which was consistent with previous stud-
ies [8, 11, 30]. Although the effects of hot temperatures 
were more acute, the potential morbidity displacement 
by harvesting effects of high temperatures should be 
noticed [30]. Moreover, the possible delayed admission 
time should be considered because our study focused on 
hospitalizations for asthma rather than outpatient hospi-
tal visits or emergency department visits. The final model 
was as follows:

where t is the day of observation; E(Yt) denotes the 
expected daily counts of asthma hospitalizations on day 
t. Tempt,l is the cross-basis matrix to the temperature 
generated by DLNM. l represents the lag days. ns() is the 
natural cubic spline-smoothing function for non-linear 
variables, including RH, relative humidity; WS, wind 
speed, and AQI, air quality index. df means degrees of 
freedom. The optimal df selection for variable terms was 
based on minimizing the quasi-Poisson Akaike informa-
tion criteria of the model. The degrees of freedom for 

Log[E(Yt)] = βTempt,l+ns
(

RHt , df = 4
)

+ns
(

WSt , df = 3
)

+ns
(

AQIt , df = 4
)

+factor(stratum)+γ Influenzat+α

relative humidity, wind speed, and AQI were set at 4, 3, 
4, respectively. Stratum refers to the matched groups of 
case days and control days. Influenzat is a binary variable. 
If the day t is in the period of an influenza epidemic, the 
value of 1 otherwise 0. β and γ are the vectors of coef-
ficients for corresponding variables. α is the model 
intercept.

We performed subgroup analyses stratified by gender 
and age (19–64 years old and ≥ 65 years old) to exam-
ine their potential modification effects. The minimum 
admission temperature (MAT) was determined by find-
ing the temperature value corresponding to the low-
est risk of total adult asthma hospitalizations from the 
cumulative exposure–response curve. We also took 
this value as the optimum temperature for all the sub-
groups. To quantitatively evaluate the effects of extreme 
heat and cold exposures, we calculated the relative risk 
(RR) and 95% confidence interval (CI) at the extreme 
values (the 97.5th percentile and the 2.5th percentile of 
daily mean temperature) relative to the MAT [31, 32]. 
The statistical methods of the study have been widely 
used in estimating the health impact of ambient tem-
perature [33–35].

To quantify the AF and AN due to non-optimum tem-
peratures under the framework of DLNM, we employed 
a backward perspective strategy that estimated the risk 
at time t as attributable to a series of past exposure 
events [23]. The formulas of backward AFx,t, and ANx,t 
at time t were as follows:

where nt denotes the count of cases at time t. ANx,t and 
AFx,t implies the number of cases and the correspond-
ing fraction at time t attributable to past exposures to x 

in the period t −  l0,…, t −  L. We further separated the 
temperature distribution into four components includ-
ing the extreme cold and heat, and the moderate cold 
and heat [21, 31]. The extreme heat and cold were defined 
as temperatures higher than the 97.5th percentile and 
lower than the 2.5th percentile, respectively. The moder-
ate heat and cold were defined as the ranges between the 
MAT and the 97.5th and 2.5th percentiles, respectively. 
Through Monte Carlo simulations, the estimation of 95% 
empirical confidence intervals (eCI) for AF and AN was 

b− AFx,t = 1− exp





L
�

l=l0

βxt−l ,l





b− ANx,t = b− AFx,t · nt
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determined as the related 2.5th and 97.5th percentiles of 
distributions by simulating 5000 random samples.

All statistical analyses were conducted using R soft-
ware (version 3.6.1) with the packages of “gnm”, “dlnm” 
and “attrdl”. Statistical significance was regarded as a two-
sided p < 0.05.

Sensitivity analysis
To test the robustness of our results, we conducted a 
series of sensitivity analyses: (1) changing df for rela-
tive humidity (3–5  df ), wind speed (3–5  df ) and AQI 
(3–5  df ); (2) altering the df (3–5) of the natural cubic 
spline in the log scale for the lag-response space; (3) 
changing the maximum lag days to 14 and 21 in the lag 
parameter in DLNM; (4) applying different temperature 
metrics, including daily minimum temperature, maxi-
mum temperature and mean apparent temperature. The 
apparent temperature (AT) is an aggregative indicator to 
reflect the human thermal perception of ambient tem-
perature. The indicator combines outdoor temperature 
with relative humidity and wind velocity. We calculated 
the daily mean AT using the following equations:

where T denotes daily mean temperature (°C), WS refers 
to wind speed (m/s), e means water vapor pressure (hPa) 
which was calculated with Eq. (2); RH is relative humidity 
(%).

(1)AT = T+ 0.33× e− 0.70×WS− 4.00

(2)
e = RH/100× 6.105× exp[17.27× T/(237.7+ T)]

Results
Data description
Table 1 provides the descriptive statistics for daily adult 
asthma hospitalizations, meteorological variables and air 
quality from January 1, 2012 to December 31, 2015. Dur-
ing the study period, a total of 18,500 hospitalizations for 
asthma among adult residents were recorded in Beijing, 
a mean of 12.7 per day (range, 0–34). Of all these cases, 
there were more asthma hospitalizations for females 
(59.3%) than for males (40.7%). People aged 19–64 had 
more asthma hospitalizations than people aged 65 or 
above (59.9% vs. 40.1%). The median (minimum, maxi-
mum) values of daily mean temperature, minimum 
temperature, maximum temperature and mean appar-
ent temperature were 14.0 °C (− 12.0 °C, 32.0 °C), 8.0 °C 
(− 18.0 °C, 27.0 °C), 21.0 °C (− 7.0 °C, 42.0 °C) and 6.2 °C 
(− 34.1 °C, 32.7 °C), respectively. The medians of relative 
humidity, wind speed and AQI were 54.0% (range, 8.0–
98.0%), 8.0  m/s (range, 3.0–34.0  m/s) and 94.0 (range, 
14.0–485.0), respectively. Figure 1 shows the time-series 
plots of daily meteorological variables, AQI and hospital-
izations for asthma among adults in Beijing, 2012–2015.

Associations between ambient temperature and adult 
asthma hospitalizations
Figure 2 shows the cumulative exposure–response curve 
exhibited a U-shaped relationship between daily mean 
temperature and total adult asthma hospitalizations 
across a 30-day lag period. For the whole study popula-
tion, the MAT was 22 °C. Cumulative relative risk (CRR) 

Table 1  Descriptive statistics of daily adult asthma hospitalizations, meteorological variables and air quality in Beijing, China from 2012 
to 2015

SD standard deviation

n (%) Mean ± SD Minimum Percentiles Maximum

25th 50th 75th

Asthma hospitalizations

 Total 18,500 (100) 12.7 ± 6.1 0.0 8.0 13.0 17.0 34.0

 Male 7522 (40.7) 5.1 ± 3.0 0.0 3.0 5.0 7.0 18.0

 Female 10,978 (59.3) 7.5 ± 4.1 0.0 4.0 7.0 10.0 26.0

 19–64 years old 11,079 (59.9) 7.6 ± 4.0 0.0 5.0 7.0 10.0 24.0

 ≥ 65 years old 7421 (40.1) 5.1 ± 3.2 0.0 3.0 5.0 7.0 18.0

Environmental variables

 Mean temperature (°C) / 12.6 ± 11.3 − 12.0 2.0 14.0 23.0 32.0

 Minimum temperature (°C) / 6.9 ± 11.4 − 18.0 − 3.0 8.0 18.0 27.0

 Maximum temperature (°C) / 18.6 ± 11.6 − 7.0 7.0 21.0 29.0 42.0

 Mean apparent temperature (°C) / 5.5 ± 14.9 − 34.1 − 7.8 6.2 19.1 32.7

 Relative humidity (%) / 53.9 ± 20.1 8.0 38.0 54.0 70.0 98.0

 Wind speed (m/s) / 9.4 ± 4.9 3.0 6.0 8.0 11.0 34.0

 Air quality index / 115.5 ± 73.1 14.0 65.0 94.0 147.0 485.0
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of hospitalizations for asthma increased significantly 
below and above the MAT.

Table  2 shows the cumulative effects of extreme tem-
peratures on total adult asthma hospitalizations over 
different lag periods (0, 0–3, 0–7, 0–14, 0–21, and 
0–30 days, i.e. the associations between single-day tem-
perature exposures and the cumulative risks of asthma 
hospitalizations from the same day (lag 0) to the next few 
days). We found that both extreme cold (2.5th percentile 
vs. MAT) and heat (97.5th percentile vs. MAT) exposures 
were significantly associated with higher risks of asthma 
hospitalizations through lag 14 to 30 days, with the maxi-
mum CRR over lag 0–30 days (Extreme cold: CRR = 2.32, 
95% CI 1.57, 3.42; Extreme heat: CRR = 2.04, 95% CI 
1.52, 2.74). The CRRs associated with extreme cold were 
higher than those associated with extreme heat. Figure 3 
shows the lag-response relationships between extreme 
temperatures and total adult asthma hospitalizations 

over lag 0–30  days. We observed that both the lagged 
effects of extreme cold and heat lasted for about 3 or 
4 weeks. The extreme cold effects became significant on 
lag day 5 and lasted until lag day 22, whereas the extreme 
heat effects became significant on lag day 5 and persisted 
until lag day 25.

Figure  4 shows the exposure–response plots for the 
subgroups over lag 0–30  days. The variation trends of 
CRR in all the subgroups followed a similar pattern as 
the total study population. Table 3 shows the lag-cumu-
lative effects of extreme cold and heat exposures by sub-
group analyses stratified by gender and age at different 
lag days. Among all the subgroups, the risks of extreme 
cold on adult asthma hospitalizations were higher than 
those of extreme heat. Significant associations between 
both the extreme cold and heat exposures and adult 
asthma hospitalizations in females appeared at lag times 
of 14–30  days. However, no significant association was 
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Fig. 1  Time-series plots for daily adult asthma hospitalizations, meteorological variables and air quality in Beijing, 2012–2015. (Tmean: mean 
temperature (°C), RH: relative humidity (%), WS: wind speed (m/s), AQI: air quality index)
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detected in males. Female asthma patients seem to be 
more vulnerable to extreme temperatures than male 
patients. Regarding different age groups, the cumula-
tive effects of extreme temperatures (both heat and 
cold) in the younger patients (19–64  years old) were 
significant at lag times of 14–30 days, while the cumula-
tive effects were significant only at a lag of 30 days in the 
elderly (≥ 65  years old). The CRRs of extreme cold and 
heat exposures over lag 0–30  days were higher in the 

younger group (Extreme cold: CRR = 2.46, 95% CI 1.56, 
3.89; Extreme heat: CRR = 2.39, 95% CI 1.71, 3.34) than 
the elderly (Extreme cold: CRR = 2.11, 95% CI 1.22, 3.64; 
Extreme heat: CRR = 1.56, 95% CI 1.00, 2.43). The results 
suggested that the younger patients were more likely to 
be exposed to higher risk in extreme temperatures.

Attributable burden of adult asthma hospitalizations due 
to ambient temperature
Table 4 shows the estimated AF and AN of adult asthma 
hospitalizations owing to both cold and heat exposures 
divided into contributions from moderate and extreme 
temperatures. The total fraction of hospitalization for 
asthma among adults caused by non-optimal tempera-
tures over lag 0–30  days was 29.1% (95% eCI 17.5%, 
38.0%), and most of them were related to the moderate 
cold (20.3%, 95% eCI 9.1%, 28.7%). Both extreme heat and 
cold exposures were responsible for a small portion, with 
the AF equal to 2.2% (95% eCI 1.3, 3.0) for extreme heat 
and 2.4% (95% eCI 1.4, 3.1) for extreme cold.

The attributable risks varied among different sub-
groups. The overall estimated temperature-related bur-
dens of asthma hospitalization were much higher in 
females (34.5%, 95% eCI 21.6, 44.2) than males (19.9%, 
95% eCI 1.0, 33.5). The results were constant when fur-
ther comparing the burdens resulting from different 
components of temperature between the two gender 
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Fig. 2  Lag-cumulative exposure–response associations between daily mean temperature and total adult asthma hospitalizations over lag 
0–30 days in Beijing, 2012–2015

Table 2  Lag-cumulative relative risks for total adult asthma 
hospitalizations associated with extreme cold exposure [2.5th 
percentile (− 6.5  °C) relative to MAT (22  °C)] and extreme heat 
exposure [97.5th percentile (29 °C) relative to MAT]

MAT minimum admission temperature, CRR​ cumulative relative risk, CI 
confidence interval

*p < 0.05

Lag days Cold effects Heat effects
CRR (95% CI) CRR (95% CI)

Lag 0 1.02 (0.95, 1.10) 1.01 (0.97, 1.05)

Lag 0–3 1.10 (0.88, 1.37) 1.06 (0.93, 1.21)

Lag 0–7 1.25 (0.92, 1.70) 1.16 (0.95, 1.41)

Lag 0–14 1.61 (1.12, 2.31)* 1.39 (1.09, 1.79)*

Lag 0–21 1.99 (1.32, 3.02)* 1.68 (1.27, 2.23)*

Lag 0–30 2.32 (1.57, 3.42)* 2.04 (1.52, 2.74)*
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groups. Compared with the population aged ≥ 65  years 
old (26.0%, 95% eCI 7.7, 39.4), the total AF of non-opti-
mum temperature was slightly higher in the population 
aged 19–64  years old (30.9%, 95% eCI 18.1, 40.7). The 
comparison between the two age groups was with little 
differences for the burdens attributable to moderate and 
extreme temperatures.

Sensitivity analyses
The risk estimates did not substantially differ after chang-
ing the dfs for relative humidity (3–5), wind speed (3–5), 
and AQI (3–5), altering the df (3–5) of the natural cubic 
spline in the log scale for the lag-response space, and 
changing the maximum lag days (14 or 21) in the model 
(see Additional file 1: Tables S1–S3 and Additional file 2: 
Fig. S1). Besides, our results were still robust by apply-
ing different temperature metrics, including daily mini-
mum temperature, daily maximum temperature and 
daily mean apparent temperature (see Additional file  1: 
Table S4 and Additional file 2: Figs. S2–S4).

Discussion
Our results revealed that both low and high tempera-
tures were significantly associated with increased risks 
of adult asthma hospitalizations. The associations were 

non-linear and followed U-shape curves in all the sub-
groups and the total population. Overall, a high fraction 
(29.1%) of adult asthma hospitalizations were attributable 
to non-optimum temperature over lag 0–30  days. Most 
of the hospitalization burden was attributable to moder-
ate cold exposures. Females and younger patients were 
more susceptible to the short-term effects of extreme 
temperatures with greater burdens attributable to non-
optimum temperatures. This is the first study estimating 
the attributable burden of adult asthma hospitalizations 
from ambient temperatures to the best of our knowledge.

We found that higher cumulative risks of adult asthma 
hospitalizations were related to both heat and cold expo-
sures in Beijing, China. The extreme cold effect was 
higher than the extreme heat effect. Most previous stud-
ies only showed significant cold effects while no appar-
ent association between heat exposures and asthma 
was detected. A similar study conducted in Shanghai, 
China reported that lower temperature (the 1st percen-
tile of temperature relative to the median temperature) 
was associated with increased asthma hospitalizations 
with CRR = 1.79 (95% CI 1.18, 2.72) at lag 0–30  days 
[11]. Another study in Dongguan, China found that 
the CRR associated with extreme cold (the 5th percen-
tile of temperature relative to the minimum morbidity 
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temperature) for asthma outpatient visits was 1.04 (95% 
CI 1.00, 1.08) at lag 0–7 days [21]. On the other hand, a 
few studies have suggested positive associations between 
high temperatures and asthma hospitalizations. Lam 
et  al. conducted a time-series study in Hong Kong and 

found that in hot seasons, the CRR associated with heat 
exposures (30 °C vs. 27 °C) was 1.19 (95% CI 1.06, 1.34) at 
lag 0–3 days [8]. The inconsistent results among various 
studies may be explained by differences in climate condi-
tions, study designs and analytical approaches.
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Fig. 4  Lag-cumulative exposure–response associations between daily mean temperature and adult asthma hospitalizations over lag 0–30 days 
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Table 3  Lag-cumulative relative risks of adult asthma hospitalizations associated with extreme cold exposure [2.5th percentile 
(− 6.5 °C) relative to MAT (22 °C)] and heat exposure [97.5th percentile (29 °C) relative to MAT] stratified by gender and age

MAT minimum admission temperature, CRR​ cumulative relative risk, CI confidence interval

*p < 0.05

Lag days Cold effects Heat effects

CRR (95% CI) CRR (95% CI)

Male Female 19–64 years 
old

≥ 65 years old Male Female 19–64 years 
old

≥ 65 years old

Lag 0 1.01 (0.91, 1.12) 1.03 (0.94, 1.12) 0.99 (0.91, 1.08) 1.06 (0.96, 1.17) 1.01 (0.96, 1.07) 1.01 (0.96, 1.06) 1.03 (0.98, 1.08) 0.98 (0.92, 1.04)

Lag 0–3 1.05 (0.77, 1.44) 1.14 (0.88, 1.47) 1.04 (0.80, 1.35) 1.18 (0.87, 1.61) 1.05 (0.87, 1.26) 1.07 (0.91, 1.26) 1.12 (0.96, 1.31) 0.96 (0.79, 1.17)

Lag 0–7 1.12 (0.73, 1.73) 1.34 (0.94, 1.91) 1.26 (0.88, 1.81) 1.22 (0.80, 1.87) 1.09 (0.84, 1.43) 1.21 (0.96, 1.53) 1.26 (1.01, 1.59)* 1.00 (0.75, 1.33)

Lag 0–14 1.29 (0.78, 2.15) 1.85 (1.21, 2.83)* 2.02 (1.32, 3.09)* 1.16 (0.70, 1.93) 1.17 (0.83, 1.65) 1.59 (1.18, 2.15)* 1.55 (1.16, 2.06)* 1.17 (0.81, 1.69)

Lag 0–21 1.47 (0.82, 2.64) 2.43 (1.49, 3.95)* 2.80 (1.72, 4.58)* 1.23 (0.68, 2.22) 1.27 (0.87, 1.86) 2.08 (1.49, 2.91)* 1.88 (1.37, 2.59)* 1.39 (0.92, 2.10)

Lag 0–30 1.64 (0.94, 2.84) 2.90 (1.85, 4.54)* 2.46 (1.56, 3.89)* 2.11 (1.22, 3.64)* 1.47 (0.99, 2.21) 2.60 (1.82, 3.70)* 2.39 (1.71, 3.34)* 1.56 (1.00, 2.43)*
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The intrinsic biological mechanisms are still unclear. 
The increased cold-related asthma hospitalizations may 
be associated with increasing bronchoconstriction [36], 
airway inflammation [37], mucus secretion [38] and 
decreasing effectiveness of immune responses [39] trig-
gered by low temperatures directly. Moreover, cold tem-
peratures can favor the transmission and survival of 
influenza viruses [40, 41], which may increase the risk 
of infection-related exacerbations of asthma. The pos-
sible mechanisms between heat exposures and asthma 
exacerbations point to bronchoconstriction mediated by 
the cholinergic reflex pathway [42] and airway inflam-
mation aggravation through transient receptor potential 
channels [43]. Additionally, high temperatures play a key 
role in plants producing allergenic pollens with stronger 
allergenicity [4]. High concentrations of allergens, such 
as pollens and fungi in the air have been linked to the 
increased asthma severity in both children and adults 
[44]. On the other hand, people tend to spend more time 
indoors during extreme temperatures for obtaining bet-
ter comfort, either using artificial heating during low 
ambient temperatures or using artificial cooling during 
high ambient temperatures. This extended stay indoors 
may increase the exposure to indoor molds, allergens or 
pollutants, which are known causes of asthma exacerba-
tions [45–47].

Findings from our study showed that non-optimum 
temperatures were responsible for a substantial por-
tion (29.1%) of adult asthma hospitalizations over lag 
0–30  days. Most hospitalizations (20.3%) were attrib-
uted to the days with moderate cold temperatures. These 
results were consistent with several previous studies 
focusing on mortality [31, 35, 48]. However, Zhao et  al. 
found that moderate heat exposure accounted for most 
of the morbidity burden of asthma in Dongguan, China 
[21]. The attributable burden for the temperature-asthma 
association may vary by distributions of days in differ-
ent temperature ranges. Although extreme temperatures 
bring higher risk than moderate temperatures, the mod-
erate cold days were the most in number in our study. 
Consequently, more attention should be paid to moder-
ate cold when planning adaptation strategies and meas-
ures to reduce asthma hospitalizations.

Our subgroup analysis by gender showed that female 
patients with asthma were more vulnerable to ambient 
temperatures than male patients, which is similar to some 
epidemiological studies [12, 22]. The reasons for the dis-
crepancy in the susceptibility of temperature-related 
asthma exacerbations by gender may point to bronchial 
hyperresponsiveness and estrogen in females [49]. As for 
subgroup analysis by age, we found that the younger pop-
ulation (19–64 years old) had higher risks of asthma hos-
pitalizations attributable to ambient temperatures than 

the elderly, which was also shown in other prior stud-
ies [8, 14, 16]. Younger people were more vulnerable to 
temperature, possibly because they stay longer for work 
outdoors and are more likely to be exposed to abnormal 
temperatures.

There are some limitations to this study. Firstly, the 
temperature data were from fixed meteorological moni-
toring stations rather than individual exposure measure-
ments, which may not reflect real exposures. Secondly, 
the data of some potential confounding factors, such as 
pollens, precipitation and thunderstorms, were unavaila-
ble for analysis. These factors are likely to impact the risk 
of asthma attacks and the number of hospitalizations [7]. 
Thirdly, since our study focused on the adult population 
in a single city, the extrapolation of our findings to other 
regions and the children population should be under-
taken cautiously. Fourthly, mild asthma exacerbations 
treated in the outpatient setting or emergency depart-
ment were not included in the study. We only focused 
on the association between ambient temperature and 
more severe asthma exacerbations requiring admission 
to a hospital ward, which may underestimate the effect of 
abnormal temperatures. Lastly, as an ecological study, the 
unit of analysis is a group of people instead of individuals 
[50]. Hence, the results should be interpreted with cau-
tion when applying to individuals. More comprehensive, 
individual-based epidemiological studies are needed in 
the future.

Conclusions
This study provides evidence of the non-linear associa-
tions between ambient temperature and adult asthma 
hospitalizations, and the corresponding disease burden 
that is mainly attributable to moderate cold in Beijing, 
China. The vulnerable populations including the young-
ers and females, need to strengthen their awareness of 
the adverse impacts of both extreme heat and cold expo-
sures. Our findings may have significant implications 
that exposures to high and low temperatures should be 
considered as potentially preventable triggers of asthma 
hospitalizations. In the context of climate change, such 
evidence is crucial for planning proper health risk edu-
cation to the public, tailoring effective intervention 
strategies and evaluating the overall burden of asthma 
hospitalizations associated with abnormal temperatures.
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