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Tetracycline ameliorates silica‑induced 
pulmonary inflammation and fibrosis 
via inhibition of caspase‑1
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Abstract 

Background:  Inhalation of dust containing silica particles is associated with severe pulmonary inflammation and 
lung injury leading to chronic silicosis including fibrotic remodeling of the lung. Silicosis represents a major global 
health problem causing more than 45.000 deaths per year. The inflammasome-caspase-1 pathway contributes to the 
development of silica-induced inflammation and fibrosis via IL-1β and IL-18 production. Recent studies indicate that 
tetracycline can be used to treat inflammatory diseases mediated by IL-1β and IL-18. Therefore, we hypothesized that 
tetracycline reduces silica-induced lung injury and lung fibrosis resulting from chronic silicosis via limiting IL-1β and 
IL-18 driven inflammation.

Methods:  To investigate whether tetracycline is a therapeutic option to block inflammasome-caspase-1 driven 
inflammation in silicosis, we incubated macrophages with silica alone or combined with tetracycline. The in vivo 
effect of tetracycline was determined after intratracheal administration of silica into the mouse lung.

Results:  Tetracycline selectively blocks IL-1β production and pyroptotic cell death via inhibition of caspase-1 in 
macrophages exposed to silica particles. Consistent, treatment of silica-instilled mice with tetracycline significantly 
reduced pulmonary caspase-1 activation as well as IL-1β and IL-18 production, thereby ameliorating pulmonary 
inflammation and lung injury. Furthermore, prolonged tetracycline administration in a model of chronic silicosis 
reduced lung damage and fibrotic remodeling.

Conclusions:  These findings suggest that tetracycline inhibits caspase-1-dependent production of IL-1β in response 
to silica in vitro and in vivo. The results were consistent with tetracycline reducing silica-induced pulmonary inflamma-
tion and chronic silicosis in terms of lung injury and fibrosis. Thus, tetracycline could be effective in the treatment of 
patients with silicosis as well as other diseases involving silicotic inflammation.

Keywords:  Anti-bacterial agents, Immunomodulation, Inflammasomes, Pyroptosis, Silicosis, Lung injury, NLR Proteins, 
Silicon dioxide
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Background
Silicosis is a pulmonary disease caused by inhalation of 
silica particles in occupational or environmental settings. 
With more than 45.000 deaths per year globally, silico-
sis represents one of the major occupational diseases 
worldwide [1, 2]. Inhaled silica particles, encountered 
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in occupations including mining and construction, 
accumulate in small airways and alveoli inaccessible for 
mucocilial clearance [3, 4]. Ingestion of silica particles by 
alveolar macrophages leads to acute pulmonary inflam-
mation hallmarked by excessive production of inflam-
matory mediators and cell death [4]. Subsequently, 
ingested silica particles are released and re-ingested by 
other macrophages, amplifying a vicious circle of inflam-
mation and cell death [4]. Dependent on the time being 
exposed to silica particles, silicosis can be subdivided 
into an acute, inflammatory form marked by silicopro-
teinosis and a chronic form characterized by pulmonic 
collagen deposition and fibrotic remodeling of the lung 
[2, 5, 6]. To embank morbidity and mortality associated 
with irreversible progressive and incurable silicosis, there 
is an urgent need for new therapies preventing prolonged 
inflammation and collagen deposition in silicosis [2].

Increasing evidence highlights the proinflammatory 
cytokines IL-1β and IL-18 as key drivers in the devel-
opment of silicosis [3–5]. IL-1β and IL-18 production 
is regulated via the inflammasome-caspase-1 pathway. 
Inflammasomes are multiprotein complexes consisting 
of a sensor e.g. the nucleotide-binding oligomerization 
domain–like receptor (NLR) family, e.g. pyrin domain–
containing 3 (NLRP3), the adapter protein apoptosis-
associated speck-like protein containing a CARD domain 
(ASC) and caspase-1 [7]. Assembly of the inflamma-
some complex and subsequent caspase-1 activation 
requires two signals. Signal 1 comprises the activation of 
pattern-recognition receptors (PRR) including Toll-like 
receptors (TLRs) by pathogen-associated molecular pat-
terns (PAMPs) such as lipopolysaccharides (LPS). Sub-
sequently nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-ƙB) initiates transcription of inflam-
masome components including pro-caspase-1, pro–IL-1β 
and pro-IL-18 [7]. The source of signal 1 in macrophages 
during silicosis is not conclusively identified and may be 
mediated by locally produced cytokines or respiratory 
infections [3]. Silica particles function as signal 2 leading 
to the activation of the sensor such as NLRP3 and sub-
sequent assembly of the inflammasome complex [3, 4]. 
This activates caspase-1 that results in proteolytic activa-
tion of pro-IL-1β and pro-IL-18 into bio-active IL-1β and 
IL-18. Further caspase-1 facilitates pyroptosis, a highly 
inflammatory form of cell death characterized by rupture 
of the cell membrane and distinct LDH release [3, 4, 7].

Tetracycline and its derivatives have been evaluated in 
studies of inflammatory diseases where they are reported 
to be both safe and have immunomodulatory activity [8–
12]. Several experimental and clinical studies highlighted 
anti-inflammatory and lung protective effects of tetracy-
cline derivatives in inflammatory lung diseases includ-
ing idiopathic pulmonary fibrosis and cystic fibrosis 

[13–19]. Recent evidence suggests that tetracycline limits 
both cytokine production of IL-1β and IL-18 as well as 
pyroptosis via selective inhibition of caspase-1, thereby 
reducing acute lung injury [20]. Therefore, we hypoth-
esized that tetracycline reduces silica-induced lung injury 
via limiting caspase-1 driven inflammation. As silicosis 
is a chronic disease, we further explored the long-term 
effects of tetracycline following repeated exposure to 
silica.

Material and methods
Mice
Wild type (wt) mice C57BL/6  J, 8–10  weeks, male, 
(Charles River Laboratories, Sulzfeld, Germany) were 
kept in a pathogen-free facility. The animals were han-
dled according to the principles of laboratory animal care 
(NIH publication No. 85–23, revised 1996). The animal 
procedures were in accordance with German legal guide-
lines and were approved by the responsible local author-
ity for animal care (animal protocols: AZ 81-02.04.2018.
A110).

Silica preparation
Silica crystals (MIN-U-SIL-15) (mean particle length 
5 μm) were purchased from US Silica (Berkeley Springs, 
WV) and used in all experiments. To avoid potential 
endotoxin contamination silica crystals were prepared as 
described previously [6].

In vivo model
Mice were anesthetized by isoflurane (Pirmal, Mumbai, 
India) inhalation and intubated with a 20-gauge catheter. 
Silica (0.33 mg/mouse in 50 μl sterile PBS) or 50 μl ster-
ile PBS (Thermo Fisher Scientific, Darmstadt, Germany) 
was instilled intratrachealy (i.t.) on days 0, 7, 14 and 21. 
Instantaneous mice were treated by intraperitoneal (i.p.) 
injection (75 μg/g mouse in 200 μl sterile PBS) of tetra-
cycline (Sigma-Aldrich, St. Louis, MO, USA) or 200  μl 
sterile PBS and thereafter every 24  h for 10d. After-
wards i.p. injections were performed 3 times a week. 
Mice were sacrificed 24  h and 12  weeks after instilla-
tion. Bronchoalveolar lavage fluid (BALF) was collected 
from mice by twice instilling and removing 1 ml of PBS 
using a 20-gauge catheter. IL-1ß, IL-18 and albumin lev-
els were analyzed by ELISA (R&D Systems, Minneapolis, 
MN, USA and Bethyl, Montgomery, TX, USA) and total 
protein concentration by BCA (Thermo Fisher Scien-
tific). Single cell suspension was prepared and blocked 
with CD16/CD32 antibody (Ab) (2.4G2, BD Bioscience, 
Franklin Lakes, NJ, USA) to avoid non-specific bind-
ing of immunoglobulin to the Fc receptors. Dead cells 
were excluded by using LIVE/DEAD Fixable Dead Cell 
Stain kit (Thermo Fisher). Absolute cell numbers were 
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determined by adding CaliBRITE APC-beads (BD Biosci-
ence). FACS Canto II (BD Bioscience, Franklin Lakes, NJ, 
USA) (FACSDiva software 6.1.2), FlowJo software 10.6.1 
(TreeStar, Ashland, OR, USA) and antibodies (Abs) 
against, CD45 (30-E11, eFluor450), Ly-6C (HK1.4, PE), 
F4/80 (BM8, PE-Cy7) (Thermo Fisher Scientific), CD3 
(17A2 FITC eBiosience) and Ly-6G (148, APC) (BioLeg-
end) were used for neutrophil, macrophage and lympho-
cyte characterization.

Histopathologic analyses
Lungs were inflated (with a pressure of 15  cm H2O) 
and fixed with zinc-formalin (Z-fix; Anatech, Battle 
Creek, MI, USA). Lungs were embedded in paraffin, sec-
tioned at 3 µm and stained with hematoxylin and eosin 
(H&E) (Sigma-Aldrich) or sirius red (Sigma-Aldrich) as 
described previously [5]. Two blinded investigators eval-
uated the samples according to a semi quantitative lung 
injury score [21].

In vitro analyses
Bone marrow from wt mice was harvested. Bone marrow 
derived macrophages (BMDM) were differentiated for 4d 
in DMEM (Thermo Fisher Scientific) supplemented with 
10% heat inactivated FCS (Biochrom, Berlin, Germany) 
and 10  ng/ml mouse macrophage colony-stimulating 
factor (m-CSF) (ImmunoTools, Friesoythe, Germany). 
Afterwards medium was removed, cells were scraped 
and seeded at 1 × 106/ml in 24-well plates for 24 h before 
replacing medium and conducting experiments. Cells 
were primed with LPS for 1 h and afterwards stimulated 
with silica and co-incubated with tetracycline or VX765 
(25 µM, specific caspase-1 inhibitor) (Invivogen) for 3 h. 
Supernatants were analyzed for, IL-1ß and TNF-α secre-
tion by ELISA (R&D Systems). Pyroptosis was measured 
in cell supernatants via determination of LDH release by 
the CytoTox 96 assay (Promega, Madison, WI, USA).

Immunoblotting
Cells were lysed in RIPA buffer (R&D Systems) contain-
ing protease inhibitors (Sigma-Aldrich) and total pro-
tein was determined by BCA (Thermo Fisher Scientific). 
Lysates or supernatants were separated by SDS-PAGE 
(NuPAGE, Thermo Fisher Scientific) and blotted onto 
nitrocellulose, nytrane membranes (GE healthcare, Chi-
cago, IL, USA). Anti-mouse caspase-1, full-length and 
activated p20 fragment (mAb Casper-1, Adipogen Life 
Sciences, Liestal, Switzerland), ASC (anti-Asc, pAb 
(AL177), Adipogen Life Sciences), NLRP3 (mAB Cryo-2, 
Adipogen Life Sciences), IL-1 ß (anti-mIL-1β R&D Sys-
tems) were used as primary and horseradish-peroxidase-
conjugated anti-rabbit and anti-mouse IgG (both Cell 
Signaling Technology, Beverly, MA, USA) as secondary 

antibodies. Chemiluminescent substrate (Biozym Scien-
tific GmbH, Hessisch Oldendorf, Germany) was used for 
visualization.

RT‑PCR
Total RNA was extracted by TRIzol reagent (Invitro-
gen), as specified by the manufacturer; cDNA was syn-
thesized with the cDNA Reverse Transcription kit 
(Applied Biosystems) and Real-Time (RT) PCR was per-
formed as previously described [22]. Gene expression 
levels (normalized to 18  s) were calculated using the 2 
(-DeltaDeltaC(T)) method. All reagents and probes used 
were purchased from Applied Biosystems (Darmstadt, 
Germany).

SIRCOL assay
The level of collagen in the lung tissue was determined 
using the SIRCOL collagen assay (Biocolor LTD., UK) 
according to manufacturer’s instructions. Briefly, right 
lung lobes were removed, homogenized and collagen 
was solved in 0.5 M acetic acid and incubated with Sirius 
red dye. The absorbance was analyzed at 540  nm using 
a spectrophotometer revealing the amount of collagen in 
the lung.

Statistics
Statistical analysis was performed using GraphPad Prism 
8 Software (La Jolla, CA, USA). In nonparametric data 
variables were compared by Mann–Whitney U test. For 
more than two groups, overall group differences were 
assessed by Kruskal–Wallis test and intergroup-differ-
ences were assessed by ranksum-testing adjusting for 
multiple comparison by false discovery rate (Benjamini, 
Krieger and Yekutieli). Values of p < 0.05 were considered 
significant. All data are expressed as median with inter-
quartile range.

Results
Tetracycline selectively inhibits silica induced IL‑1ß 
production and pyroptosis
To investigate the inhibitory effect of tetracycline on sil-
ica-induced activation of the inflammasome-caspase-1 
pathway, we primed murine BMDM with LPS and stimu-
lated the cells with silica in the presence or absence of tet-
racycline. As expected, silica exposure led to a significant 
release of IL-1ß in LPS primed BMDM (Fig. 1A). Tetra-
cycline dose-dependently inhibited this IL-1ß produc-
tion (p ≤ 0.0121) and pyroptosis associated LDH release 
(p ≤ 0.0011) (Fig. 1A, B). Consistent with previous results 
[20], inflammasome-caspase-1 independent TNF-α pro-
duction was not affected by tetracycline (Fig. 1C). These 
results indicate that tetracycline selectively blocks silica-
induced IL-1ß production and pyroptosis of BMDM.
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Tetracycline inhibits silica‑induced activation of caspase‑1
Since tetracycline decreased both silica-induced IL-1ß 
production and pyroptosis, we conducted immunob-
lot analysis to examine whether tetracycline inhibits 
caspase-1 activation in BMDM in response to silica. 
Tetracycline dose-dependently reduced caspase-1 acti-
vation, indicated by less cleavage of the p45 caspase-1 
precursor into its p20 subunit while expression of 
NLRP3 and ASC, which is upstream of caspase-1, was 
not affected (Fig. 2A, B). Consistent with the previous 
findings (Fig. 1A), active IL-1ß but not pro- IL-1ß was 
dose-dependently reduced by tetracycline (Fig. 2A, C). 

Of note, VX765, a selective caspase-1 inhibitor, served 
as a control in these experiments. To further evaluate 
potential effects of tetracycline on upstream TLR4-
NF-ƙB signaling, expression of NF-ƙB-dependent genes 
encoding components of the inflammasome-caspase-1 
pathway were investigated. Tetracycline had no effect 
on the expression of mRNA levels of NLRP3, ASC, pro-
caspase-1 or pro-IL-1ß after stimulation with LPS and 
silica (Fig. 2D–G). These data suggest that tetracycline 
reduces silica-induced IL-1ß production by direct inhi-
bition of caspase-1.
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Fig. 1  Tetracycline inhibits silica induced IL-1β production and pyroptosis. Murine BMDM were stimulated with either LPS (30 ng/ml) alone or in 
combination with silica (SIL, 1 mg/ml) and then treated with increasing doses of tetracycline (TET). IL-1ß (A), LDH B and TNF-α C concentrations 
were measured in supernatants with ELISA or LDH-Assay. Median with interquartile range of ≥ 4 independent experiments. Ranksum-testing 
adjusting for multiple comparison after Kruskal–Wallis test

Fig. 2  Tetracycline inhibits activation of caspase-1. Murine BMDM were stimulated as described in Fig. 1. Immunoblots of lysates (LY; caspase-1 
(p45), ASC, pro-IL-1ß, NLRP3 and ß-Actin) and supernatants (SN; caspase-1 (p20) and mature IL-1ß) of wt BMDM (A). Representative blots from ≥ 3 
independent experiments. Quantification of signal intensity of caspas-1 (p20) B and mature IL-1ß (C). NLRP3 (B), ASC (C), Casp-1 D and IL-1ß E 
mRNA levels were determined by qPCR using 18 s RNA as an endogenous control 3 independent experiments. Median with interquartile range 
of ≥ 3 independent experiments. Ranksum-testing adjusting for multiple comparison after Kruskal–Wallis test
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Tetracycline inhibits pulmonary inflammation 
and caspase‑1 in acute silicosis
To test whether tetracycline ameliorates caspase-1 
dependent pulmonary inflammation in acute silicosis, 
we challenged C57Bl/6 J mice i.t. with silica particles and 
treated them with tetracycline. 24  h after silica instil-
lation, IL-1ß and IL-18 concentrations were analyzed 
in BALF. As shown in Fig.  3A, B, silica exposure mark-
edly induced pulmonary IL-1ß and IL-18 levels. Treat-
ment with tetracycline significantly inhibited IL-1ß 
(p = 0.0260) and IL-18 (p = 0.0159) production (Fig.  3A, 
B). We next examined activation of caspase-1 in lung 
homogenates by immunoblotting. In comparison to PBS 
treated controls, silica induced the activation of cas-
pase-1, which was indicated by increased p20 fragment. 
In contrast, tetracycline inhibited caspase-1 activation in 
this model and cleavage of the caspase-1 precursor was 
reduced (Fig.  3C). Consistent with the in  vitro experi-
ments (Fig.  2C), upstream expression of ASC was not 
affected by tetracycline (Fig.  3C). These results indi-
cate that tetracycline reduces silica-induced caspase-1 
dependent cytokine production in the lungs.

Tetracycline ameliorates lung injury in acute silicosis
We next examined whether inhibition of caspase-1 
could ameliorate disease related lung injury. Therefore, 
the accumulation of total protein, albumin and neu-
trophils, macrophages and lymphocytes in BALF was 
quantified 24  h after silica administration. Silica chal-
lenge induced the accumulation of all injury markers 
(Fig.  4A–D). Treatment with tetracycline significantly 
reduced silicoproteinosis, indicated by reduced levels 

of protein (p = 0.0002) and albumin (p = 0.0012) as well 
as lower numbers of neutrophils (p = 0.0317) and Mac-
rophages (0.0496) in the BALF in comparison to PBS 
controls. The number of lymphocytes was not affected 
by the treatment with tetracycline (Fig.  4E). Consist-
ent with reduced neutrophil, macrophage and protein 
levels in the BALF, the histology of silica exposed lungs 
revealed that treatment with tetracycline significantly 
decreases lung injury (Fig.  4F). This series of findings 
demonstrates that tetracycline can reduce the severity 
of lung injury in acute silicosis.

Tetracycline treatment reduces silica‑induced chronic lung 
pathology
Present data reveals that tetracycline effectively reduces 
silica-induced acute pulmonary inflammation and lung 
injury (Figs.  3 and 4). Since chronic silicosis results 
in fibrotic remodeling of the lungs, we investigated 
the effect of tetracycline in a murine model of long-
term silica exposure. Therefore, C57Bl/6  J mice were 
repetitively i.t. challenged with silica and subsequently 
treated with tetracycline. Silica exposure led to pro-
nounced lung injury including proteinaceous debris, 
invasion of leucocytes and alveolar septal thickening 
(Fig.  5A, B). Treatment with tetracycline significantly 
ameliorated lung injury (p = 0.0303) (Fig. 5B). Further-
more, substantial collagen deposition was detectable in 
lungs of silica challenged mice, whereas tetracycline-
treated mice possessed significantly reduced collagen 
levels (p = 0.04) (Fig. 5A, C). In conclusion, these data 
show protective long-term effects of tetracycline fol-
lowing repeated exposure to silica.

Fig. 3  Tetracycline inhibits caspase-1 in silica exposed mice. C57BL/6 J mice were challenged i.t. with silica (0.33 mg/mouse) on day 0 and 
immediately afterwards treated with tetracycline (TET) (75 µg/g BW) or PBS i.p. 24 h after silica (SIL) exposure the concentration of IL-1ß A and IL-18 
B in bronchoalveolar lavage fluid was determined by ELISA. Median with interquartile range of 3 independent experiments (SIL + TET (n = 6) vs. 
SIL + PBS (n = 6)) (PBS + PBS n = 6), Mann–Whitney Test
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Discussion
Exposure to silica particles can lead to inflammation of 
the lung with development of silicosis [23]. Evidence sug-
gests that silica dependent inflammation and lung injury 
is mediated by excessive production of caspase-1 depend-
ent cytokines and pyroptotic cell death [3–5, 24, 25]. To 
our knowledge the present report shows for the first time 
that tetracycline selectively inhibits caspase-1-dependent 
IL-1β but not NF-ƙB dependent TNF-α production and 
pyroptosis in response to silica in  vitro (Figs.  1 and 2). 
The results were consistent with tetracycline reducing 
silica-induced IL-1β and IL-18 production as well as acti-
vation of caspase-1 in the lungs (Fig. 3), thereby amelio-
rating pulmonary inflammation, lung injury (Fig. 4) and 
subsequent fibrosis (Fig. 5).

Controversies exist whether tetracycline or its derivates 
selectively inhibit inflammasome-dependent signaling. 
Lu et  al. showed that using minocycline in an oxygen–
glucose deprivation / reoxygenation model inhibited 
both TNF-α (signal 1) and IL-1β (signal 2) in microglia 
concluding that the effect is unspecific [26]. However, 
the findings were inconsistent as signal-1 dependent 
NLRP3 and pro-IL-1β but not pro-caspase-1 production 

was inhibited by minocycline [26]. Reduced gene expres-
sion of NLRP3 and caspase-1 (signal 1) by minocycline 
has also been described in mouse models of diabetic 
nephropathy or Huntington disease [10, 27]. Yet, those 
studies evaluated the effect of minocycline on inflam-
masome signaling at very late time points [10, 27]. Since 
IL-1β production is a very early step in the inflamma-
tory response to silica [3, 4], it is likely that secondary 
effects (such as feedback loops via IL-1R-NF-ƙB) explain 
the findings of these studies. Current study found no 
effect of tetracycline on NF-ƙB dependent gene expres-
sion of caspase-1 or other inflammasome components 
in macrophages. Furthermore, tetracycline did not 
block NLRP3 or ASC production in silica-exposed mac-
rophages, suggesting a tetracycline-mediated blockade of 
inflammasome-signaling downstream of ASC. Further-
more, there was no effect of tetracycline on pro-IL-1β. 
Consistent with this, our group recently showed that tet-
racycline had neither an effect on NF-ƙB dependent gene 
expression nor on ASC-specking, but rather selectively 
inhibits activation of caspase-1 in LPS and nigericin acti-
vated macrophages [20]. In summary present report sug-
gests that inhibition of IL-1β production and pyroptosis 

Fig. 4  Tetracycline reduces lung injury in silica exposed mice. C57BL/6 J mice were challenged with silica (SIL) and treated with tetracycline (TET) as 
described in Fig. 3. Total protein (A), albumin (B), neutrophils (C), macrophages (D) and lymphocytes (E) were quantified in bronchoalveolar lavage 
fluid by BCA, ELISA and flow cytometry (n ≥ 6 per group). Lungs were removed at 24 h and stained with H&E. Representative histologic sections are 
shown (magnification, 20×) and lung injury score was determined by examining 5 sections/lung/animal (n = 4 per group, magnification × 100) (D). 
Median with interquartile range of ≥ 3 independent experiments, (SIL + TET (n = 6) vs. SIL + PBS (n = 6)) (PBS + PBS (n = 6)), Mann–Whitney Test
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by tetracycline in silica exposed macrophages is mediated 
via inhibition of caspase-1.

Silica particles cause progressive, inflammasome-
associated inflammation and lung injury [3–5]. 
Increased pulmonary IL-1ß concentrations associated 
with progressive fibrosis are found in patients with 
silicosis [28, 29]. Consistent with this, previous stud-
ies revealed that IL-1β-, ASC- and NLRP-3-deficient 
mice were protected from pulmonary inflammation in 
response to inhaled silica particles [3, 19]. Furthermore, 
pharmacological intervention by using anti-IL-1β anti-
body reduced inflammation and lung injury in silica 
exposed mice [14]. Thus, we questioned whether tet-
racycline would be a therapeutic option against silica 
induced inflammation and fibrotic lung remodeling. 
Therefore, we used a widely accepted murine model 
featuring i.t. instillation of silica particles [3–5]. For the 
first time we showed that tetracycline was effective in 
decreasing silica-induced IL-1β and IL-18 production 
in silica exposed mice. This was due to tetracycline-
mediated inhibition of caspase-1, resulting in sig-
nificantly reduced lung injury. Comparable effects of 
tetracycline in reducing pulmonary inflammation have 
been shown recently in two models of acute lung injury. 

Here, tetracycline reduced IL-1β and IL-18 levels, pul-
monary inflammation and lung injury in mice that were 
challenged with either LPS or influenza virus [20]. Fur-
thermore, lung injury and inflammation in response to 
LPS was significantly lower in caspase-1 deficient mice 
compared to wild-type animals. Of note, tetracycline 
had no effect on pulmonary inflammation and damage 
in caspase-1 deficient mice [20].

In summary, current study suggests that tetracycline 
ameliorates silica-induced inflammation and lung injury 
via inhibition of caspase-1.

This study has several limitations. First, animal models 
are limited to mimic the long period of silica exposure (at 
least 10 years of exposure to low concentrations of silica 
particles) necessary to induce chronic silicosis in humans 
[2]. Yet, we evaluated the long-term effects of tetracy-
cline in an established model of chronic silicosis featuring 
repetitive i.t. instillation of silica particles provoking con-
stitutive pulmonary inflammation [5]. In accordance with 
others showing amelioration of bleomycin-induced lung 
fibrosis by doxycycline [13, 14], we found that tetracy-
cline clearly reduced progression of fibrotic lung remod-
eling and significantly reduced collagen deposition in 
the lungs of silica challenged mice. This was in line with 

Fig. 5  Tetracycline reduces pulmonary fibrotic remodeling in silica exposed mice. C57BL/6 J mice were challenged with silica (SIL) (0.33 mg/mouse) 
i.t. on days 0, 7, 14 and 21 and treated by i.p. injection of tetracycline (TET) every 24 h for 10d and afterwards 3 times a week. Mice (PBS+PBS (n = 5) 
SIL+PBS (n = 9) SIL+TET (n = 9)) were sacrificed 12 weeks after instillation. Representative H&E and sirius red stained histologic sections are shown 
(magnification, 400×) (A). Lung injury score was determined by examining 15 sections/lung/animal (n ≥ 5 per group, magnification × 100) (B). 
Pulmonary collagen levels were quantified by SIRCOL collagen assay (C). Median with interquartile range of 3 independent experiments, Mann–
Whitney Test
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a chronic silicosis model showing that blocking of IL-1ß 
reduces pulmonary fibrosis [5].

Second, since BMDM are commonly used to exam-
ine silica-induced inflammasome activation [4], we also 
demonstrate the molecular effects of tetracycline on 
inflammsasome-caspase-1 pathway in BMDM in  vitro. 
This cannot fully reflect the complex interplay between 
different cell types orchestrating silica-induced inflam-
mation and lung injury in vivo. Pulmonary inflammation 
in the context of silicosis is also maintained by non-
immune cells and silica exposure leads also to upregula-
tion of NLRP3 inflammasome-caspase-1 activation in 
lung epithelium [30].

In summary, current study suggests that tetracycline 
inhibits caspase-1 activation in response to silica and 
ameliorates silica-induced pulmonary inflammation 
including IL-1ß production, thereby reducing lung injury 
and fibrotic lung remodeling.

Conclusions
Tetracycline reduced caspase-1-dependent production 
of IL-1β in response to silica in vitro and in vivo. These 
results were consistent with tetracycline reducing silica-
induced pulmonary inflammation and subsequent lung 
injury and fibrosis in a murine model. Tetracycline and 
derivates have been shown to provide beneficial immu-
nomodulatory effects in experimental and clinical stud-
ies of inflammatory and lung fibrosing diseases including 
acute lung injury [9, 10, 20]. Since tetracycline is an 
approved antibiotic drug with a good safety profile and 
there is a growing number of chemically modified tetra-
cyclines which have been attributed to lack anti-bacterial 
but retain anti-inflammatory activities [31, 32], tetracy-
cline and its derivates could be repurposed as a protec-
tive agent for silica-induced pulmonary inflammation 
and subsequent disease progression.
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