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Abstract

Impaired single breath carbon monoxide diffusing capacity (DLCO) is associated with emphysema. Small airways
disease (SAD) may be a precursor lesion to emphysema, but the relationship between SAD and DLCO is
undescribed. We hypothesized that in mild COPD, functional SAD (fSAD) defined by computed tomography (CT)
and Parametric Response Mapping methodology would correlate with impaired DLCO. Using data from ever-
smokers in the COPDGene cohort, we established that fSAD correlated significantly with lower DLCO among both
non-obstructed and GOLD 1–2 subjects. The relationship between DLCO with CT-defined emphysema was present
in all GOLD stages, but most prominent in severe disease.

Trial registration: NCT00608764. Registry: COPDGene. Registered 06 February 2008, retrospectively registered.
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Introduction
The importance of small airways disease (SAD) in
COPD pathogenesis was first described by Hogg et al. in
the 1960s, who determined that peripheral resistance
contributes minimally to total airway resistance in
healthy lungs but significantly in emphysematous lungs
[1]. Recent research using advanced computed tomog-
raphy (CT) has further suggested that a CT metric for
small airway disease (SAD) radiographically precedes
emphysema development and is associated with subse-
quent FEV1 decline [2, 3].
Diffusing capacity of the lung (DLCO) is a commonly

tested measurement in pulmonary function studies, in-
directly measuring degree of gas transfer from alveoli to
pulmonary capillary blood, with results depending on
the lung’s structural and functional properties. Emphy-
sema irreversibly destroys alveoli, leading to gas ex-
change impairment and manifesting as an inverse
relationship between emphysema severity and DLCO
[4]. We hypothesized that CT defined SAD among

COPD subjects with mild disease (GOLD 1–2) may de-
tect lung regions in transition from bronchiolar path-
ology to emphysema, and hence, may be associated with
diffusion capacity impairment.

Methods
We analyzed data from the five-year follow-up visit of
the COPDGene cohort in individuals (n = 1846) with
≥10 pack-years smoking history and GOLD spirometric
grades 0–4 for whom DLCO and CT imaging data were
available and obtained on the same day. GOLD 0, al-
though no longer used in the GOLD strategic document,
includes non-obstructed smokers (post-bronchodilator
FEV1/FVC > 0.7). COPDGene is a longitudinal, observa-
tional, and multicenter study investigating underlying
genetic determinants of COPD (Clinicaltrials.gov identi-
fier NCT00608764). DLCO was measured with EasyOne
Pro (serial number 500633, ndd Medizintechnik AG,
Zurich, Switzerland). Percent predicted values and z-
scores were calculated from raw values using Global
Lung Function Initiative (GLI) equations. We processed
inspiratory and expiratory CT images by parametric re-
sponse mapping (PRM), a novel CT biomarker tech-
nique, using Imbio Lung Density Analysis dynamic
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image registration software (Minneapolis, MN) to quan-
tify areas of emphysema (PRMEmph) and areas of non-
emphysematous gas trapping recently determined to be
SAD (PRMfSAD) [5]. Multivariable regression models for
DLCO GLI z-score were created to determine the rela-
tive contribution of PRMEmph and PRMfSAD, additionally
adjusted for age, sex, and current smoking.

Results
Participant mean age at time of measurement was 67.0
years. With increasing GOLD stage, DLCO % predicted
fell and z-scores became more negative, while PRMEmph

and PRMfSAD rose. These characteristics, as well as other
subject characteristics, are shown in Table 1.
In a multivariable regression model examining non-

obstructed ever-smokers, PRMfSAD (β = − 0.03, p < 0.001)
and PRMEmph (β = − 0.04, p = 0.03) were associated with
lower DLCO GLI z-score. For clinical interpretation, on
average a non-obstructed individual with 10% higher
PRMfSAD would be predicted to have 3.1% lower DLCO
% predicted. In GOLD 1–2, both PRMfSAD (β = − 0.02,
p = 0.004) and PRMEmph (β = −.10, p < 0.008) were asso-
ciated with lower DLCO GLI z-score. Among GOLD 3–
4, PRMEmph (β = − 0.11, p < 0.001) but not PRMfSAD

(p = 0.69) was associated with lower GLI z-score.

Discussion
Our analysis of a sizeable group of current and former
smokers indicate that in those without airflow obstruc-
tion and in individuals with mild to moderate COPD,
small airways disease defined by PRM is associated with
significant gas exchange abnormalities. These data build
on and extend recent work to elucidate the nature of
small airway abnormality in COPD. The PRMfSAD metric
has been associated with more rapid lung function de-
cline, even among individuals with emphysema [6].
Using longitudinal image registration, we previously
showed that voxels identified as PRMfSAD radiographic-
ally precede development of CT-determined emphysema
in those same voxels [7]. Importantly, we recently dem-
onstrated with severe COPD human lung tissue that
PRMfSAD metric corresponds to pathologic abnormality,
including decreased circularity, decreased luminal area,
and complete obstruction of terminal bronchioles (TBr),
whereas PRMEmph is significantly associated with de-
creased alveolar surface area [5].
However, the pathology identified by PRMfSAD in

milder disease is unknown. Given the totality of data
generated to date, PRMfSAD is also likely associated with
TBr pathology in mild COPD, but the extent to which it
may also identify early alveolar destruction must be
determined.
The association we show here between PRMfSAD and

reduced DLCO suggests that the fSAD metric may de-
tect lung beginning to transition from bronchiolar path-
ology to emphysema.
Support for this possibility comes from McDonough

et al., who used micro-CT to analyze lung tissue samples
in severe COPD. By identifying significantly reduced TBr
numbers in areas of lung without visible emphysema evi-
dence, they inferred that narrowing and loss of TBr pre-
cedes emphysema [2]. However, a linear relationship
between loss of TBr and increase in mean linear inter-
cept (a measure of mean free distance in the air spaces)
was seen. Most recently, Koo et al. examined lung tissue
from GOLD 1–2 stage disease and again found signifi-
cant reductions in number of TBr and transitional bron-
chioles in lung areas without visible emphysema [3].
Collectively, these results support SAD as one precursor
of emphysema.
DLCO is well-established to correlate with CT-

determined emphysema [4], but it may also be decreased
in mild COPD, where emphysema is not detectable by
CT imaging. Active smokers with normal spirometry but
low DLCO had increased rate of progression to GOLD-
defined COPD, compared to smokers with normal spir-
ometry and normal DLCO, implying that isolated de-
creased DLCO is a risk factor for airflow obstruction in
otherwise healthy subjects [8]. Ex-smokers with normal
CTs and no airflow obstruction but with low DLCO had

Table 1 Baseline demographics

GOLD spirometry grade

0 (n = 957) 1–2 (n = 584) 3–4 (n = 305)

Age, yr 63.5 68.3 68.9

Sex, n (% female) 512 (54%) 249 (42%) 130 (43%)

BMI (kg/m2) 28.9 27.9 27.5

Smoking pack-years 37.1 49.8 55.0

Current smokers, n (%) 344 (36%) 212 (36%) 61 (20%)

Exacerbations in prior year 0.11 0.32 0.71

FEV1, L 2.73 2.03 0.98

FEV1% predicted 98.4 73.3 36.4

FVC, L 3.49 3.39 2.43

FVC % predicted 96.1 91.7 67.2

FEV1/FVC 0.78 0.60 0.41

DLCO, % predicted 90.1% 74.2% 51.2%

DLCO, GLI z-score −0.73 −1.91 −4.08

PRMfSAD 10.0% 21.0% 34.6%

PRMEmph 1.8% 6.5% 18.3%

All values expressed as mean except categorical variables expressed as n (%)
BMI body mass index, FEV1 forced expiratory volume in 1 s, FVC forced vital
capacity, DLCO single breath carbon monoxide diffusing capacity of the lung,
GLI Global Lung Function Initiative, PRM parametric response mapping, fSAD
functional small airways disease, Emph emphysema
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significantly worse symptoms and exercise capacity as
well as greater regional lung destruction, as measured by
hyperpolarized 3He MRI apparent diffusion coefficients
[9]. In 10 patients with severe SAD, defined by severe
expiratory airflow limitation with mild CT-detected em-
physema, Gelb et al. found DLCO reductions; however,
they proposed that this was possibly due to uneven gas
sampling from lung units with differing expiratory time
constants, a function of SAD rather than lung parenchy-
mal destruction [10].
Our current analysis of ever-smokers without obstruc-

tion and with GOLD 1–2 COPD showed that PRMfSAD

correlates with low DLCO, suggesting PRMfSAD might
detect airways transitioning to early emphysema with
resulting impaired gas exchange. Although COPD is a
heterogonous disease, it is possible that a significant por-
tion of small airways disease patients will progress to
emphysema. Therefore, in addition to already describing
correlations between tissue pathology and PRMfSAD in
severe disease, similar studies in milder disease are also
needed to confirm the pathology type identified in this
population, who may be more amenable to therapeutic
intervention that may halt progression to emphysema.
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