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HGF alleviates septic endothelial injury by
inhibiting pyroptosis via the mTOR
signalling pathway
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Abstract

Background: Endothelial injury is one of the predominant pathophysiological characteristics of sepsis and is the
major cause of sepsis-induced multiple organ failure. Endothelial pyroptosis is a fatal mechanism of endothelial
injury in sepsis, and specific, effective therapies are lacking. Although hepatocyte growth factor (HGF) has been
shown to have anti-apoptotic and anti-necrotic effects, whether it prevents pyroptosis to improve endothelial injury
in sepsis remains unclear.

Methods: Recombinant HGF was intravenously injected into mice with sepsis caused by caecal ligation puncture
(CLP). Histopathological examination and transmission electron microscopy (TEM) were used to measure lung
vascular endothelial injury. Lipopolysaccharide (LPS) was transfected into EA.hy926 cells to induce endothelial
pyroptosis, and the cells were treated with HGF in the presence of inhibitors of c-Met and mTOR, namely, PHA-
665752 and rapamycin, respectively. The mTOR signalling pathway and mitochondrial physiology were assessed
using Western blot and flow cytometry.

Results: Intravenous HGF effectively alleviated pulmonary vascular endothelial injury and acute lung injury in the
septic mice. The TEM results of lung tissue revealed that HGF attenuated pulmonary vascular endothelial pyroptosis,
which was confirmed in vitro. Transfected LPS induced the pyroptosis of EA.hy926 cells and damaged their
paracellular permeability, and these effects were ameliorated by treating the cells with recombinant HGF. The
protective effect of HGF against pyroptosis was dependent on c-Met/mTOR signalling. mTOR activation effectively
protected mitochondrial physiology and decreased reactive oxygen species (ROS) production in EA.hy926 cells

in vitro.

Conclusions: These results demonstrated that HGF protected mitochondrial physiology by activating mTOR
signalling to partially ameliorate endothelial pyroptosis and attenuate vascular endothelial injury and acute lung
injury in sepsis animal model.
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Introduction

Sepsis is a common clinical syndrome defined as life-
threatening organ dysfunction caused by a dysregulated
host response to infection [1]. Although numerous ad-
vances in management and treatment have been imple-
mented to battle sepsis, the overall mortality rate
remains as high as 35-45% [2, 3]. An in-depth explor-
ation of novel therapeutic targets or strategies for sepsis
is urgently needed.

One of the most important pathophysiological hall-
marks of sepsis is vascular endothelial injury [4, 5],
which rapidly results in tissue oedema and inflamma-
tion spread and is responsible for the progression of
multiple organ failure during sepsis [5]. Although
anticoagulant therapy and nitric oxide synthase inhibi-
tors have shown protective effects in the endothelium,
effective treatments for endothelial cell injury in sep-
sis that improve prognosis are lacking [6]. Therefore,
it is of great significance and translational value to
explore mechanisms and novel therapeutic options of
endothelial cell injury.

Hepatocyte growth factor (HGF) is a pleiotropic cyto-
kine involved in multiple cellular and biological pro-
cesses, including improvement of cell injury and
alleviation of inflammation. Previous studies demon-
strated that lipopolysaccharide (LPS)-induced organ in-
jury in rodents and that plasma HGF concentrations
were increased in patients with systemic inflammatory
response syndrome and early-phase sepsis [7, 8]; these
increase of HGF are suggested to serve a compensatory
mechanism to minimize LPS-induced cell and organ in-
jury. Our previous studies found that mesenchymal stem
cells (MSCs) with high HGF expression and secretion
protect the pulmonary endothelial cell monolayer
against LPS-induced hyperpermeability and monolayer
integrity disruption and subsequently alleviate LPS intra-
tracheal instillation-derived acute lung injury in rats [9,
10]. Although HGF was reported to have anti-
inflammatory effect on endothelial and protect the
endothelial barrier in vitro, the molecular mechanisms
underlying the protection against septic endothelial in-
jury by HGF remain unclear.

Endothelial pyroptosis is a vital characteristic of septic
endothelial injury. Pyroptosis is a recently recognized
form of inflammatory programmed cell death that is dif-
ferent from apoptosis and necrosis in terms of molecular
mechanisms and cellular representation; pyroptosis plays
a critical role in the progression of sepsis [11]. Intracel-
lular LPS or damage signalling activate inflammatory
caspases and initiate pyroptosis, which is executed by
gasdermin pores and ends with cell dissolution, with a
massive release of damage-associated molecular patterns
(DAMPs) [12]. Large amounts of endothelial pyroptosis
destroying the endothelium were observed in the lungs
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and kidneys of septic mice [13, 14]. Although a small
amount of evidence has revealed that HGF exerts antia-
poptotic and cytoprotective effects in various epithelial
and endothelial cells, e.g., HGF attenuates LPS-derived
endothelial apoptosis [15], modulates chemotherapeutic
agents induced autophagy and necrosis [16], whether
HGEF protects the vascular endothelium against pyropto-
sis in sepsis remains unknown.

This study investigated the role of HGF in the im-
provement of septic endothelial injury and the under-
lying mechanism. With the use of animal models,
imaging studies, biochemical assays, and molecular in-
hibition approaches, we show that HGF ameliorates sep-
tic endothelial pyroptosis in vivo and in vitro and that
the mammalian target of rapamycin (mTOR) signalling
pathway plays a central role in this process.

Materials and methods

Reagents

Dulbecco’s modified Eagle’s medium (DMEM), foetal
bovine serum (FBS), bovine serum albumin (BSA), re-
combinant HGEF, 6-diamidino-2-phenylindole dihy-
drochloride (DAPI), and propidium iodide (PI) were
obtained from Gibco (Grand Island, NY, USA). Lipo-
polysaccharide from Escherichia coli, serotype O127:B8,
and penicillin/streptomycin were obtained from Sigma
(St. Louis, MO, USA). The Lipofectamine 2000 reagent
was purchased from Invitrogen (Carlsbad, CA, USA).
Rapamycin and PHA-665752 were obtained from MCE
(NJ, USA). The LDH cytotoxicity assay kits were from
Beyotime Biotechnology (Nanjing, China). Interleukin
(IL)-1B, IL-18 and tumour necrosis factor (TNF)-«
enzyme-linked immunosorbent assay (ELISA) kits were
purchased from ExCellBio (Shanghai, China). The rabbit
monoclonal phospho-Met antibody (Tyr1234/1235)
(#3077), rabbit monoclonal Akt (pan) antibody (C67E7)
(#4691), rabbit monoclonal phospho-Akt (Serd73) anti-
body (#4050), rabbit monoclonal mammalian target of
rapamycin (mTOR) antibody (#2983S) were from Cell
Signaling Technology (Beverly, MA, USA), and the
rabbit monoclonal mTOR (phospho S2448) antibody
(ab109268), rabbit monoclonal Met (c-Met) antibody
(ab51067), and recombinant rabbit monoclonal pro
Caspase-1 + pl0 + p12 antibody (ab179515) were from
Abcam (Cambridge, England, UK). The mouse monoclo-
nal antibodies against gasdermin D (GSDMD) (sc-393,
581) and B-actin (sc-517,582) were obtained from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). The HRP-
conjugated IgG antibodies were from ZSGB-BIO
(Beijing, China). All the other chemicals used in this
study were of analytical grade and were obtained from
Sigma (St. Louis, MO, USA) or Beyotime Biotechnology
(Nanjing, China) unless otherwise stated.
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Cell culture and treatment

The human umbilical vein cell line (EA.hy926 cells) was
cultured with DMEM containing 10% FBS at 37 °C for
24h in 5% CO, and 95% air. At the end of the incuba-
tion, the cells were incubated with serum-free medium
for 1h, and the culture grew to 80% confluence prior to
the initiation of the experimental treatments. The cells
were cultured in 6-well plates with 2 mL of DMEM con-
taining 10% FBS and transfected with 2.5 pg/mL LPS
using 2 pL/mL Lipofectamine 2000 (Lip02000). Then,
the stimulated cells were treated with 25ng/mL HGF
immediately and 6 h later, with or without 50 nM PHA-
665752 or 20 nM rapamycin.

Mice

C57BL/6] (B6) mice were bred and maintained under
specific pathogen-free conditions at Southeast Univer-
sity. Six- to 8-week-old mice were subjected to caecal
ligation and puncture (CLP). Mortality was assessed
every 3—4 h. In some sepsis treatment experiments, 1 pg/
g HGF was subsequently intravenously administered to
the mice via the tail vein immediately and at 12 h after
the CLP operation [17]. As a control, equal amounts of
normal saline were administered in the same manner.
To ensure that all regions were analysed with equal
probability, an unbiased sampling cascade, systematic
uniform random sampling (SURS), was applied, as rec-
ommended by the European Respiratory Society and the
American Thoracic Society [18]. This study followed the
national guidelines and protocols of the National Insti-
tutes of Health and was approved by the Local Ethics
Committee for the Care and Use of Laboratory Animals
of Southeast University.

Evans blue pulmonary transvascular flux measurements
We performed an Evans blue extravasation assay to
measure vessel endothelial permeability. Briefly, Evans
blue (20mg/kg) in 1 mL saline was injected into the
mice and allowed to circulate in the blood vessels for 1
h. Intravascular Evans blue was washed by heparinized
normal saline perfusion from the right ventricle for 2
min. The mouse lungs were excised, weighed, homoge-
nized in 1mL PBS, and extracted overnight in 2mL
formamide at 60 °C. The Evans blue concentration in the
lung homogenate supernatants was quantified by the
spectrophotometric method at absorbances of 620 and
740 nm. The lung weight/body weight (LW/BW) ratio
was calculated to measure the pulmonary oedema.

Lung histopathology

For histopathological examination, the lung tissues were
harvested, fixed in 4% paraformaldehyde for 24 h, em-
bedded in paraffin and cut into 4-pum-thick sections,
followed by H&E staining. The sections were scanned by
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microscopy, and the lung injury score was quantified
based on the images of 6 randomly chosen fields, follow-
ing five criteria: oedema, alveolar and interstitial inflam-
mation, alveolar and interstitial haemorrhage, atelectasis,
and hyaline membrane formation. Each criterion was
graded according to a 5-point scale (0—4) [19], more de-
tails about the scales are in the Additional file 1. The
total lung injury score was calculated as the sum of the
five criteria.

TEM examination

For transmission electron microscopy (TEM) examin-
ation, lung tissues and stimulated cells were harvested
and cut into < 1-mm? sections and fixed in ice-cold 2.5%
glutaraldehyde for 2h. Subsequently, the samples were
postfixed in 1% osmium tetroxide for 1h, dehydrated
through an ethanol series (50, 70, 95 and 100%) and em-
bedded in epoxy resin. Finally, the ultrathin sections
(60—-80 nm) were double-stained with uranyl acetate and
lead citrate and examined via TEM (Hitachi HT7700,
Tokyo, Japan). For the lung tissue sections, the vascular
endothelial cells were scanned, and the ultrastructural
details of the pyroptotic endothelial cells were analysed.
For the cell sections, the cells were randomly selected to
measure mitochondrial injury by a blind observer.

Flow cytometry

For the mitochondrial physiology assay, ROS levels and
mitochondrial activity were measured by flow cytometry.
EA.hy926 cells were treated as described, stained with
DCFH-DA and MitoTracker for 30 min, and then ana-
lysed with flow cytometry. Data were acquired from 50,
000 events using a BD LSR Fortessa (BD Biosciences),
and the data were analysed by BD FACSDiva (BD
Biosciences). The percentage of ROS-FLICA- or
MitoTracker-APC-stained cells was analysed.

Immunofluorescence

EA.hy926 cells cultured on glass coverslips were treated
as described above and washed with PBS. After staining
with MitoTracker for 30 min and washing with PBS, the
cells were stained with DAPI for nuclear counterstain-
ing. The stained slides were photographed using a
fluorescence inversion microscope system (Olympus,
Tokyo, Japan), the cells were randomly selected to meas-
ure mitochondrial injury.

Western blot

EA.hy926 cells were cultured in 6-well plates and treated
according to the experimental design described above.
Then, whole cell lysates were harvested from the
EA.hy926 cell monolayers. The total protein was quanti-
fied using the BCA method and adjusted to equal
amounts. The protein mixtures were separated via 10%
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SDS-PAGE and transferred to active polyvinylidene
difluoride membranes. After the transfer, the mem-
branes were blocked with 5% BSA-TBST for 1 h at room
temperature and then probed with primary antibodies
against caspase-1 (1:200), GSDMD (1:1000), Met (1:
1000), p-Met (1:1000), AKT (1:1000), p-AKT (1:1000),
mTOR (1:1000) and p-mTOR (1:1000) at 4 °C overnight.
The membranes were probed with an anti-p-
actinantibody (1:1000) to control for protein loading and
then incubated for 2h at room temperature with HRP-
conjugated secondary antibodies (1:1000). The results
were scanned using a gel imaging system (UVP Com-
pany, Upland, CA, USA). Densitometry measurements
were performed with Image Lab software (Bio-Rad
Laboratories, Hercules, CA, USA).

LDH release

EA.hy926 cells were cultured overnight in 96-well plates
and transfected with 2.5 pg/mL LPS using Lipofectamine
2000 reagent for 12 h. The culture medium was collected
and analysed using an LDH cytotoxicity assay kit accord-
ing to the manufacturer’s instructions. The absorbance
was measured at a wavelength of 490 nm. The LDH re-
lease of each sample well was calculated by dividing the
positive well after subtracting the negative well.

Elisa

EA.hy926 cells were cultured overnight in 24-well plates
and transfected with 2.5 pg/mL LPS using Lipofectamine
2000 reagent for 12 h. The culture medium was collected
and analysed by IL-1p and IL-18 ELISA kits according
to the manufacturer’s instructions. The absorbance was
measured at a wavelength of 450 nm. The concentra-
tions of the cytokines in each sample well were calcu-
lated based on a concurrent standard curve.

Statistical analysis

The data are expressed as the mean + standard deviation
on the basis of at least three separate experiments. The data
were analysed using SPSS version 23.0 (SPSS Inc., Chicago,
IL, USA). Significant differences amongst the mean values
of multiple groups were evaluated with one-way ANOVA
followed by Student-Newman-Keuls’ method. Survival was
analysed using the log-rank test. A two-sidedP value < 0.05
was considered statistically significant.

Results

HGF effectively alleviated acute lung injury in sepsis

To explore the effect of HGF on acute lung injury (ALI)
in sepsis, we intravenously injected recombinant HGF
into mice with sepsis caused by caecal ligation puncture
(CLP) (Fig. 1a). Histopathological examination showed
severe inflammatory cell infiltration, alveolar injury,
interstitial oedema, and alveolar collapse in the lung
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tissues from the septic mice compared with those from
the sham mice 12 h after the procedure (Fig. 1b). Com-
pared to CLP alone, HGF treatment dramatically abated
the inflammation and alleviated the lung injury induced
by polymicrobial sepsis (Fig. 1c-d). With the increased
invasion of a plethora of immunocytes, a surge in cyto-
kines, such as IL-1f, IL-18, and lactate dehydrogenase
(LDH), was observed in the plasma and bronchoalveolar
lavage fluid (BALF) from the septic mice in the CLP
group; however, this effect was abrogated by intravenous
administration of HGF in the CLP + HGF group (Fig. le-
h). In addition, the administration of recombinant HGF
significantly reduced the mortality of the septic mice
(Fig. 1i). There was no significant difference between the
Sham and Sham+HGF groups.

HGF attenuated pulmonary vascular endothelial injury in
septic mice

Endothelial injury was the primary contributor to inter-
stitial oedema and alveolar injury in acute lung injury in
sepsis. To investigate the effect of HGF on endothelial
injury, we measured the pulmonary vascular permeabil-
ity of the septic mice after the administration of recom-
binant HGF. As shown in the results of the Evans blue
assay, the vascular permeability was higher in the septic
mice than in the Sham mice, which was consistent with
the protein levels in the BALF (Fig. 2a-b). Compared to
CLP alone, intravenous administration of recombinant
HGF dramatically decreased the effusion of Evans blue
and protein, clearly indicating improved permeability
(Fig. 2a-b). Severe pulmonary oedema was also detected
in the septic mice, as revealed by lung weight/body
weight (LW/BW) ratio, and this pulmonary oedema was
abrogated by HGF (Fig. 2c) in the CLP + HGF group.
There was no significant difference between the Sham
and Sham+HGF groups.

Ultrathin lung sections were scanned by TEM to as-
sess pulmonary vascular endothelial injury. A number of
pyroptotic morphological features, such as cytoplasmic
swelling, bubbling, osmotic lysis, nuclear condensation
and oligonucleosomal DNA fragmentation, appeared in
the pulmonary vascular endothelial cells in the ultrathin
sections from the septic mice. However, endothelial pyr-
optosis was mitigated in the septic mice by the adminis-
tration of HGF (Fig. 2d).

HGF improved endothelial pyroptosis in vitro

To confirm the effect of HGF on endothelial pyroptosis,
umbilical vein endothelial pyroptosis was induced by
transfected LPS (tLPS) in vitro. The EA.hy926 cells pre-
sented a typical pyroptotic morphology, including cell
swelling, membrane rupture, bubbling, and bubble-like
cell protrusions, and a large amount of LDH and IL-1B
was released into the extracellular milieu after LPS
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 HGF alleviated acute lung injury in sepsis. C57BL/6 J mice were randomly assigned to 4 groups. a The HGF treatment schedule,
recombinant HGF (1 pg/g) was intravenously administered to the mice via the tail vein immediately and at 12 h after the operation. The mice
were sacrificed 24 h after the operation. b Lung histopathological features; ¢ Lung injury score, six random fields in a section from each mouse
were photographed and assessed; d Total cell number in the BALF (cells/ml, X 10°) was counted by Cell Counter; e, f IL-13 and LDH in the BALF
(pg/ml) were measured by ELISA; g, h IL-13 and LDH in the plasma (pg/ml) were measured by ELISA; n= 3, *P < 0.05; (I) Mortality was assessed

every 3-4 h, the survival was monitored until 72 h, and the survival curve was analysed, n=12

transfection (Fig. 3a-d). LPS stimulation also pro-
moted, to some extent, LDH release and IL-1f secre-
tion by EA.hy926 cells (Fig. 3c-d) but did not induce
pyroptosis (Fig. 3a). However, recombinant HGF sig-
nificantly alleviated pyroptosis and decreased LDH
and IL-1p release (Fig. 3a-d). Gasdermin D (GSDMD)
and caspase-1 cleavage in endothelial cells were de-
creased by HGF administration (Fig. 3e). HGF dra-
matically protected mitochondrial integrity and
decreased ROS production in pyroptotic endothelial
cells (see Additional file 1 Fig. S1).

HGF ameliorated endothelial pyroptosis by promoting
mTOR signalling

A crucial mechanism of growth factor-induced down-
stream biological effects is the constitutive activation of
mTOR [20]. HGF specifically binds to the receptor c-
Met and then activates the key downstream AKT/mTOR
signalling pathway to play a crucial role in cell survival
and other programmed cell death, such as apoptosis and
autophagy [21]. To test whether the c-Met/mTOR sig-
nalling pathway mediates the protective role of HGF
against endothelial pyroptosis, PHA-665752 (PHA) and
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Fig. 2 HGF attenuated pulmonary vascular endothelial injury in septic mice. a Evans Blue was intravenously administered and measured in lung
homogenates to assess pulmonary vascular permeability; b The total protein contents in the BALF were measured using the BCA method to
assess protein leakage; ¢ The lung weight and body weight ratio were analysed to assess lung oedema; n = 3, *P < 0.05; (D) Ultrathin lung
sections were scanned using TEM to assess vascular endothelial injury by a blind observer; N indicates nuclear; pentagram indicates bubbling of
pyroptotic cells; scale bar=5um
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Fig. 3 HGF alleviated endothelial pyroptosis in vitro. EA.hy926 cells were stimulated with LPS (2.5 pg/mL) with or without Lipo2000 (2 uL/mL),
followed by administration of HGF (25 ng/mL) immediately and 6 h later. a Bright-field image of treated EA.hy926 cells from randomly selected
fields of view, in which morphological changes characteristic of pyroptosis were assessed; scale bar =100 um; b Relative paracellular permeability
of single-layer EA.hy926 cells exposed to different treatments and analysed by FITC-dextran; ¢ IL-1(3 in the supernatant of treated EAhy926 cells
was measured by ELISA; d LDH release assay was performed to measure pyroptosis of the treated EA.hy926 cells, n =3, *P < 0.05, ** P<0.01; e

CASP-1, CASP-1-P10, GSDMD and GSDMD-N in the treated EA.hy926 cell homogenates were measured by Western blot; n =3

rapamycin (RAPA), specific inhibitors of Met and
mTOR, respectively, were administered to the endothe-
lial cells. Immunoblotting revealed that c-Met in the
plasma membrane was phosphorylated in response to
the binding of HGF, and this c-Met phosphorylation was
abolished by PHA-665752 in the LPS-transfected endo-
thelial cells (Fig. 4). In addition, HGF treatment dramat-
ically phosphorylated mTOR-Ser2448 and AKT-Ser473,
which indicate the activation of mTOR [22], in pyropto-
tic endothelial cells. However, mTOR activation was ab-
rogated by rapamycin, a specific inhibitor of mTOR, as
evidenced by the weak expression of P-AKT-Ser473 and
P-mTOR-Ser2448 (Fig. 4).

HGF administration remarkably improved the endo-
thelial cell pyroptosis caused by LPS transfection, as re-
vealed by the morphological features observed by bright
field microscopy, and this effect was obviously abolished
by the inhibitor of c-Met, PHA-665752 (PHA, 50 nM),
and the inhibitor of mTOR, and rapamycin (RAPA, 20
nM) (Fig. 5a). The inhibitory effect of HGF on IL-1p

secretion and LDH release by pyroptotic endothelial
cells was impaired by PHA-665752 and rapamycin (Fig.
5¢, d). Moreover, the inhibition of GSDMD or caspase-1
cleavage by HGF was abolished by PHA-665752 and
rapamycin (Fig. 5e). HGF alleviated endothelial cell pyr-
optosis, and this effect was dependent on the promotion
of mTOR signalling.

HGF protected mitochondrial physiology by promoting
mTOR signalling

Although mTOR signalling was confirmed to govern
mitochondrial integrity and function in previous studies
[23], whether HGF/c-Met considerably directs crosstalk
remains poorly defined. We assessed mitochondrial in-
tegrity and function after HGF administration in LPS-
transfected EA.hy.926 cells. As the flow cytometry and
immunofluorescence results demonstrated, HGF dra-
matically protected mitochondrial integrity and de-
creased ROS production in the pyroptotic endothelial
cells (Fig. 6a-c). Mitochondrial injury in the tLPS-treated
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Fig. 4 c-Met/mTOR signalling pathway was measured by Western blot. EA.hy926 cells were stimulated with Lipo2000 (2 uL/mL) and LPS (2.5 pg/
mL), followed by administration of HGF (25 ng/mL) with or without PHA-665752 (50 nM) or rapamycin (20 nM) immediately and 6 h later. a Met,
p-Met-Tyr1234/1235, mTOR, p-mTOR-Ser2448, AKT and p-AKT-Ser473 in the treated EA.hy926 cell homogenates were measured by Western blot;
b Quantification of relative expression, n = 3; *P < 0.05 compared with the tLPS group; #P < 0.05 compared with the tLPS+HGF group; PHA: PHA-

665752, RAPA: rapamycin.

EA.hy926 cells was mitigated by HGF, which was also
evidenced by the TEM results (Fig. 6d). However, all the
protective effects of HGF were abrogated by the inhib-
ition of mTOR.

Discussion

The results of our study demonstrated that HGF effect-
ively ameliorates sepsis-induced acute lung injury and
pulmonary vascular endothelial injury. The protective
role of HGF involves inhibiting endothelial pyroptosis by
protecting mitochondrial physiology through the mTOR
signalling pathway. To the best of our knowledge, this is
the first report that describes the mechanism by which
the mTOR signalling pathway plays a key role in the
amelioration of endothelial pyroptosis by HGF.

HGF is a multifunctional growth factor that is involved
in a variety of physiological activities and pathological
processes. Enhancement of endogenous HGF response
for minimizing septic tissue injuries, however, secretion
of HGF seems insufficient in sepsis, with a time lag be-
tween the injury and HGF increasing. Here, we demon-
strated that HGF alleviates polymicrobial sepsis-induced
lung injury and inflammation and improves the survival
rate of septic mice. Previous studies have illustrated that
HGF alleviates acute kidney injury and acute hepatic in-
jury in mice with LPS-induced sepsis [24, 25]. Several
lines of clinical evidence have demonstrated that blood
HGF levels raised in response to organ damage in pa-
tients with sepsis in the early phase [8]. Therefore, this
experimental result indicates that HGF supplement ther-
apy might be available for improving sepsis-induced

organ damage. Endothelial injury and lung injury were
not fully reversed by HGF, probably due to the complex
pathophysiological mechanism of polymicrobial sepsis
and the subsequent injury induced by persistent inflam-
mation, nor did recombinant HGF rescue all of septic
mice in previous researches [26]. An efficient dose of
HGF (1 pg/g) was chosen to intravenously treat septic
mice immediately and at 12 h after CLP operation, be-
cause the lung is the most susceptible organ. Kamimoto
M et al. [27] reported HGF treatment was gaven twice 1
day after LPS challenge 0 and 12 h. Kosai K et al. [26]
gave recombinant HGF intraperitoneally injections 6 h
before and 3 h after LPS injection, because only the few
hours from liver injury to death. However, for clinical
treatment of sepsis with HGF, clinical studies are neces-
sary, the dose and timing of HGF administration should
be determined according to its pharmacokinetics and
pharmacodynamics in patients. Therefore, HGF may be
a promising supplemental therapy to ameliorate sepsis-
induced organ damage.

Endothelial pyroptosis is a vital mechanism of vascular
endothelial injury in sepsis, and this process leads to the
release of a plethora of pro-inflammatory cytokines, such
as IL-1 and LDH, and destroys the endothelium barrier,
eventually leading to septic shock and multiple organ
failure [13, 14, 28]. The specific inhibition of endothelial
pyroptosis attenuates LPS-induced ALI and decreases
sepsis-induced mortality in Caspl1°“™~ mice [9], which
means that endothelial pyroptosis is a promising thera-
peutic target. The present study illustrated that HGF ef-
fectively inhibited endothelial pyroptosis, reduced
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Fig. 5 HGF ameliorated endothelial cell pyroptosis by promoting mTOR signalling. a EA.hy926 cells were treated as described, and images were
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*P < 0.05 compared with the tLPS group; #P < 0.05 compared with the tLPS+HGF group; PHA: PHA-665752, RAPA: rapamycin

vascular permeability, and decreased IL-1$ and LDH se-
cretion. Although previous studies have shown that HGF
has anti-apoptotic and anti-necrotic effects, this is the
first study reporting its anti-pyroptotic effect, which is
meaningful for dissecting the mechanism by which HGF
repairs endothelial injury.

Mitochondrial damage is a crucial contributor to and
hallmark of pyroptosis [29, 30]. Many stress factors, such
as microbiome metabolites, toxicants and oxidized mi-
croenvironments, have been shown to disrupt mitochon-
drial homeostasis [31]. In addition, the gasdermin pore
in the plasma membrane eventually executes pyroptosis,
simultaneously causing the mitochondria to release its
contents [32]. The ROS, mtDNA, and ATP released
from injured mitochondria strongly promote pyroptosis
by activating the inflammasome and the cleavage of
caspase-1 [33-35]. Our results have shown that HGF

protects the integrity of the mitochondrial plasma mem-
brane, reduces the release of mitochondrial contents,
leads to the scavenging of ROS or other mitochondrial
damage-associated molecules and prevents pyroptosis
[36, 37]. Thus, improving mitochondrial physiology alle-
viates endothelial pyroptosis and may be a therapeutic
target for sepsis.

HGF binds to c-Met in the plasma membrane, acti-
vates the AKT/mTOR signalling pathway, plays a vital
role in cell growth, metabolism, cell survival and migra-
tion; in addition, HGF is closely associated with develop-
mental defects, cancer, diabetes and autoimmune
diseases [22, 38]. Our results demonstrated that HGF
activates the AKT/mTOR signalling pathway to protect
mitochondrial physiology and reduce pyroptosis in
endothelial cells. Previous studies have proven that
mTOR controls the structure and function of
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mitochondria. mTOR complex 1 selectively promotes
the translation of nucleus-encoded, mitochondria-
related mRNAs to control mitochondrial activity and
biogenesis [39]. mTOR complex 2 localizes to the
plasma membrane of mitochondria to mediate its integ-
rity and control mitochondrial physiology [23]. Thus,
mTOR signalling appears to be a particularly important
hub for HGF in the repair of endothelial injury. Other
downstream pathways of HGF/c-Met, such as the
MAPK, Ras/MEK, STAT3, IxBa/NF-kB pathways, were
reported to mediate invasive growth, resist apoptotic in-
sults and cause proliferattion. Although our previous
study [15] revealed that following HGF stimulation,
STAT3 was activated and endothelial apoptosis partially

attenuated, we did not measure the effects of these path-
ways on endothelial pyroptosis here, which is a
limitation.

In summary, we demonstrated that mTOR signalling
mediates the protective effect of HGF on mitochondrial
physiology. HGF inhibits the release of mitochondrial
contents to alleviate endothelial pyroptosis in vitro. The
effect of HGF in attenuating vascular endothelial injury
could alleviate acute lung injury in sepsis and improve
the prognosis of sepsis, at least in animal model. Al-
though the effect of HGF on clinical sepsis patients is
speculative and remains to be elucidated, it is tempting
to believe that it could be a promising adjuvant therapy
for sepsis.
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Conclusion

HGF ameliorates endothelial pyroptosis depending acti-
vation of mTOR signalling by protecting mitochondrial
physiology, avoiding mitochondrial damage-associated
molecular release in vitro. The recombinant HGF
intravenously administration mitigates polymicrobial
sepsis-induced pulmonary vascular endothelial pyropto-
sis, attenuates pulmonary vascular endothelial injury and
acute lung injury in mice. HGF may have the potential
to be a promising adjuvant therapeutic strategy aimed at
the treatment of sepsis and acute lung injury.
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in vitro. EAhy926EAhy926 cells were stimulated with LPS (2.5ug/mL),
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