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Blood leukocyte count as a systemic 
inflammatory biomarker associated with a more 
rapid spirometric decline in a large cohort 
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Abstract 

Objective:  Iron and steel industry workers are exposed to high levels of inhalable dust particles that contain various 
elements, including metals, and cause occupational lung diseases. We aim to assess the relationship between occupa-
tional dust exposure, systemic inflammation, and spirometric decline in a cohort of Chinese iron and steel workers.

Methods:  We studied 7513 workers who participated in a Health Surveillance program at Wugang Institute for Occu-
pational Health between 2008 and 2017. Time-weighted exposure intensity (TWEI) of dust was quantified based on 
self-reported dust exposure history, the experience of occupational hygienists, and historical data of dust exposure for 
workers with certain job titles. A linear mixed-effects model was used for association analyses.

Results:  The average annual change of lung function was − 50.78 ml/year in forced expiratory volume in 1 s (FEV1) 
and − 34.36 ml/year in forced vital capacity (FVC) in males, and − 39.06 ml/year in FEV1 and − 26.66 ml/year in FVC in 
females. Higher TWEI prior to baseline was associated with lower longitudinal measurements of FEV1 and FVC but not 
with their decline rates. Higher WBC and its differential at baseline were associated with lower longitudinal measure-
ments and a more rapid decline of FEV1 and FVC in a dose-dependent monotonically increasing manner. Moreover, 
the increase of WBC and its differential post-baseline was also associated with a more rapid decline of FEV1 and FVC.

Conclusions:  Our findings support the important role of systemic inflammation in affecting the temporal change of 
lung function in iron and steel industry workers.

Keywords:  Longitudinal study, Steel dust exposure, White blood cell count, Lung function decline, Systemic 
inflammation
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Introduction
The iron and steel industry as a fundamental compo-
nent of modern industrial infrastructure for the entire 
human society has employed millions of workers who 
were exposed to many chemical and physical hazards, 
workplace activities, or conditions [1]. Workers are 
exposed to high levels of inhalable dust particles con-
taining various elements such as metals, silica, carbon, 
and polycyclic aromatic hydrocarbon, which could 
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cause chronic occupational diseases such as chronic 
obstructive pulmonary disease (COPD) [2–5]. The 
International Agency for Research on Cancer has clas-
sified iron and steel founding processes as Group 1 
human carcinogens based on sufficient evidence for 
lung cancer in humans [6]. Cross-sectional studies have 
established strong associations between dust exposure 
and lung function impairment in iron and steel workers 
[1, 7, 8]. However, the association between dust expo-
sure in the working environment and lung function 
decline is inadequately studied.

Inhalation of dust particles containing metals and 
their compounds causes impairment to both pulmo-
nary surfactant and respiratory function [4]. Occupa-
tional exposure to respirable dust in an iron foundry 
played a significant role in decreasing lung function and 
in increasing the risk of chronic airway obstruction in 
exposed workers [1, 2, 9]. In a longitudinal study from 
the Norwegian, the association of steel dust exposure 
with accelerated lung function decline was observed and 
smokers had stronger associations. A dose–response 
relationship between total dust exposure and the annual 
decline in FEV1 has been found among employees in 
smelters producing ferromanganese, silicomanganese, 
ferrochromium and silicon carbide [10].

White blood cell (WBC) counts and its differential (i.e., 
neutrophils, lymphocytes, monocytes, eosinophils, and 
basophils) are established systemic inflammatory mark-
ers and have been identified to be associated with lower 
FEV1 and airflow obstruction in occupational cohorts 
and general populations [11–16]. After the September 
11, 2001 World Trade Center attacks, rescue and recov-
ery workers were exposed to a high level of dust mix-
ture and were later found to have high rates of airway 
injury, including excessive loss of lung function, airflow 
obstruction, and airway hyper-reactivity. Elevated blood 
neutrophil and eosinophil counts were independently 
associated with an accelerated FEV1 decline (64 mL/year 
or more), a well-established risk factor for COPD devel-
opment [17]. Mechanisms underlying the observed asso-
ciations may involve increased lung tissue damage due to 
the release of destructive enzymes or highly reactive oxy-
gen species from neutrophils [18–21] or the generation 
of eosinophilia/Th2 inflammation in airways [14, 22].

Few studies have evaluated the associations between 
WBC counts and longitudinal changes of lung function 
in iron and steel workers. We hypothesized baseline 
WBC as a systemic inflammatory biomarker is associ-
ated with a lower lung function and a more rapid decline 
in a cohort of 7513 iron and steel industry workers. We 
also assessed the increase of WBC counts post-base-
line and its association with the longitudinal change of 
spirometry.

Methods
A detailed description is available in supplemental 
materials.

Study subjects
This longitudinal study was conducted in 7575 employees 
from Wuyang Iron and Steel Company Limited (Hangang 
Group in Henan, China). The employees were required 
to participate in the Worker Health Surveillance pro-
gram at the Wugang Institute for Occupational Health 
between 2008 and 2017. This company has been using 
the electric arc furnace technique to manufacture steel 
from scrap or direct reduced iron, melted by electric arcs, 
and mainly has steel making, continuous casting, rolling, 
and oxygen-making plants. According to the Reports of 
Occupational Hazard Control Assessment conducted by 
Henan Institute of Occupational Medicine in 2006 and 
2007, inhalable dust and noise are the two occupational 
hazards that have samples exceeding the national stand-
ards (the permissible concentration time-weighted aver-
age of 8 mg/m3 for inhalable dust and 85 dB(A) for noise 
in China). This cohort was dynamic with workers enter-
ing and leaving the cohort at different times. In general, 
individual participants in this program received medical 
assessments every other year with medical surveillance 
workouts recommended by the China Ministry of Health. 
The de-identified data were obtained from the Wugang 
Institute for Occupational Health. The Research Ethics 
Committee of the Qingdao University School of Medi-
cine approved the study protocol with a waiver of subject 
consent (QYFYWZLL25933).

Occupational dust exposure assessment
Employment history including occupation, length of 
employment, and occupational dust exposure (yes or no) 
for three consecutive jobs or positions were self-reported 
at study entry. Because no cohort members were newly 
employed at the baseline visit, we focused on detailed 
employment history including plant, workshop, and post 
at the Wuyang Iron and Steel Company prior to baseline 
visit to quantify occupational dust exposure. All study 
subjects belonged to 79 workshops from seven plants and 
the population was divided into three groups by tertiles 
based on the percentage of subjects reporting dust expo-
sure. Combined with the consultation of occupational 
hygienists, historical personal air sampling data in 2006 
and 2007 (Additional file  1: Table  S1), and epidemio-
logical consideration of sample size within each expo-
sure category, the workshops were classified into low 
(n = 43, person-posts = 4034), medium (n = 20, person-
posts = 3816), and high (n = 16, person-posts = 2562) 
exposure categories to maximize the statistical power 
of the study. We calculated time-weighted exposure 
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intensity (TWEI) using the sum of exposure unit (coded 
as 0, 1, 2 for low, medium, and high) years divided by 
total years prior to the baseline of dust exposure for each 
individual.

Lung function paraments
Spirometry was performed for each individual without a 
bronchodilator every other year by a certified respiratory 
technician using a portable calibrated electronic spirom-
eter (CHESTGRAPH HI-701, Japan) in accordance with 
the American Thoracic Society (ATS)/European Res-
piratory Society standards(ERS) [23]. The spirometer 
was checked every day for leaks by a calibrated syringe. 
Persons were in the standing position with a nose clip 
used. After two or more practice blows, FEV1 and FVC 
were determined as the highest value from the results of 
measurements. Standing height and body weight were 
measured and recorded at each test occasion. Forced 
expiratory volume in 1  s (FEV1), forced vital capacity 
(FVC), and FEV1/FVC ratio were used in this study. Per-
cent predicted values were calculated using the equations 
for Asian adults supplied in the user’s manual.

Complete blood count with differential
Peripheral venous blood samples were drawn from the 
antecubital veins of patients after overnight fasting. The 
blood samples were collected into lithium heparin-con-
taining tubes to avoid pseudo thrombocytopenia. The 
number of red blood cells (including red blood cells, 
hemoglobin and hematocrit, etc.), white blood cells 
(WBC), platelets, and WBC differential counts (i.e., 
neutrophils, lymphocytes, monocytes, basophils, and 
eosinophils) were measured by a hematology analyzer 
(Sysmex. XS-500ix, China). Mid-range absolute counts 
(MID) include monocytes, eosinophils, basophils, blasts 
and other precursor white cells that fall in a particular 
size range. Absolute cell counts were used in the analy-
ses. Baseline and follow-up blood samples were analyzed 
using the same machine operated by trained technicians.

Data analysis
Workers with airway obstruction (defined as FEV1/
FVC < 0.7) at baseline (n = 20) or without spirometry 
data (n = 42) were excluded from this study, thus leaving 
7513 workers with at least one spirometry measurement 
for data analyses. The sample size evolution for differ-
ent analyses was summarized in Fig.  1. Females were 
more likely to conduct less physically intensive assign-
ments, thus had less exposure to occupational hazards 
(Table  1). Therefore, all data analyses were conducted 
in males and females separately because of the divi-
sion of labor by sex in heavy industry. A prudent ana-
lytical plan was developed to analyze the relationship 

among dust exposure, WBC count, and longitudinal 
spirometric decline with a careful assessment of impor-
tant covariates, dose–response relationship, and poten-
tial confounding effects by linear mixed-effects model. 
First, a linear mixed-effects model with a subject-specific 
random intercept was used to assess the associations 
between occupational dust exposure (i.e., TWEI and 
years of dust exposure) prior to baseline and longitudinal 
spirometry with adjustment of important covariates. An 
interaction term between time-in-cohort (TIC) and prior 
occupational dust exposure was included in the model 
to assess whether lung function decline varied by previ-
ous occupational dust exposure. Baseline spirometry and 
its interaction with TIC were included in the models to 
minimize its effect on the association between occupa-
tional dust exposure and lung function decline. Second, 
similar approaches were taken to assess the association of 
prior occupational dust exposure on longitudinal meas-
urements of WBC count and differential. Third, we also 
used linear mixed-effects models to assess the associa-
tion of WBC count and differential at baseline with lon-
gitudinal measurements of lung function and its decline. 
WBC count and differential were included in the model 
as continuous variables first, then converted into categor-
ical variables to assess their dose–response relationship. 
Using WBC count and differential collected at the same 
visits of spirometry in the model did not change the asso-
ciations observed in models using baseline data for WBC 
count and differential. We further analyzed the eleva-
tion of WBC and its differential post-baseline and their 
association with lung function decline. Finally, three-way 
interactions (e.g., current smoker × TWEI × TIC or cur-
rent smoker × WBC × TIC) with their two-way inter-
actions and main effects were included in the models 
to analyze the potential effect modification of cigarette 
smoking on the associations of longitudinal lung func-
tion with occupational dust exposure or WBC count and 
differential. Data analyses were performed using SAS ver-
sion 9.4 (site 70239492).

Results
Demographics of study subjects
This study included 6188 male and 1325 female workers 
with an average age of 34.5 years at study entry (Table 1). 
On average, workers reported 13  years of occupational 
dust exposure at the Wuyang Iron and Steel Company, 
concordant with the fact that the Company was the first 
employer for most cohort members. The median fol-
low-up duration in the cohort (TIC) was 6 years, which 
allowed for three to four spirometry measurements. In 
total, 25,164 spirometry measurements were obtained 
from 7513 workers. The average percent predicted val-
ues of FEV1 and FVC at baseline were over 100%. Airflow 
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obstruction was identified in 22 subjects during follow-
up evaluations, resulting in an incidence of 2.9 cases per 
1000 person-years.

Occupational dust exposure
Median inhalable dust concentrations (8-h time-weighted 
average [TWA]) for workshops classified in medium 
and high exposure categories were 0.91–1.45 and 7.45–
10.35  mg/m3, between 2006 and 2007, respectively. 
Ninety percent of dust mass was non-silica (potentially as 
metal dust). Size distribution analysis found over 80% of 
particles had sizes less than 5 μm. No occupational moni-
toring data was available for the low exposure category. 
However, PM2.5 levels ranged 33 to 108  μg/m3 in non-
heating seasons and 73 to 203 μg/m3 in heating seasons 
reported by the national air quality monitoring stations 
closest to Wugang city (about 30 miles away) between 
2013 and 2017. The entire company area could be pol-
luted by industrial dust due to its location in a small val-
ley, which is 5 km long and 1.9 km wide with north and 
west sides surrounded by mountains. The median TWEI 
was 1.0 units for male workers and 0.19 units for female 

workers, supporting male workers having much higher 
occupational dust exposure.

Occupational dust exposure and spirometry
The average annual change of FEV1, FVC, and FEV1/
FVC ratio during follow-up were 50.78 ml, 34.36 ml, and 
0.49 in males (Table 2, model 1) and 39.06 ml, 26.66 ml, 
and 0.50 in females (Additional file 1: Table S2, model 1), 
respectively. Higher TWEI prior to baseline was asso-
ciated with lower longitudinal measurements of FEV1 
and FVC in either sexes and with females more vulner-
able to the adverse effect of occupational dust exposure 
(e.g., −  21.76 ml in males versus −  41.96 ml in females 
for FEV1 and − 28.71 ml in males versus − 36.67 ml in 
females for FVC, per unit increase of TWEI, Table 2 and 
Additional file  1: Table  S2, model 1), but had no effect 
on FEV1/FVC ratio. The most probable reason for lower 
spirometry in workers with higher past occupational 
dust exposure may be their more rapid initial decline of 
lung function or inadequate ongoing lung growth and 
development after the initiation of exposure. However, 
occupational dust exposure prior to baseline was asso-
ciated with a slower annual decline of FEV1 and FVC 

Fig. 1  Study design and sample size evolution
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in either sexes (Table  2 and Additional file  1: Table  S2, 
model 2). We hypothesized a slower decline of FEV1 and 
FVC associated with higher TWEI could be due to the 
“healthy worker effect” and certain worker characteris-
tics could mediate such associations. Univariate analyses 
identified workers with higher TWEI were younger and 
taller, and had shorter years of dust exposure for either 
sexes at baseline (Additional file  1: Table  S3). Age and 
years of dust exposure were highly correlated with Spear-
man correlation coefficients > 0.93 for either sexes and 
could not be the factors mediating the observed asso-
ciations because occupational dust exposure history and 
its interaction with TIC had been included in the model 
(Table  2 and Additional file  1: Table  S2). Taller work-
ers had a slower decline of FEV1 and FVC and a faster 
decline of FEV1/FVC ratio for either sexes and inclusion 
of interaction term of height and TIC in model 2 com-
pletely nullified the significance of interaction term of 
TWEI and TIC (Additional file 1: Tables S4 and S5), sug-
gesting that height may be the healthy worker character-
istic that mediates the association between higher TWEI 

and slower decline of spirometry. Moreover, the inclusion 
of any additional interaction terms with TIC (e.g., smok-
ing status, HGB, packyears, and BMI) had no impact on 
the estimate and significance for the interaction term of 
TWEI and TIC (data not shown).

Occupational dust exposure and longitudinal data of WBC 
count and its differential
Current smokers, packyears and years of dust exposure 
in males (Table 3), and BMI in either sexes (Table 3 and 
Additional file  1: Table  S6) were associated with higher 
WBC count and all differential cell counts (neutrophils, 
lymphocytes. and mid-range absolute counts), consist-
ent with the fact that cigarette smoking, higher BMI, 
and years of dust exposure increased systemic inflam-
mation. However, age and TIC were associated with 
lower levels of WBC count and most differential counts 
in either sexes, suggesting aging may reduce general 
immunity. Interestingly, there was no evidence sup-
porting TWEI associated with increased WBC count 
and differential cell counts in either sexes. In opposite, 

Table 1  Characteristics of study subjects by sex

The prediction reference equation for Asian adults: (1) FVC (ml): (27.63–0.112*age) *height for male, (21.78–0.101*age) *height for female; (2) FEV1 (ml): 34.4*height-
33*age-1000 for male, 26.7*height-27*age-540 for female

M  mean, SD  standard deviation, Q  quartile, BMI  body mass index, TWEI  time-weighted exposure intensity, FEV1  forced expiratory volume in 1 s, FVC  forced vital 
capacity, WBC  white blood count, NEU  neutrophilicgranulocyte, LYM  lymphocyte, MID  mid-range absolute count
a T-test for all variables between sexes except for ethnicity which used χ2 Test

Variable Male Female P a

n M ± SD Median (Q1, Q3) n M ± SD Median (Q1, Q3)

Age (year) 6188 34.4 ± 9.2 34 (26, 42) 1325 34.7 ± 7.6 35 (29, 40) 0.014

Han Ethnic (n, %) 6188 6129, 99.1 1325 1312, 99.0 0.972

Height (cm) 6110 171.5 ± 5.5 171 (168, 175) 1295 160.1 ± 5.2 160 (156, 164)  < 0.001

BMI (kg/m2) 6110 24.5 ± 3.6 24.38 (21.9, 26.9) 1295 22.3 ± 3.1 21.87 (20.03, 23.88)  < 0.001

Current smoker (n, %) 6188 3034, 49.0 1325 0, 0 NC

Packyears 3034 11.0 ± 10.4 7.5 (3.0, 18.0) 0 NA NA NC

Years of dust exposure (year) 6188 12.6 ± 9.7 10.5 (3.3, 20.8) 1325 13.5 ± 8.2 13.9 (5.3, 19.9)  < 0.001

Time in cohort (year) 6188 5.4 ± 2.8 6.00 (3.9, 8.1) 1325 5.3 ± 2.6 6.0 (3.9, 7.9) 0.184

TWEI 6188 0.93 ± 0.74 1.00 (0.00, 1.5) 1325 0.64 ± 0.74 0.19 (0.00, 1.00)  < 0.001

NO. of spirometry (n) 6188 3.5 ± 1.4 4 (2, 5) 1325 3.4 ± 1.2 3 (2, 4) 0.004

Spirometry

 FEV1 (ml/s) 6188 3838.6 ± 622.5 3800 (3410, 4240) 1325 2828.7 ± 440.2 2800 (2520, 3090)  < 0.001

 FEV1% predicted (%) 6105 102.2 ± 14.3 100.7 (92.0, 111.0) 1295 101.5 ± 14.6 100.0 (90.9, 109.9) 0.098

 FVC (ml) 6188 4211.4 ± 623.0 4150 (3730, 4650) 1325 3101.5 ± 467.6 3060 (2750, 3400)  < 0.001

 FVC% predicted (%) 6105 103.1 ± 14.2 101.5 (92.5, 112.3) 1295 106.0 ± 14.7 104.4 (94.9, 115.4)  < 0.001

 FEV1/FVC (%) 6188 91.3 ± 6.2 91.3 (87.0, 96.5) 1325 91.3 ± 5.9 91.2 (87.5, 95.9) 0.702

White blood cell count

 WBC (109 cells per L) 5949 6.23 ± 1.63 6.0 (5.1, 7.1) 1290 5.31 ± 1.41 5.1 (4.3, 6.1)  < 0.001

 NEU (109 cells per L) 5945 4.00 ± 1.35 3.8 (3.1, 4.7) 1287 3.43 ± 1.13 3.3 (2.6, 4.0)  < 0.001

 LYM (109 cells per L) 5945 21.97 ± 0.54 1.9 (1.6, 2.3) 1287 1.67 ± 0.51 1.6 (1.4, 1.9)  < 0.001

 MID (109 cells per L) 5945 0.26 ± 0.14 0.2 (0.2, 0.3) 1287 0.21 ± 0.11 0.2 (0.1, 0.3)  < 0.001

 HGB (g/L) 5035 149.35 ± 12.43 150 (141, 158) 1174 123.86 ± 13.16 124 (117, 133) 0.194
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TWEI was associated with lower lymphocyte count in 
males (Table 3) and with lower mid-range absolute count 
(MID) count in either sexes (Table 3 and Additional file 1: 
Table S6). Self-reported exposure to toxic gases (e.g., car-
bon monoxide, nitrogen monoxide and dioxide, and ben-
zene and its derivatives) was not associated with WBC 
count and its differential (data not shown).

Associations of WBC count and its differential 
with a spirometric decline
Higher baseline WBC count and differential (neutro-
phil and lymphocyte) counts were associated with lower 
longitudinal measurements and a more rapid decline 
of FEV1 and FVC in male workers only (Table  4). The 
MID count was associated with a more rapid decline 
of FEV1 and FVC in male workers only (Table 4). Lym-
phocyte count was associated with lower longitudinal 
measurements of FEV1 and FVC but not with a decline 
in females (Table  4). We further stratified workers into 
quartiles based on WBC count or differential counts to 
characterize their dose–response relationship with lon-
gitudinal lung function measurements and their declines 
(Additional file  1: Table  S7). Higher WBC count and 
differential (neutrophil and lymphocyte count) were 
monotonically associated with lower longitudinal meas-
urements and a more rapid decline of FEV1 and FVC in 
males only (Additional file  1: Table  S7 and Additional 
file 1: Figure S1). MID was monotonically associated with 
a more rapid decline of FEV1 and FVC in male workers 
only (Additional file 1: Table S7 and Figure S1). Lympho-
cyte count was associated with lower longitudinal meas-
urements of FEV1 and FVC in a dose–response manner 
in females (Additional file 1: Table S7).

We further tested whether elevation of WBC count 
and its differential post-baseline, as an indicator for the 

elevation of systemic inflammation over time was associ-
ated with a more rapid decline of lung function. Change 
in WBC and its differential for each visit relative to base-
line level were calculated and were included in the lin-
ear mixed-effects models together with its interaction 
of TIC. Interestingly, the elevation of WBC and its dif-
ferential (e.g., neutrophil and MID) was associated with 
a more rapid decline of FEV1 and FVC in either sexes 
(Table 5). Moreover, the magnitude of association seems 
to be more robust in female than male workers. Elevation 
of lymphocyte count was associated with a more rapid 
FEV1 decline in male workers only, resulted in a more 
rapid decline of FEV1/FVC ratio.

Sensitivity analyses
We are concerned that the associations between occupa-
tional dust exposure or WBC count and differential and 
lung function decline could be potentially confounded 
by cigarette smoking. None of these three-way interac-
tion terms on current smoker × TWEI × TIC or current 
smoker × WBC × TIC were statistically significant (data 
not shown). We also repeated the main analyses in sub-
jects (n = 6735) with two or more visits, findings similar 
to that seen in the entire 7513 workers were identified. 
In addition, we calculated the time-weighted exposure 
intensity (TWEI) based on self-reported dust exposure 
history up to every medical surveillance and observed the 
same trend for the associations between dust exposure, 
WBCs and spirometric decline. (data not shown).

Discussion
In this longitudinal cohort of 7513 workers, occupational 
exposure to inhalable particles containing metal elements 
prior to baseline evaluation was inversely associated 
with longitudinal measurements of FEV1 and FVC over 

Table 3  The association between dust exposure and white blood cell count and its differential in male workers using linear mixed-
effects model (n = 6100)

TWEI  time-weighted exposure intensity, BMI  body mass index, TIC  time in cohort, WBC  white blood count, NEU  neutrophilicgranulocyte, LYM  lymphocyte, MID mid-
range absolute count including monocytes, eosinophils and basophils, SE  standard error of mean

Variable WBC (109 cells per L) NEU (109 cells per L) LYM (109 cells per L) MID (109 cells per L)

β SE P β SE P β SE P β SE P

Intercept 7.0064 0.567  < 0.001 4.5810 0.457  < 0.001 2.1658 0.197  < 0.001 0.2124 0.037  < 0.001

Age (year) − 0.0284 0.005  < 0.001 − 0.0156 0.004  < 0.001 − 0.0126 0.002  < 0.001 − 0.0004 0.000 0.236

Current smoker 0.2943 0.035  < 0.001 0.2174 0.030  < 0.001 0.0862 0.012  < 0.001 0.0137 0.003  < 0.001

Packyears (py) 0.0227 0.002  < 0.001 0.0178 0.002  < 0.001 0.0045 0.001  < 0.001 0.0010 0.0002  < 0.001

BMI (kg/m2) 0.0758 0.005  < 0.001 0.0552 0.004  < 0.001 0.0188 0.002  < 0.001 0.0023 0.0003  < 0.001

Height (m) − 0.0124 0.003  < 0.001 − 0.0103 0.003  < 0.001 − 0.0019 0.001 0.083 − 0.0001 0.0002 0.686

TIC (yr) − 0.0409 0.003  < 0.001 − 0.0250 0.002  < 0.001 − 0.0099 0.001  < 0.001 − 0.0053 0.0003  < 0.001

TWEI − 0.0108 0.024 0.653 0.0270 0.019 0.164 − 0.0312 0.008  < 0.001 − 0.0075 0.002  < 0.001

Years of dust exposure (year) 0.0175 0.005  < 0.001 0.0121 0.004 0.003 0.0045 0.002 0.008 0.0008 0.000 0.018
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a follow-up period of 10 years. We observed that cohort 
members with high levels of baseline WBC counts and 
differential had lower longitudinal measurements and 
a more rapid decline of FEV1 and FVC in male workers 
in a dose-dependent manner. Moreover, the elevation of 
WBC counts and its differential count post-baseline as 
an indicator of increasing systemic inflammation over 
time was associated with a more rapid decline of FEV1 
and FVC in either sexes. Finally, sex disparity of the asso-
ciations between dust exposure, WBC, and lung func-
tion was identified with stronger adverse effects of dust 
exposure or change of WBC seen in females as well 
as stronger effects of baseline WBC seen in males. The 
mechanisms underlying the sex disparity may be attrib-
uted to differences in dust exposure level [24], inherited 
differences in lung structure [25], or differences in sex 
hormones regulating lung homeostasis upon the chal-
lenge of dust exposure.

Occupational exposure to inhalable dust in the iron and 
steel industry has been shown to compromise lung func-
tion and increase the risk of chronic airflow obstruction 
in exposed workers [1, 2, 9, 10]. In this study, the decline 
rates of FEV1 and FVC are much faster than those 
observed in current and former cigarette smokers from a 
NM, USA-based Lovelace Smokers cohort with a median 
packyears of 36.0 and relatively healthy lung function, but 
comparable to smokers from Pittsburgh Lung Screening 
Study cohort with a median packyears of 59 and much-
compromised lung function [26] and from Lung Health 
Study with all participants having mild to moderate air-
way obstruction [27], supporting the adverse effects of 
occupational dust exposure on the age-related decline 
of spirometry. A case–control study from New York City 
firefighters has shown that inhalable dust could remain in 
the lungs and be pro-inflammatory for up to 10 months 
after cessation of fire smoke exposure [28, 29]. However, 
we did not see an accelerated FEV1 and FVC decline 
associated with dust exposure prior to baseline. This 
finding was not altered even when dust exposure calcu-
lated up to each physical examination date was included 
in the model. Such patterns of results were supported by 
a most recent study in which prior airborne occupational 
exposures (e.g., biological dust, mineral dust, gases/
fumes, insecticides, herbicides, fungicides, aromatic, 
chlorinated, other solvents, and metals) were associated 
with lower lung function measurements but not with 
annual decline using the Lifelines Cohort Study [30]. This 
could be explained by that most workers in our study 
have been working at a job title with occupational expo-
sures for more than a decade prior to the baseline visit. 
Thus, workers may already develop resistance or satura-
tion, a state of indifference or non-reactivity towards a 
substance that would normally be expected to excite a 

more exaggerated health effect [30]. A second reason-
able explanation is that workers who are sensitive to 
dust-induced health effects could have switched their job 
with lower dust exposure or the pre-employment selec-
tion criteria could select subjects who are less likely to be 
affected by occupational dust exposure on lung function 
decline. Indeed, we did find that workers at occupational 
positions with higher dust exposure tend to be taller than 
workers from other positions and height is associated 
with better lung function and greater resilience for age-
related lung function decline.

Higher WBC and its differential at baseline were associ-
ated with lower longitudinal measurements of lung func-
tion and a higher decline rate of FEV1 and FVC among 
the male workers. Baseline WBC counts implied the 
overall levels of inflammation and the post-baseline WBC 
counts change reflected the increase of system inflamma-
tion over time. Besides, this association is independent of 
occupational dust exposure. Furthermore, although on 
average WBC and its differential declined over time, the 
elevation of WBC and its differential post-baseline was 
associated with a more rapid decline of FEV1 and FVC in 
either sexes as well. These findings strongly support our 
hypothesis that elevated systemic inflammatory markers 
predict a more rapid decline of lung function in workers 
[11, 31, 32]. However, the temporal relationship between 
baseline WBC and its differential and subsequent lung 
function change and the compelling dose–response 
relationship does not directly support a causal relation-
ship between systemic inflammation and lung function 
impairment. Instead, it may reflect a latent condition that 
workers with higher systemic inflammation are more vul-
nerable to dust exposure-induced health effects. The lack 
of a positive correlation between TWEI and WBC and 
its differential also suggested this latent inflammatory 
condition is more reflective of individual predisposition 
rather than an acquired trait due to chronic iron and steel 
dust exposure. Predisposition is an increased likelihood 
of developing a particular disease based on a person’s 
genetic makeup rather than acquired character. The mag-
nitude of associations of lung function or its decline with 
WBC and its differential is very comparable and this does 
not support a more dominant effect of certain leucocytes. 
Thus, all these suggest systemic inflammation as a holis-
tic readout of individual predisposition that well predicts 
the severity of pulmonary toxicity caused by dust expo-
sure containing metals in workers [8, 11].

We also found that elevation of post-baseline lym-
phocyte count was associated with a more rapid decline 
of FEV1/FVC ratio in male workers only. The ratio 
of FEV1 to FVC measures the amount of air a per-
son can forcefully exhale in one second relative to the 
total amount of air individuality can exhale, which is 
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the established index for diagnosing airway obstruc-
tion [33]. This ratio is decreased in obstructive lung 
disorders and normal in restrictive lung disorders. 
Research on COPD patients and healthy participants 
found higher levels of lymphocytes in COPD patients 
than the control group [34]. Chronic obstructive pul-
monary disease is associated with inflammation of air-
way epithelium, including an increase in the number 
of intraepithelial T cells. Increased apoptosis of these 
T cells may result in unbalanced cellular homeostasis, 
defective clearance of apoptotic material by mono-
cytes/macrophages, secondary necrosis, and prolonga-
tion of the inflammatory response. The increased T-cell 
death may be associated with the upregulation of apop-
totic pathways, TGF-beta, TNF-alpha, and Fas in the 
peripheral blood [35].

This present study benefits greatly from a large sample 
size, high-quality data for longitudinal measurements of 
lung spirometry and WBC, and a long follow-up period 
that together contributes to sufficient statistical power 
and a more precise assessment of the magnitude of asso-
ciations. However, this study does have limitations. Due 
to the lack of reliable occupational monitoring data for 
all years except 2006 and 2007, for many job posts, and 
the low exposure category, the job-exposure matrix could 
not be established for studied subjects. Second, we do 
not have the resources to assess what has happened in 
the first ten years of employment of the enrolled workers. 
A cohort with careful and repeated assessment of occu-
pational exposure would help to disentangle the relation-
ship between dust exposure, systemic inflammation, and 
the initial decline of lung function.

Conclusion
In conclusion, we have shown that previous occupa-
tional exposure to inhalable dust-containing metals 
resulted in a reduction in FEV1 and FVC. Higher WBC 
and its differential at baseline or elevation post-baseline 
were associated with a more rapid decline of FEV1 and 
FVC. Future studies should focus on a more quantita-
tive assessment of occupational exposure and its con-
stituents, a cohort of new employees to detect early 
changes of health effects after exposure initiation, and 
novel local and systemic inflammation biomarkers [36].
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