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Abstract 

Background: Previous studies have determined the epigenetic association between DNA methylation and pulmo-
nary function among various ethnics, whereas this association is largely unknown in Chinese adults. Thus, we aimed 
to explore epigenetic relationships between genome-wide DNA methylation levels and pulmonary function among 
middle-aged Chinese monozygotic twins.

Methods: The monozygotic twin sample was drawn from the Qingdao Twin Registry. Pulmonary function was 
measured by three parameters including forced expiratory volume the first second (FEV1), forced vital capacity (FVC), 
and FEV1/FVC ratio. Linear mixed effect model was used to regress the methylation level of CpG sites on pulmonary 
function. After that, we applied Genomic Regions Enrichment of Annotations Tool (GREAT) to predict the genomic 
regions enrichment, and used comb-p python library to detect differentially methylated regions (DMRs). Gene expres-
sion analysis was conducted to validate the results of differentially methylated analyses.

Results: We identified 112 CpG sites with the level of P < 1 ×  10–4 which were annotated to 40 genes. We identified 
12 common enriched pathways of three pulmonary function parameters. We detected 39 DMRs located at 23 genes, 
of which PRDM1 was related to decreased pulmonary function, and MPL, LTB4R2, and EPHB3 were related to increased 
pulmonary function. The gene expression analyses validated DIP2C, ASB2, SLC6A5, and GAS6 related to decreased 
pulmonary function.

Conclusion: Our DNA methylation sequencing analysis on identical twins provides new references for the epigenetic 
regulation on pulmonary function. Several CpG sites, genes, biological pathways and DMRs are considered as possible 
crucial to pulmonary function.
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Introduction
Pulmonary function is determined as an important pre-
dictor of cardiovascular health [1] and mortality [2], 
which declines with increasing age after the third decade 

of lifetime [3]. Accelerated decline in pulmonary function 
has immense impact on individual and social economy 
[4]. Pulmonary function can be influenced by a variety 
of factors. Traditional epidemiologic studies have widely 
investigated the relationship of environmental factors, 
such as cigarette smoking [5] and air pollution [6] with 
pulmonary function. Besides, family-based study [7] and 
genome-wide association study (GWAS) [8] have esti-
mated the heritability of pulmonary function ranging 

Open Access

*Correspondence:  zhangdf1961@126.com
1 Department of Epidemiology and Health Statistics, the College of Public 
Health of Qingdao University, NO. 308 Ning Xia Street, Qingdao 266071, 
Shandong Province, People’s Republic of China
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-9308-9371
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-021-01896-5&domain=pdf


Page 2 of 16Wang et al. Respiratory Research          (2021) 22:300 

from 0.42 to 0.71, indicating genetic contribution to the 
variation of pulmonary function.

Currently, an increasing number of GWASs have 
smoothed the way for discovering human genetic vari-
ants linked to pulmonary function which are quantified 
by forced expiratory volume in one second (FEV1), forced 
vital capacity (FVC), and FEV1/FVC ratio [9]. Yet the 
reported nucleotide-level polymorphisms could explain a 
limited proportion of pulmonary function variation [10] 
(5.0% for FEV1, 3.4% for FVC, and 9.2% for FEV1/FVC) 
compared with the estimated heritability, suggesting that 
other gene-regulatory mechanisms such as epigenetics 
might also be at play. Epigenetics is the study of herit-
able phenotype alterations that do not involve changes 
in the DNA sequence [11], and the epigenetic changes 
include DNA methylation, histone modification and non-
coding RNA. Previous epigenome-wide association stud-
ies (EWASs) have investigated the association between 
DNA methylation and pulmonary function among vari-
ous ethnic population but only a limited amount of sig-
nificant genomic sites have been revealed [4, 12–14]. 
Besides, expect one study based on monozygotic (MZ) 
twin design, most of previous studies were conducted 
based on general population, which could not control the 
genetic effect and early life milieu including intrauterine 
environment on epigenetic changes [15].

As the genetic makeup is perfectly matched within pair, 
the monozygotic twins serve as optimal and valuable 
samples for EWAS on complex diseases and phenotypes 
[16]. The genetic influences on epigenetic changes are 
cancelled out in the discordant MZ twins design, thus the 
differential DNA methylation triggered by environmental 
factors could be identified [17]. The Chinese population 
is different from the other ethnics of the world in terms 
of genetic background, environmental exposure and life-
style. However, there is no EWAS of pulmonary func-
tion in the Chinese twins published present. Thereby, we 
performed an EWAS to identify the association between 
DNA methylation variants and pulmonary function 
among Chinese monozygotic twin pairs.

Materials and methods
Samples and study procedures
The discordant identical twin pairs are sub-sample of 
twins derived from Qingdao Twin Registry [18] con-
ducted by Qingdao Centers for Disease Control and 
Prevention. The details of sample recruitment have 
been described elsewhere [19]. A total of 68 twin pairs 
which were conducted DNA methylation sequencing 
using the reduced representation bisulfite sequencing 
(RRBS) were included in the sample. After excluded 
twin pairs with incomplete measurement of pulmo-
nary function (n = 1) and participants with minimal 

absolute values of intra-pair difference in pulmonary 
function score (ΔFEV1 < 0.1, n = 7; ΔFVC < 0.1, n = 8, 
and ΔFEV1/FVC < 0.05, n = 23), complete monozygotic 
twin pairs who met the criteria were included in the 
study, including 60 twin pairs for FEV1(34 male and 26 
female pairs), 59 twin pairs for FVC (34 male and 25 
female pairs), and 44 twin pairs for FEV1/FVC (21 male 
and 23 female pairs). Informed written consents were 
obtained from all participants. Regional Ethics Com-
mittee of the Qingdao Centers for Disease Control and 
Prevention Institutional Review Boards has approved 
this study.

Pulmonary function including FEV1 and FVC (lit-
ers) was assessed by the electronic hand-held spirom-
eter (Micro 0102). Trained investigators calibrated the 
spirometer before measurement every morning. Based 
on the standard procedure of spirometry, each partici-
pant performed two maneuvers in standing state twice, 
and best trial data were applied to further analysis. The 
ratio FEV1/FVC was calculated according to the above 
measurements.

DNA methylation analysis
The Cetyltrimethyl Ammonium Bromide was used to 
extract genomic DNA from whole blood. DNA methyla-
tion library was constructed using RRBS by Biomarker 
Technologies Corporation, Beijing, China (http:// www. 
bioma rker. com. cn/). Firstly, genomic DNA was digested 
with Mspl restriction enzyme. After digesting, the 5′ CG 
overhangs were repaired, and A-tails were added. Then 
the DNA was loaded on an agarose gel, and 230–380 bp 
long (including 100 bp adaptor) fragments were sort out 
for next bisulfite conversion using NEXTflex Bisulfite-
Seq Kit (Bioo Scientific, Austin, TX, USA). After all, the 
bisulfite converted DNA was amplified with PCR. The 
reduced representation bisulfite sequencing was con-
ducted using Illumina HiSeq X Ten (Illumina Inc., San 
Diego, CA, USA).

Data preprocessing
Our previous study has detailed the data preprocessing 
[20, 21]. In brief, the raw data were first trimmed and 
mapped to Genome Reference Consortium Human Build 
37 (hg19) by Bismark [22]. The mapping output from 
Bismark was then imported to BiSeq (R package) [23] to 
detect the methylation level. To reduce bias, the cover-
age was restricted to 90% quantile, and CpG sites with 
beyond ten missing observations or average methylation 
beta value < 0.01 were removed. We used logit transfor-
mation to transform the beta value to M-value for con-
ducting further differential methylation analyses.

http://www.biomarker.com.cn/
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Cell‑type composition
Because the DAN sample extracted from the whole 
blood including distinct cell types which might result in 
false discoveries. We applied ReFACTor [24] method to 
control the cellular heterogeneity impact on DNA meth-
ylation. ReFACTor is based on principal component anal-
ysis and calculates the linear transformations of cell-type 
composition as principal component analysis compo-
nents. We selected the top five components as covari-
ates to control cell-type heterogeneity for the subsequent 
analyses.

Statistical analysis
Epigenome‑wide association analyses
For single CpG analysis, linear mixed effect models were 
applied to regress methylation level on pulmonary func-
tion adjusting for cell-type composition and other con-
founding factors (FEV1: diastolic pressure; FVC: none; 
FEV1/FVC: diastolic and systolic pressure) as fixed 
effects and twin pairing variable as a random effect, 
based on the co-twin design as proposed by Tan et  al. 
[16]. The smoking status of in-pair twins were almost 
consistent in sample. The number of smoking twins was 
22 for FEV1 and FVC and 15 for FEV1/FVC, the number 
of non-smoking twins was 32 for FEV1, 31 for FVC, and 
25 for FEV1/FVC, and the number of inconsistent smok-
ing status twins was 6 for FEV1 and FVC, 4 for FEV1/
FVC. We added the smoking status as fixed effects to 
control it. False discovery rate (FDR) [25] was calculated 
to solve multiplicity problem. We defined the significance 
of genome-wide as FDR < 0.05, and conducted these anal-
yses by R software (version 4.1.0).

Genomic regions enrichment analysis
Genomic regions enrichment analysis was performed 
using Genomic Regions Enrichment of Annotations 
Tool (GREAT) to examine the enrichment of identified 
methylation sites (P < 0.05) in the functional significance 
of cis-regulatory regions [26]. GREAT is able to prop-
erly incorporate distal binding sites and control for false 
positives using a binomial test over the input genomic 
regions. Annotation of GREAT is based on Genome Ref-
erence Consortium Human Build 37 (hg19).

Detecting differentially methylated regions (DMRs)
Based on bisulfite-sequencing data with P-values from 
EWAS result, the significant differentially methylated 
regions (DMRs) for pulmonary function were identified 
using comb-p python library proposed by Petersen et al. 
[27]. This method first combined adjacent P-values as 
weighted according to the calculated auto-correlation, 
then performed Benjamini–Hochberg false discovery 

adjustment to find regions of significant enrichment. The 
documentation and implementation of comb-p python 
library are available at website [28] https:// github. com/ 
brentp/ combi ned- pvalu es. The analyses of DMRs were 
conducted by Python software (version 3.8.8).

Gene expression analyses
Weighted gene co-expression network analyses 
(WGCNA) We used R software (version 4.1.0) to per-
form weighted correlation network analysis such as co-
expression network analysis of gene expression data 
through WGCNA package [29–31]. In brief, we firstly 
constructed a gene co-expression network, and then used 
dynamic tree cut to identify modules. Next, we related 
modules to pulmonary function indices. Finally, we used 
DAVID [32, 33] tool to conduct the enrichment analysis 
of genes clustered in specific modules. The significant 
enriched terms were defined as a modified fisher exact 
P-value < 0.05.

Correlational analysis We applied Spearman’s rank cor-
relation analyses by R software (version 4.1.0) to evalu-
ate the correlation between the gene expression levels of 
genes where the top CpG sites and DMRs annotated and 
pulmonary function indices. Statistically significant was 
defied as P-value < 0.05.

Results
Descriptive statistics of basic characteristics are shown in 
Additional file 1: Table S1. The number of monozygotic 
twin pairs involved in our study was 60 for FEV1(34 male 
pairs), 59 for FVC (34 male pairs), and 44 for FEV1/FVC 
ratio (21 male pairs). The median age of participants was 
above 50 years old. The mean (standard deviation, SD) of 
pulmonary function was 1.98 (0.72) for FEV1, 2.33(0.83) 
for FVC, and 0.86(0.14) for FEV1/FVC. Most clinical 
indicators had considerably significant correlation, indi-
cating that our discordant MZ twin design could ben-
efit. And the insignificant intra-pair confounders would 
be added as covariates in our subsequent association 
analyses. We drew scatter plots with regression line to 
illustrate the relationship between intra-differences of 
pulmonary function (ΔFEV1, ΔFVC, ΔFEV1/FVC) and 
intra-differences of methylated values of top significant 
CpG sites (P value <  10−4, Δ methylated values of CpG 
sites at corresponding location) in MZ twin pairs (Addi-
tional file 2: Table S2, Additional file 3: Fig. S1, Additional 
file 4: Fig. S2, and Additional file 5: Fig. S3). The Δ meth-
ylation value of four CpG sites (f, h, i, j) were positively 
correlated with ΔFEV1, and the Δ methylation value of 
seven CpG sites (a, b, c, d, e, g, k) were negatively corre-
lated with ΔFEV1. The Δ methylation value of eleven CpG 
sites (a, b, c, g, h, i, j, k, m, o, q) were positively correlated 
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with ΔFVC, and the Δ methylation value of six CpG sites 
(d,e,f,l,n,p) were negatively correlated with ΔFVC. The Δ 
methylation value of two CpG sites (c,i) were positively 
correlated with ΔFEV1/FVC ratio, and the Δ methylation 
value of ten CpG sites (a,b,d,e,f,g,h,j,k,l) were negatively 
correlated with ΔFEV1/FVC ratio.

Epigenome‑wide association analysis
The results of EWAS for pulmonary function are shown 
in Table  1. In analysis of pulmonary function, 25 CpG 
sites with P value <  10−4 were identified for FEV1, and the 
top 25 CpG sites were located at 8 genes, among which 
4 (50%) genes WDR90, DIP2C, PANX2, NUBP2 were 
associated with pulmonary function. For intra-pair dif-
ference in FVC, 56 CpG sites with a P value <  10−4 were 
found with 4 sites reaching a P value <  10−5. And the 
top CpG sites were located at 21 genes, among which 8 
(38%) genes AP5B1, CYP26B1, GAS6, IL11, IRS1, IRS2, 
MAD1L1, NUAK1 were associated with pulmonary func-
tion. Intra-pair methylation difference of FEV1/FVC 
ratio identified 31 CpG sites with P value <  10−4. The CpG 
sites located at 11 genes and the most significant site 
was located at FENDRR and ENSG00000268388 (chr16: 
86,528,639  bp, cor = − 1.93, P = 2.27 ×  10−6). The Man-
hattan plots of pulmonary function for the P-values of 
each CpG site against its chromosomal location are illus-
trated in Fig. 1.

A total of 280 common CpG sites (P < 0.05) were found 
for FEV1, FVC, and FEV1/FVC. 794 common genes 
(P < 0.05) were found for FEV1, FVC, and FEV1/FVC, 
among which two genes reached the level of P < 1 ×  10–3, 
including CHRNA4 and MAD1L1.

Biological pathway analysis
The number of genomic cis-regulatory regions related 
to one or more genes was 13,821, 14,901, and 17,929 for 
FEV1, FVC, and FEV1/FVC, respectively (Additional 
file 6: Fig. S4). The absolute distance of genomic regions 
to transcription start site was displayed in Additional 
file 7: Fig. S5 and Additional file 8: Fig. S6.

The analysis found 12 common functional clus-
ters of biological process with very high statistical sig-
nificance (binomial p-value < 1.07E−13) (Table  2), 
including negative regulation of phospholipid biosyn-
thetic process, platelet-derived growth factor binding, 
potassium:chloride symporter activity, epithelial-mes-
enchymal cell signaling, decreased serum estradiol, low 
voltage-gated calcium channel activity, cAMP response 
element binding protein binding, activation of Cdc42 
GTPase activity, ceramide signaling pathway, transcrip-
tion regulation by bZIP transcription factor, mitogen-
activated protein kinase p38 binding, and notch signaling 
pathway.

The MSiDB and PANTHER pathway, Human Pheno-
type, and Go enriched terms of FEV1, FVC, and FEV1/
FVC are shown in Additional file  9: Table  S3, Addi-
tional file 10: Table S4, and Additional file 11: Table S5, 
respectively.

Region‑based analysis
By using comb-p, region-based analyses identified 13, 
14, and 12 DMRs (FDR < 0.05) associated with FEV1, 
FVC, and FEV1/FVC ratio, respectively (Table  3). 
Interestingly, 4 significant FEV1 associated DMRs 
(from 41,207,271 to 41,207,436 bp and from 43,394,513 
to 43,394,685 bp on chromosome 6; from 50,616,620 to 
50,617,148  bp on chromosome 22; from 40,996,995 to 
40,997,142  bp on chromosome 17), 2 significant FVC 
associated DMRs (from 179,554,269 to 179,554,550 bp 
on chromosome 5; from 39,719,381 to 39,719,533  bp 
on chromosome 4), and 1 significant FEV1/FVC ratio 
associated DMR (from 130,491,143 to 130,491,278  bp 
on chromosome 11) cover the corresponding top sig-
nificant CpG sites in Table 1.

Of all DMRs, three DMRs (located at PRDM1, MPL, 
EPHB3) were related to more than one trait. Of the 
significant DMRs associated with pulmonary func-
tion, nine DMRs for FEV1 were annotated to PRDM1 
on chromosome 6, MPL and ZNF496 on chromosome 
1, CIDEB and LTB4R2 on chromosome 14, SLC6A5 on 
chromosome 11, EPHB3 on chromosome 3, HEMK1 
on chromosome 22, CDKL4 on chromosome 2, and 
AOC2 on chromosome 17. Nine DMRs for FVC were 
annotated to RASGEF1C on chromosome 5, UBE2K 
on chromosome 4, RNA5SP207, PRDM1, and ATG5 on 
chromosome 6, FEM1A on chromosome 19, MPL on 
chromosome 1, EPHB3 on chromosome 3 and DRD5P2 
on chromosome 2. And seven DMRs for FEV1/FVC 
ratio were annotated to RASGEF1C on chromosome 5, 
UBE2K on chromosome 4, RNA5SP207, PRDM1, and 
ATG5 on chromosome 6, FEM1A on chromosome 19, 
MPL on chromosome 1, EPHB3 on chromosome 3 and 
DRD5P2 on chromosome 2. In addition, four DMRs 
for FEV1, six DMRs for FVC, and five DMRs for FEV1/
FVC ratio were located in the intergenic regions.

Figures  2, 3 and 4 display the methylation patterns 
for the significant DMRs for pulmonary function in 
Table 3, of which six DMRs (A, C, E, F, I, K) were posi-
tively and four DMRs (B, D, H, M) negatively associated 
with FEV1, and seven DMRs (A, C, F, G, H, J, L) were 
positively and five DMRs (B, E, K, M, N) negatively 
associated with FVC. One DMRs (K) was positively and 
seven DMRs (B, C, D, E, F, G, H) negatively associated 
with FEV1/FVC ratio.
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Table 1 The results of epigenome-wide association study in pulmonary function (P-value < 1 ×  10–4)

Chromosome Position(bp) Coefficient P‑value Ensemble gene ID HGNC symbol

FEV1

 chr3 138,639,540  − 1.93791 1.81E−05

 chr3 138,639,552  − 1.94154 1.87E−05

 chr3 138,639,544  − 1.9364 1.9E−05

 chr3 138,639,520  − 1.92289 2.26E−05

 chr6 43,394,632  − 1.49082 2.87E−05

 chr6 43,394,620  − 1.48934 2.9E−05

 chr16 706,133 0.287479 3.29E−05 ENSG00000161996 WDR90

 chr14 104,008,425  − 1.59238 4.23E−05

 chr6 43,394,652  − 1.47384 4.29E−05

 chr6 43,394,599  − 1.56562 4.39E−05

 chr17 40,997,066  − 0.79359 4.44E−05 ENSG00000131480 AOC2

 chr14 104,008,420  − 1.19154 4.65E−05

 chr10 527,775  − 1.12976 4.89E−05 ENSG00000151240 DIP2C

  chr19* 45,721,153  − 0.40397 5.27E−05 ENSG00000130201 EXOC3L2

ENSG00000007047 MARK4

 chr19 48,945,113  − 1.67386 5.63E−05 ENSG00000105464 GRIN2D

  chr19* 45,721,139  − 0.36067 6.24E−05 ENSG00000130201 EXOC3L2

ENSG00000007047 MARK4

 chr22 50,616,743 2.576796 6.52E−05 ENSG00000073150 PANX2

 chr12 132,922,443  − 0.85158 6.6E−05

 chr13 114,322,962  − 1.33518 6.9E−05 ENSG00000185974 GRK1

 chr22 50,616,740 2.562951 6.92E−05 ENSG00000073150 PANX2

 chr19 48,945,126  − 1.64199 7.32E−05 ENSG00000105464 GRIN2D

 chr22 50,616,733 2.538738 7.84E−05 ENSG00000073150 PANX2

 chr19 48,945,131  − 1.63696 8.05E−05 ENSG00000105464 GRIN2D

  chr16* 1,835,849  − 1.47921 8.48E−05 ENSG00000095906 NUBP2

ENSG00000162032 SPSB3

 chr6 41,207,271 0.322382 9.19E−05 ENSG00000212176 RNA5SP207

FVC

 chr2 227,662,476 2.083124 4.88E−06 ENSG00000169047 IRS1

 chr2 227,662,482 2.066378 5.49E−06 ENSG00000169047 IRS1

 chr2 227,662,501 2.013397 6.8E−06 ENSG00000169047 IRS1

 chr1 3,329,105 0.283266 9.86E−06 ENSG00000142611 PRDM16

 chr2 242,955,278  − 3.46707 1.22E−05 ENSG00000233806 LINC01237

 chr7 56,243,280  − 0.31459 1.51E−05

 chr1 40,388,312 0.248359 1.64E−05

 chr1 34,090,712 0.342628 1.72E−05 ENSG00000121904 CSMD2

 chr2 227,662,462 1.963614 1.82E−05 ENSG00000169047 IRS1

 chr9 34,809,867  − 0.32198 1.94E−05

 chr1 212,456,833  − 1.22998 2E−05 ENSG00000226251 LINC02608

 chr2 227,662,459 1.962235 2.04E−05 ENSG00000169047 IRS1

 chr1 34,090,722 0.360194 2.13E−05 ENSG00000121904 CSMD2

 chr1 40,388,299 0.247353 2.44E−05

 chr4 39,719,509  − 0.33384 2.57E−05 ENSG00000078140 UBE2K

 chr4 39,719,504  − 0.33124 2.65E−05 ENSG00000078140 UBE2K

 chr1 45,203,996 0.682629 2.67E−05

 chr11 65,547,072  − 0.2697 2.84E−05 ENSG00000254470 AP5B1

 chr2 227,662,443 1.966677 3.2E−05 ENSG00000169047 IRS1
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Table 1 (continued)

Chromosome Position(bp) Coefficient P‑value Ensemble gene ID HGNC symbol

 chr19 55,881,590 1.590547 3.51E−05 ENSG00000095752 IL11

 chr2 227,662,433 1.985295 3.55E−05 ENSG00000169047 IRS1

 chr2 227,662,426 2.006028 3.6E−05 ENSG00000185950 IRS2

 chr14 94,405,044  − 0.85692 3.86E−05 ENSG00000100628 ASB2

 chr17 79,067,393 2.782969 3.97E−05 ENSG00000175866 BAIAP2

 chr19 55,881,582 1.540431 4.08E−05 ENSG00000095752 IL11

 chr7 56,243,259  − 0.2817 4.14E−05

 chr9 34,809,843  − 0.27944 4.38E−05

 chr17 75,613,156 0.367264 4.43E−05

 chr16 2,301,960  − 1.99883 4.49E−05 ENSG00000167969 ECI1

 chr5 179,554,467 0.172032 5.14E−05 ENSG00000146090 RASGEF1C

 chr9 34,809,878  − 0.33026 5.28E−05

 chr17 75,613,186 0.259034 5.33E−05

 chr12 106,461,103  − 1.84659 5.55E−05 ENSG00000074590 NUAK1

 chr16 2,301,969  − 1.97289 5.66E−05 ENSG00000167969 ECI1

 chr7 56,243,241  − 0.27378 5.66E−05

 chr2 227,662,390 2.353652 5.79E−05 ENSG00000169047 IRS1

 chr5 179,554,462 0.167814 5.91E−05 ENSG00000146090 RASGEF1C

 chr7 56,243,233  − 0.2686 5.96E−05

  chr13* 114,525,556  − 2.57251 6.25E−05 ENSG00000183087 GAS6

ENSG00000233695 GAS6 − AS1

 chr5 179,554,486 0.182607 6.36E−05 ENSG00000146090 RASGEF1C

 chr2 72,359,706 0.217285 6.44E−05 ENSG00000003137 CYP26B1

 chr19 22,883,687 2.353067 7E−05

 chr1 40,388,332 0.260153 7.03E−05

 chr20 62,188,249 0.178865 7.56E−05

 chr19 22,883,684 2.335013 7.71E−05

 chr19 36,757,583 0.700594 7.8E−05

 chr20 62,188,262 0.179876 8.09E−05

 chr22 50,758,097 0.338362 8.16E−05 ENSG00000205593 DENND6B

 chr12 123,750,717  − 0.26888 8.23E−05 ENSG00000111328 CDK2AP1

 chr7 2,106,405  − 3.75532 8.27E−05 ENSG00000002822 MAD1L1

 chr7 56,243,224  − 0.25655 8.39E−05

 chr4 39,719,480  − 0.31037 8.63E−05 ENSG00000078140 UBE2K

 chr1 181,382,667 0.338413 8.9E−05 mRNA AF387615

 chr4 39,719,523  − 0.34507 9.3E−05 ENSG00000078140 UBE2K

 chr10 88,702,832  − 1.01265 9.46E−05 ENSG00000173269 MMRN2

 chr2 72,359,687 0.201322 9.56E−05 ENSG00000003137 CYP26B1

 chr16 86,528,639  − 1.92693605 2.2733E−06 ENSG00000268388 FENDRR

 chr11 89,900,493  − 8.57710522 1.042E−05 ENSG00000077616 NAALAD2

 chr6 168,708,413 2.6198784 1.0891E−05 ENSG00000164488 DACT2

 chr11 89,900,518  − 8.40993874 1.2848E−05 ENSG00000077616 NAALAD2

 chr16 86,528,603  − 2.37934592 1.4343E−05 ENSG00000268388 FENDRR

 chr16 86,528,620  − 2.56207502 1.4967E−05 ENSG00000268388 FENDRR

 chr2 233,791,733 2.516547 1.601E−05 ENSG00000066248 NGEF

 chr16 86,528,600  − 2.29834345 1.6392E−05 ENSG00000268388 FENDRR

 chr6 168,708,422 2.86106788 1.7273E−05 ENSG00000164488 DACT2

 chr11 130,491,262  − 3.95462385 2.2669E−05

 chr6 168,708,401 2.15447478 2.3564E−05 ENSG00000164488 DACT2
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Gene expression analysis
In the gene expression analyses, we included 12 twin 
pairs (7 male pairs) with median age of 53 years (rang-
ing from 43 to 65), a median FEV1 of 2.05 (ranging 
from 1.04 to 3.81), a median FVC of 2.17 (ranging from 
1.32 to 4.10), and a median FEV1/FVC of 0.97(ranging 
from 0.57 to 1.01).

Weighted gene co‑expression network analysis (WGCNA)
As shown in Additional file 12: Fig. S7, the genes clus-
tered in lightsteelblue1 module (including 492 genes) 
were both positively correlated with FEV1 (r = 0.58, 
P = 0.003) and FVC (r = 0.51, P = 0.01). The genes clus-
tered in this module were significantly enriched in 
positive regulation of protein secretion, positive regu-
lation of cell division, growth factor activity, calcium 
ion binding, motile cilium, platelet degranulation, and 
phospholipase A2 activity. (Additional file 13: Table S6).

Moreover, the genes clustered in darkorange2 mod-
ule (including 62 genes) were also both positively cor-
related with FEV1(r = 0.45, P = 0.03) and FVC (r = 0.53, 
P = 0.007). The genes clustered in this module were 
significantly enriched in extracellular region, negative 
regulation of exocytosis, and cell adhesion (Additional 
file 14: Table S7).

Additionally, the genes clustered in ivory module 
(including 76 genes) were negatively correlated with 
FEV1/FVC (r = − 0.63, P = 0.001). The genes clustered 
in this module were significantly enriched in cytokine 
activity, extracellular region, intermediate filament, and 
so on (Additional file 15: Table S8).

The common genes and enrichment terms 
between methylation analysis and WGCNA
We detected the common genes and enrichment terms 
between the methylation analyses and WGCNA. We 
found DIP2C gene which included in lightsteelblue1 
modules linked to FEV1, and ASB2 which included in 
darkorange2 modules associated with FVC. The com-
mon enrichment terms “platelet alpha granule lumen” 
was identified.

Correlation analysis
Significant correlations between gene expression levels 
and pulmonary function indices were identified, includ-
ing SLC6A5 related to FEV1 (r = 0.454, P = 0.026), and 
GAS6 related to FVC (r = 0.533, P = 0.007).

Table 1 (continued)

Chromosome Position(bp) Coefficient P‑value Ensemble gene ID HGNC symbol

 chr2 233,791,742 2.27761208 3.1105E−05 ENSG00000066248 NGEF

 chr16 86,528,611  − 2.78067202 3.1934E−05 ENSG00000268388 FENDRR

 chr11 130,491,234  − 3.50377946 3.2327E−05

 chr11 130,491,229  − 3.49295666 3.2607E−05

 chr11 130,491,225  − 3.49165833 3.3003E−05

 chr11 130,491,218  − 3.4800439 3.9356E−05

 chr11 130,491,274  − 5.32113664 4.9746E−05

 chr20 61,992,129 8.76860666 5.2202E−05 ENSG00000101204 CHRNA4

 chr11 1,103,266  − 1.68641265 5.3477E−05 ENSG00000198788 MUC2

 chr4 10,508,681  − 3.48381736 5.411E−05 ENSG00000109684 CLNK

 chr11 130,491,277  − 5.2862281 5.6835E−05

 chr8 6,671,626  − 2.57808863 5.7509E−05 ENSG00000275591 XKR5

 chr1 7,022,170 8.69574765 5.8044E−05 ENSG00000171735 CAMTA1

 chr11 1,103,270  − 1.68935565 5.9685E−05 ENSG00000198788 MUC2

 chr4 190,537,048  − 3.24980484 7.2585E−05

 chr14 104,642,230  − 4.53713759 7.4715E−05 ENSG00000066735 KIF26A

 chr4 190,537,044  − 3.22472764 7.9082E−05

 chr5 28,928,500  − 8.72472679 8.3633E−05

 chr16 86,528,570  − 1.82984517 8.7526E−05 ENSG00000268388 FENDRR

 chr22 29,075,315 11.8597904 9.15E−05 ENSG00000100154 TTC28

* The CpG sites were annotated to more than one gene
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Discussion
In this study, we detected the epigenetic variants of 
pulmonary function using EWAS based on monozy-
gotic twin design. The number of CpG sites which was 
identified to reached the level of P < 1 ×  10–4 was 25 
for FEV1, 56 for FVC, and 31 for FEV1/FVC. And 12 
significant pathways of interest for pulmonary func-
tion were highlighted by GREAT ontology enrichment 
analyses. Finally, we identified several DMRs related to 

pulmonary function, and of all DMRs, three (PRDM1, 
MPL, and EPHB3) were related to more than one trait. 
Two genes (DI92C and ASB2) and one enrichment 
terms (platelet alpha granule lumen) were overlapped 
between methylation analysis and WGCNA. Finally, 
two genes were found to be correlated to pulmonary 
function.

The genes DIP2C, WDR90, PANX2, NUBP2, AP5B1, 
CYP26B1, GAS6, IL11, IRS1, IRS2, MAD1L1, CAMTA1, 

Fig. 1 Circular Manhattan plots of FEV1 (a), FVC (b), and FEV1/FVC (c) for single CpG-based epigenome-wide association study. 25 CpGs for FEV1, 
56 CpGs for FVC, and 31 CpGs for FEV1/FVC were found as genome-wide significant
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CHRNA4, FENDRR, MUC2 associated with top CpG 
sites (Table  1) played important roles in pulmonary 
function. Most interestingly, DIP2C gene was not only 
identified to link to pulmonary function in our EWAS 

results, but further validated in the WGCNA. Moreover, 
DIP2C has been detected to related to pulmonary func-
tion in blood DNA in Koreans adults [34]. Mutations 
in DIP2C have been identified in lung cancer samples 

Table 2 Significant common functional clusters biological process related to pulmonary function by GREAT using binomial test

Term name Binom raw P‑value Binom FDR Q‑value Binom fold 
enrichment

Binom 
expected 
region hits

Binom 
observed 
region 
hits

FEV1

 Negative regulation of phospholipid biosynthetic 
process

2.30E−112 2.40E−108 22.67703 5.159407 117

 Platelet-derived growth factor binding 1.75E−66 6.45E−63 6.609811 21.48322 142

 Potassium:chloride symporter activity 2.13E−59 2.62E−56 27.73878 2.018834 56

 Epithelial-mesenchymal cell signaling 3.35E−57 3.18E−54 6.273671 20.24333 127

 Decreased serum estradiol 2.18E−47 2.23E−44 21.93261 2.234116 49

 Low voltage-gated calcium channel activity 1.91E−44 1.41E−41 18.17954 2.750345 50

 cAMP response element binding protein binding 1.41E−38 5.76E−36 9.067368 7.058278 64

 Activation of Cdc42 GTPase activity 3.30E−36 5.30E−34 12.54469 3.906035 49

 Ceramide signaling pathway 3.85E−33 1.69E−30 2.874993 61.21754 176

 Transcription regulation by bZIP transcription factor 2.38E−29 3.61E−27 3.509946 33.04894 116

 Mitogen-activated protein kinase p38 binding 9.76E−16 5.81E−14 6.090298 5.418454 33

 Notch signaling pathway 3.93E−13 9.97E−12 2.123615 54.15295 115

FVC

 Activation of Cdc42 GTPase activity 5.16E−82 5.39E−78 20.93006 4.204478 88

 Potassium:chloride symporter activity 1.08E−73 1.99E−70 30.83174 2.173085 67

 Negative regulation of phospholipid biosynthetic 
process

1.82E−54 5.77E−52 13.14459 5.553615 73

 Epithelial-mesenchymal cell signaling 1.61E−45 3.29E−43 5.323534 21.79004 116

 Decreased serum estradiol 2.81E−43 1.92E−40 19.54412 2.404816 47

 Platelet-derived growth factor binding 3.14E−36 1.05E−33 4.583852 23.12466 106

 Low voltage-gated calcium channel activity 1.08E−35 3.33E−33 14.86242 2.960487 44

 Transcription regulation by bZIP transcription factor 1.57E−31 2.39E−29 3.513795 35.57407 125

 Notch signaling pathway 4.40E−29 1.16E−26 2.856257 54.26683 155

 cAMP response element binding protein binding 1.22E−19 1.05E−17 5.791325 7.597571 44

 Mitogen-activated protein kinase p38 binding 3.38E−17 2.04E−15 6.172357 5.832456 36

 Ceramide signaling pathway 1.07E−13 4.56E−12 2.033541 65.89492 134

FEV1/FVC

 Negative regulation of phospholipid biosynthetic 
process

7.31E−162 7.63E−158 24.44504 6.708927 164

 Platelet-derived growth factor binding 3.83E−103 1.41E−99 7.338399 27.93525 205

 Epithelial-mesenchymal cell signaling 2.93E−64 1.18E−61 5.812409 26.32299 153

 Activation of Cdc42 GTPase activity 3.00E−58 8.25E−56 14.56942 5.079131 74

 Low voltage-gated calcium channel activity 9.99E−55 6.14E−52 17.61571 3.576354 63

 Ceramide signaling pathway 5.35E−44 3.53E−41 2.914465 79.60295 232

 Potassium:chloride symporter activity 7.68E−43 1.89E−40 18.28468 2.625149 48

 Decreased serum estradiol 5.03E−36 1.55E−33 15.14585 2.905086 44

 cAMP response element binding protein binding 9.55E−35 1.76E−32 7.299999 9.178084 67

 Notch signaling pathway 4.98E−31 9.39E−29 2.730495 65.55589 179

 Transcription regulation by bZIP transcription factor 2.74E−27 4.16E−25 3.04832 42.9745 131

 Mitogen-activated protein kinase p38 binding 1.19E−21 7.41E−20 6.386807 7.045774 45
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[35]. This demonstrated that DIP2C gene indeed plays 
an important role at the pulmonary disease. WDR90 
was identified as required gene for ciliogenesis [36]. The 

lung ciliary-related proteins keeping the airways clear of 
mucus and dirt play a role in human pulmonary func-
tion. PANX2 was expressed in human airway epithelial 

Table 3 The results of annotation to the significant DMRs (slk corrected P-value < 0.05)

Chromosome Start End Length Stouffer‑liptak‑kechris(slk) 
corrected P‑value

Ensembl ID Gene symbol

FEV1

 chr6 41,207,271 41,207,436 10 0.001728

 chr6 106,553,539 106,553,708 11 0.001782 ENSG00000057657 PRDM1

 chr18 46,502,900 46,503,123 14 0.004627

 chr6 43,394,513 43,394,685 12 0.006354

 chr1 43,814,661 43,814,895 21 0.008471 ENSG00000117400 MPL

 chr14 24,780,505 24,780,906 12 0.009266 ENSG00000136305 CIDEB

ENSG00000213906 LTB4R2

 chr11 20,626,786 20,627,432 26 0.01328 ENSG00000165970 SLC6A5

 chr2 175,205,113 175,205,752 29 0.01328

 chr3 184,294,568 184,294,844 12 0.01516 ENSG00000182580 EPHB3

 chr22 50,616,620 50,617,148 29 0.01753 ENSG00000114735 HEMK1

 chr2 39,470,838 39,471,149 34 0.03594 ENSG00000205111 CDKL4

 chr1 247,463,964 247,464,319 21 0.03833 ENSG00000162714 ZNF496

 chr17 40,996,995 40,997,142 11 0.0463 ENSG00000131480 AOC2

FVC

 chr5 179,554,269 179,554,550 22 0.003109 ENSG00000146090 RASGEF1C

 chr4 39,719,381 39,719,533 10 0.004208 ENSG00000078140 UBE2K

 chr6 41,207,271 41,207,436 10 0.007586 ENSG00000212176.1 RNA5SP207

 chr19 4,792,661 4,793,200 24 0.009082 ENSG00000141965 FEM1A

 chr6 106,553,539 106,553,708 11 0.009722 ENSG00000057657 PRDM1

ENSG00000057663 ATG5

 chr1 43,814,661 43,814,895 21 0.01655 ENSG00000117400 MPL

 chr6 41,650,731 41,651,148 26 0.01748

 chr3 184,294,568 184,294,844 12 0.02198 ENSG00000182580 EPHB3

 chr2 176,931,544 176,931,983 16 0.02289

 chr2 39,470,838 39,471,149 34 0.02463

 chr18 14,998,779 15,000,083 61 0.04006

 chr5 134,744,537 134,744,742 14 0.04018

 chr1 148,902,200 148,902,378 15 0.04418

 chr2 91,874,335 91,874,482 12 0.04763 ENSG00000175658 DRD5P2

FEV1/FVC

 chr15 68,115,731 68,116,609 24 0.002354 ENSG00000188779 SKOR1

 chr11 130,491,143 130,491,278 10 0.00646

 chr9 128,985,373 128,985,521 11 0.007998

 chr20 25,990,367 25,990,728 18 0.008941 LOC100134868

 chr16 895,385 895,537 11 0.01412

 chr9 124,308,098 124,308,286 11 0.01419

 chr3 22,458,309 22,458,548 13 0.01914

 chr15 68,549,191 68,549,322 9 0.01938 ENSG00000128973 CLN6

 chr7 329,073 330,975 103 0.02247 LOC100288524

 chr17 80,840,674 80,841,003 18 0.02549 ENSG00000141556 TBCD

 chr17 75,525,368 75,525,475 4 0.03143 ENSG00000267665 LOC400622

 chr19 1,229,184 1,230,113 60 0.04449 ENSG00000099625 CBARP
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cells and alveolar macrophages, which might have an 
impact on pulmonary function [37]. NUBP2 was found 
to express in distal lung epithelium, which might func-
tion in lung development of mice [38]. AP5B1 was identi-
fied as susceptibility loci for the combined eczema plus 
asthma phenotype, which might affect pulmonary func-
tion [39]. Cyp26b1 was an essential regulator of distal 
airway epithelial differentiation during lung develop-
ment [40]. GAS6 promoted Axl-mediated survival in pul-
monary endothelial cells [41]. IL-11 was suggested that 
could cause lung inflammation and airway obstruction 
[42]. IRS1 and IRS2 were found to mediate IL-4-induced 
migration of human airway epithelial cells, which influ-
ence pulmonary function [43]. MAD1L1 was identified 
as a genome-wide significant signals with idiopathic pul-
monary fibrosis by GWAS [44]. CAMTA1 was a regulator 
of nuclear factor of activated T cells signaling, which was 
linked to pulmonary arterial hypertension [45]. FENDRR 
was long noncoding RNA exhibiting antifibrotic activ-
ity in pulmonary fibrosis [46]. Decreased expression of 
MUC2 has been observed in patients with COPD [47].

Pathway enrichment analyses showed lots of com-
mon significant pathways of pulmonary function using 

GREAT. The significant enrichment pathway include 
negative regulation of phospholipid biosynthetic pro-
cess [48], platelet-derived growth factor binding [49], 
potassium:chloride symporter activity [50], epithelial-
mesenchymal cell signaling [51], decreased serum estra-
diol [52], low voltage-gated calcium channel activity [53], 
cAMP response element binding protein binding [54], 
activation of Cdc42 GTPase activity [55], ceramide sign-
aling pathway [56], transcription regulation by bZIP tran-
scription factor [57], mitogen-activated protein kinase 
p38 binding [58], and notch signaling pathway [59].

The genomic region-based analyses found 39 DMRs 
locating at 23 genes (Table 3), of which PRDM1, MPL, 
LTB4R2, EPHB3 and SLC6A5 had certain biologi-
cal function potentially linked to pulmonary function. 
Previous study found that NF-κB(p65) promotion of 
miR-99b could aggravate acute lung injury by PRDM1 
down-regulation, and over-expressed PRDM1 inhib-
its acute lung injury in mice [60]. MPL was defined as 
an important gene in a novel VEGF–miR-1–Mpl–P-
selectin effector pathway in lung Th2 inflammation and 
found as potential therapeutic targets for asthma [61]. 
LTB4R2, as one of pivotal leukotriene B4 receptors, was 

Fig. 2 Differential methylation patterns for FEV1 from the 13 DMRs. Except the three DMRs (G, J, L), nine DMRs (A, C, E, F, I, K) were positively and 
four DMRs (B, D, H, M) negatively associated with FEV1
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proposed as potential therapeutic targets in asthma 
[62]. EphB3 was expressed at human lung fibroblasts, 
which induce dephrin-B2 forward signal involved in 

several fibroblast functions [63]. SLC6A5, also named 
GLYT-2, encoded a sodium- and chloride-dependent 
glycine neurotransmitter transporter. The glycinergic 

Fig. 3 Differential methylation patterns for FVC from the 14 DMRs. Except the two DMRs (D, I), seven DMRs (A, C, F, G, H, J, L) were positively and 
five DMRs (B, E, K, M, N) negatively associated with FVC

Fig. 4 Differential methylation patterns for FEV1/FVC from the 12 DMRs. Except the four DMRs (A, I, J, L), one DMRs (K) was positively and seven 
DMRs (B, C, D, E, F, G, H) negatively associated with FEV1/FVC ratio
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inhibitory synaptic inputs played an important role in 
respiratory motoneurons, which could affect pulmo-
nary function [64].

As additional validation, we integrated the methylation 
data with gene expression data. Genes clustered in light-
steelblue1 and darkorange2 modules were positively cor-
related with FEV1 and FVC in WGCNA, and some genes 
were in common with EWAS findings, including DIP2C 
discussed above and ASB2 involved in pulmonary func-
tion remained to be studied further. Additionally, SLC6A5 
and GAS6 discussed above were positively correlated to 
pulmonary function. Moreover, the common enrichment 
terms between methylation analysis and WGCNA was 
platelet alpha granule lumen, which involved in pulmo-
nary function remained to be studied further.

There were several strengths in the present study. The 
identical twin design used in our study to detect the epi-
genetic variation of pulmonary function could perfectly 
control over the genetic background to provide credible 
results. Moreover, this was one of the few pulmonary 
function EWA studies in Asian and the first in Chinese. 
As the genetic background and environmental exposures 
differ from ethnic populations, our study elucidated the 
underlying physiological mechanism of pulmonary func-
tion changes in Chinese adults. However, our studies 
also have some limitations. First, compared with other 
general case–control design, the sample size of our study 
was relatively small due to the difficulty of recruiting and 
identifying qualified MZ twin pairs. However, previous 
study has determined that the sample sizes of monozy-
gotic twins just require roughly 1/4 of sample sizes in the 
ordinary case-only design to provide the sufficient power 
[65]. Second, the DNA sample was extracted from blood 
rather than the lung tissue. Although we know methyla-
tion is the characteristic of tissue-specificity, it was dif-
ficult to obtain the lung tissue of sample. Moreover, the 
mounting evidences have supported disease-associated 
methylation loci could be identified from peripheral 
samples [66]. Third, the non-shared environment for 
the individual siblings of MZ twins, such as occupa-
tional environment [67], residential environment [68], 
and mode of transport [69], could expose themselves 
to different levels of environmental pollutants, includ-
ing particulate matter, nitrogen dioxide; volatile organic 
compounds, polycyclic aromatic hydrocarbons, and so 
on, which might directly affect pulmonary function [70–
73], and cause different levels of DNA methylation [74–
78] thereby indirectly influencing pulmonary function. 
However, due to the complicated causes of DNA meth-
ylation and the difficulty of monitoring for the external 
environmental exposure, we have not further analyzed 
the causes of DNA methylation. We will seek practical 
method to solve it in the future research.

Although these results could not immediately be 
applied as clinical predictors of disease in individuals, 
they are important from an aetiological perspective. Epi-
genetic studies complement genetic association studies 
to identify pulmonary function related genes. The EWAS 
and gene expression analysis identified candidate genes 
and pathways related to pulmonary function, which 
could help understand underlying mechanisms of pulmo-
nary function and explore new molecular biological path-
way of pulmonary functional decline in clinical.

Conclusion
In conclusion, our DNA methylation sequencing analysis 
on identical twins provides new references for the epi-
genetic regulation on pulmonary function. Several CpG 
sites, genes, biological pathways and DMRs were con-
sidered as possible crucial to pulmonary function. All 
findings point important clues to further explore of pul-
monary function.
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