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Abstract

Background: Nitric oxide is a mediator of potential importance in numerous physiological and inflammatory
processes in the lung. Aminoguanidine (AG) has been shown to have anti-inflammation and radical scavenging
properties. This study aimed to investigate the effects of AG, an iNOS inhibitor, on lipopolysaccharide (LPS)-induced
systemic and lung inflammation in rats.

Methods: Male Wistar rats were divided into control, LPS (1 mg/kg/day i.p.), and LPS groups treated with AG 50,
100 or 150 mg/kg/day i.p. for five weeks. Total nitrite concentration, total and differential white blood cells (WBC)
count, oxidative stress markers, and the levels of IL-4, IFN-y, TGF-31, and PGE2 were assessed in the serum or
bronchoalveolar lavage fluid (BALF).

Results: Administration of LPS decreased IL-4 level (p < 0.01) in BALF, total thiol content, superoxide dismutase (SOD)
and catalase (CAT) activities (p < 0.001) in BALF and serum, and increased total nitrite, malondialdehyde (MDA), IFN-y,
TGF-B1 and PGE2 (p < 0.001) concentrations in BALF. Pre-treatment with AG increased BALF level of IL-4 and total thiol
as well as SOD and CAT activities (p < 0.05 to p < 0.001), but decreased BALF levels of total nitrite, MDA, IFN-y, TGF-31,
and PGE2 (p <001 to p < 0.001). AG treatment decreased total WBC count, lymphocytes and macrophages in BALF

(p <0.01 to p <0.001) and improved lung pathological changes including interstitial inflasnmation and lymphoid
infiltration (p < 0.05 to p < 0.001).

Conclusions: AG treatment reduced oxidant markers, inflammatory cytokines and lung pathological changes but
increased antioxidants and anti-inflammatory cytokines. Therefore, AG may play a significant protective role against
inflammation and oxidative stress that cause lung injury.
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Background
Bacterial lipopolysaccharide (LPS), also termed endo-

lung and systemic inflammation. [3]. The conse-
quences of these inflammatory responses include

toxin, has shown pro-inflammatory activities [1]. LPS
is present as a contaminant in cigarette-smoke, air
pollution and organic dusts [2]. Average ambient air
LPS concentration was measured at J_rO.éLng/m3 [3].
LPS inhalation stimulates the innate immune system
in healthy human subjects and results in an acute

* Correspondence: boskabadymh@mums.ac.ir; boskabadymh2@gmail.com
1Neurogemic Inflammation Research Center, Mashhad University of Medical
Sciences, Mashhad 9177948564, Iran

“Department of Physiology, School of Medicine, Mashhad University of
Medical Sciences, Mashhad 9177948564, Iran

Full list of author information is available at the end of the article

B BMC

overproduction of nitric oxide (NO), tissue injury and
organ failure [4]. It has been demonstrated that LPS
leads to lung injury [5-8]. Chronic exposure of ani-
mals to LPS has been also shown to induce patho-
logical features of COPD, such as pulmonary
inflammation and airway hyperresponsiveness as well
as structural changes in the lung [3, 9-12]. Follow-up
studies have shown that long-term LPS exposure re-
sulted in pulmonary function decline and a major
lung inflammatory response. However, the extent of
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inflammatory processes in lung pathology of these pa-
tients is still unclear [3].

NO, a potentially toxic free radical and physio-
logical messenger, has a major role in the regulation
of the immune system functions [13] including
aggregation of platelets, rolling and migration of leu-
kocytes, and expression of inflammatory cytokines
such as interleukin-1 (IL-1), interleukin-6 (IL-6),
interleukin-8 (IL-8), interferon gamma (INF-y) and
tumor necrosis factor-alpha (TNF-a) [14]. During the
inflammation process, endotoxins and cytokines in-
duced rapid alterations in NO gene expression leading
to the de novo synthesis of the inducible isoform of
nitric oxide synthases (iNOS) and cyclooxygenase
(COX-2) pathways. There are interrelated and the
cross-talk between these two pathways which play a
key role in the regulation of the inflammatory pro-
cesses [13].

In several animal models of lung injury, inflammation
and oxidative stress are involved as the underlying patho-
physiological mechanisms. Thus, anti-inflammatory or
antioxidant agents have been widely used to alleviate
lung injury [6]. Aminoguanidine (AG), an iNOS in-
hibitor, affects several enzyme systems [15]. Inhibition
of NO, arachidonic acid metabolites and cytokines
production can be advantageous in the systemic and
lung inflammation. AG was prepared more than 100
years ago [16], but relatively less attention has been
paid to its beneficial effects on the respiratory system.
It has been suggested that enhanced generation of
NO by iNOS may contribute to acute lung injury
[17]. Therefore, the present study set up to evaluate
the role of inhibition of NO production by adminis-
tration of AG on LPS-induced chronic systemic in-
flammation and oxidative stress in a rat lung injury
model.

Methods

Animals

Fifty male Wistar rats (240+10g) were purchased
from the Animal House, Mashhad University of Med-
ical Sciences and were housed in Plexiglas cages
under controlled temperature (22+2°C), humidity
(54 +2%), and 12h light/dark cycle. Food and water
were freely available during the study period. The
study was approved by the ethics committee of
Mashhad University of Medical Sciences for Animal
Experiments (code 951071).

Experimental groups

Rats were randomly divided into five groups (n =10 in
each group) as follows: (1) Control group received sa-
line instead of LPS and AG, (2) LPS group received
LPS 1 mg/kg/day [18] for 5weeks, (3—5) LPS groups
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treated with 50, 100 or 150 mg/kg/day AG 30 min
before LPS injection, during 5weeks. LPS and AG
(Sigma-Aldrich Chemical Co) freshly dissolved in ster-
ile warm saline before injection and administrated
intra-peritoneally (i.p.).

At the end of the experiment, all animals were
anesthetized by urethane (1.6 g/kg). To prepare blood
serum, 5ml blood was collected from the animal’s
heart after opening the chest in the test tube and
centrifuged at 3500 rpm for 10 min. The serum sam-
ples were collected and stored at — 70 °C for measure-
ment of the levels of nitrite, malondialdehyde (MDA),
total thiol content, superoxide dismutase (SOD) and
catalase (CAT) activity [18].

Bronchoalveolar lavage fluid (BALF) preparation

The chest was opened and the left lung was clamped to
preserve architecture for histological studies. A cannula
was placed into the trachea and the right lung was
washed with one mL normal saline for five times (totally,
5ml) through a tracheal cannula according to previous
studies [18]. BALF was centrifuged at 2500 rpm at 4 °C
for 10 min. The supernatant was collected and stored at
- 70 °C for measurement of the levels of nitrite and cyto-
kines, and assessment of oxidative stress.

Measurement of total nitrite concentration

Total nitrite concentration was measured in the serum and
BALF by Griess reagent method using a standard
enzyme-linked immunosorbent assay (ELISA) kit (Promega
Corp., USA, Cat#G2930). In brief, 100 pul of serum or BALF
were added to a 96-well flat-bottomed microplate. Then,
sulfanilamide solution and N-1-naphtylethylenediamine
dihydrochloride under acidic conditions were added to all
collected samples, respectively. The absorbance was de-
tected by a microplate reader (Biotek, USA) at 520—-550 nm
wavelengths. The limit detection was 2.5 uM nitrite [19].

Total and differential white blood cell (WBC) counts

Total leukocyte was determined in duplicate using a
hemocytometer (in a Burker chamber). For differential
WBC count, a smear was prepared from the cell pel-
let in BALF and blood sample and stained with
Wright-Giemsa. After staining, differential count was
carried out by standard morphologic protocol under
the light microscope.

Assessment of oxidative stress markers

MDA, a biological marker of lipid peroxidation, was
assayed in the serum and BALF based on the reaction
between MDA and thiobarbituric acid (TBA) as
described previously [20]. Total thiol content was also
assayed in the serum and BALF using a previous estab-
lished method [20]. Here, 5, 5'-dithiobis-(2-nitrobenzoic
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acid) (DTNB) interact with SH groups, forming a highly
colored anion with the maximum peak at 412 nm. MDA
and Total thiol contents were expressed as pM.

SOD activity was assayed in the serum and BALF accord-
ing to the previously described method [20]. The method is
based on the generation of superoxide through
auto-oxidation of pyrogallol and dependent revived inhib-
ition of 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyl tetrazolium
bromide (MTT) to formazan [20]. CAT activity was
assayed based on its ability to decompose hydrogen
peroxide (H,O,), which is reflected in the reduction
of absorption at 240 nm [20]. SOD and CAT activities
were expressed as units per ml.

Measurement of IL-4, IFN-y, TGF-1, and PGE2 in BALF

Specific ELISA kits (ebioscience Co, San Diego, CA, USA)
and the instructions provided by the manufacturer were
used to measure interleukin-4 (IL-4), interferon-gamma
(IFN-y), transforming growth factor-beta-1 (TGF-p1), and
prostaglandin-E2 (PGE2) in BALF. The measured absorb-
ance of the samples in a microplate reader (Biotek, USA)
was compared with an established standard curve in the
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same measurement, and the cytokines concentrations
were calculated.

Lung histopathological evaluation

Histological examination was performed on left lung
which was not lavaged. The left lung was fixed in 10%
buffered formalin (37%, Merck, Germany) and embed-
ded in paraffin blocks. The specimens were cut into
4 um slices and were stained with hematoxylin-eosin
(H&E) solution. The tissues were then evaluated under a
light microscope. The pathologic changes in the lung of
different groups were included: interstitial inflammation
and lymphoid infiltration. The scoring system of patho-
logical changes was: 0, no pathologic changes; 1, patchy
changes; 2, local changes; 3, scattered changes; 4, severe
changes (in the most parts of the lung) [21].

Statistical analysis

All results were considered as mean + SEM. The per-
cent change in all measured parameters in the LPS
compared to control and in LPS-AG treated com-
pared to untreated LPS groups were also calculated.
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Fig. 1 Total nitrite concentration in the serum (a) and BALF (b). Data are shown as mean = SEM (n =10 per group). *;P < 0.05, **;P < 0.01 and
***p <0001 compared to control group, ++;P < 0.01 and +++;P < 0.001 compared to LPS group. Statistical analysis were performed using one-
way analysis of variance (ANOVA) followed by Tukey's multiple comparison test
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The data were analyzed using one-way analysis of
variance (ANOVA) followed by Tukey’s multiple com-
parison test. Statistically significant was considered as
p <0.05.

Results

Total nitrite concentration

The serum and BALF nitrite levels of LPS groups were
increased by 238% (2060.91 + 93.23) and 125% (311.63 +
18.72), respectively relative to control group (864.7 +
62.89 and 248.46 + 4.24, for serum and BALF), (P <0.001
and P<0.01, respectively), (Table and Fig. 1). In AG
treated groups with doses of 100 and 150 mg/kg, serum ni-
trite concentrations were reduced to 79% (1646.70 + 39.41)
and 57% (1175.90 +75.69), respectively relative to LPS
group (206091 +93.23), (P<0.01 and P <0.001, respect-
ively), (Table 1 and Fig. la). Additionally, pre-treatment

Table 1 Percent changes of various measured parameters in
LPS relative to control and in AG treated relative to LPS groups
(%)

Parameters Sample LPS/ AG/LPS
@l 5o 100 150
Total nitrite concentration ~ Serum 238 93 79 57
BALF 125 78 78 69
Total WBC count Blood 141 91 85 77
BALF 182 97 86 73
Neutrophils Blood 138 87 83 80
BALF 126 100 92 95
Lymphocytes Blood 142 93 86 75
BALF 175 97 88 74
Monocytes Blood 155 88 82 73
Macrophages BALF 320 9% 78 56
Eosinophils Blood 109 108 100 91
BALF 150 85 100 83
MDA concentration Serum 240 86 62 53
BALF 623 71 68 44
Total thiol content Serum 26 106 162 232
BALF 16 86 124 368
SOD activity Serum 10 292 370 585
BALF 13 295 468 528
CAT activity Serum 33 133 165 214
BALF 8 263 398 583
IL-4 BALF 42 101 155 222
IFN-y BALF 293 82 70 45
TGF-B1 BALF 281 86 73 46
PGE2 BALF 301 79 68 42

Interstitial inflammation Lung tissue 732 100 90 63

Lymphoid infiltration Lung tissue 666 79 75 49
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with all doses of AG decreased BALF total nitrite concen-
tration to 78% (244.83 +13.71), 78% (243.92 + 8.82) and
69% (217.93 +8.42), respectively relative to LPS group
(311.63 +£18.72), (all, P < 0.01), (Table 1 and Fig. 1b).

Total and differential WBC counts

The results showed that total WBC count in the blood
was increased by 141% (13.99 + 0.50) in LPS group rela-
tive to control group (9.895 +0.40), (p <0.001) which
was due to the increased numbers of neutrophils, lym-
phocytes and monocytes by 138% (4.08 +0.40), 142%
(9.4 £0.50) and 155% (0.45 £ 0.03), respectively relative
to control groups (2.95 + 0.20, 6.6 + 0.70 and 0.29 + 0.01,
for neutrophils, lymphocytes and monocytes respect-
ively), (p < 0.05 to p < 0.001, Table 1, Fig. 2).

In the treated groups with three doses of AG, total
WBC counts were reduced to 91% (12.845 + 1.00), 85%
(11.98 +0.70) and 77% (10.785 +0.40) relative to LPS
group (13.99 + 0.50), (Table 1) which were significant at
doses of 100 and 150 mg/kg (p <0.05 and p <0.01, re-
spectively; Fig. 2a). In AG treated groups with three
doses of AG, neutrophils count was reduced to 87%
(3.58 £ 0.50), 83% (3.4 +0.55) and 80% (3.3 £ 0.60), lym-
phocytes count was reduced to 93% (8.8 £1.00), 86%
(8.15+ 1.60) and 75% (7.1 £ 0.50), monocytes count was
reduced to 88% (0.4 + 0.05), 82% (0.37 +0.06) and 73%
(0.33 £0.03), and eosinophils count was reduced to 91%
(0.05+0.01), only by 150 mg/kg dose of AG relative to
LPS groups (4.08 + 0.40, 9.40 + 0.50, 0.45 + 0.03 and 0.06
+0.01, for neutrophils, lymphocytes, monocytes and eo-
sinophils respectively), (Table 1) which were statistically
significant at dose of 150 mg/kg for mononuclear leuko-
cytes (p<0.05 for lymphocyte cells and p<0.01 for
monocyte cells; Fig. 2b-d).

Total WBC count in BALF was increased by 182%
(6.36 £0.50) in LPS group relative to control group
(3.49 £ 0.40), (p <0.001) which was due to the increased
lymphocytes and macrophages counts in BALF of LPS
groups by increased 175% (3.50 + 0.30) and 320% (1.60 +
0.10), respectively relative to control groups (2.00 + 0.20
and 0.50 = 0.05, for lymphocytes and macrophages), (all,
p <0.001).

In the treated groups with three doses of AG, total
WBC counts in BALF were reduced to 97% (6.21 + 1.00),
86% (5.52 + 0.70) and 73% (4.70 + 0.40), respectively rela-
tive to LPS group (6.36 + 0.50), (Table 1) which was sig-
nificant at AG 150 mg/kg (p < 0.01; Fig. 3).

In AG treated groups, lymphocytes count was reduced
to 97% (3.40 + 0.30), 88% (3.10 £ 0.30) and 74% (2.60 =
0.20), and macrophages count was reduced to 96% (1.55
+0.10), 78% (1.25 +0.20) and 56% (0.90 +0.09), due to
its three doses respectively, relative to LPS group (1.60 +
0.10), (Table 1) which were significant for AG 150 mg/kg
(both, p < 0.01; Fig. 3).



Saadat et al. Respiratory Research (2019) 20:96

Page 5 of 13

2R
o N
1

Total WBC (103/mm?)

LPS

~_
=
~

w I « o

Neutrophils (10/mm?)

Cul LPS LPS-AG 50 LPS-AG 100 LPS-AG 150

0.3

Monocytes (103/mm?)
o

o
-

0 -

LPS-AG 50 LPS-AG 100 LPS-AG 150

Ctrl LPS

compared to control group, +;P < 0.05 and ++;P < 0.01 compared to LPS
variance (ANOVA) followed by Tukey's multiple comparison test

LPS-AG 50 LPS-AG 100 LPS-AG

©

50

Lymphocytes (103/mm?)

Ctrl LPS-AG 50 LPS-AG 100 LPS-AG 150

LPS

~
(¢)
N’

0.08

o o
R &

Eosinophils (103/mm?)

o
9
153

LPS-AG 50 LPS-AG 100LPS-AG 150

Ctrl

LPS

Fig. 2 Total and differential WBC counts in the blood. Data are shown as mean + SEM (n =10 per group). *;P < 0.05, **;P < 0.01 and ***;P < 0.001

group. Statistical analysis were performed using one-way analysis of

Oxidant marker (MDA) content

Serum and BALF MDA concentrations of LPS group
were increased by 240% (1.26 +0.14) and 623% (1.55 +
0.11), respectively relative to control groups (0.52 + 0.06
and 0.25 + 0.07, for Serum and BALF), (both, p < 0.001).
In AG treated groups, serum MDA concentrations were
reduced to 62% (0.79 + 0.10) and 53% (0.67 + 0.03) rela-
tive to LPS group (1.26 +£0.14), (»p<0.01 for AG 100
and 150 mg/kg). BALF MDA concentration was re-
duced to 71% (1.10+0.06), 68% (1.06 +0.11) and 44%
(0.69 £ 0.09), respectively by three doses of AG relative to LPS
group (1.55+0.11), (p<0.01 to p<0.001), (Figs. 4a and 5a,
and Table 1).

Anti-oxidant markers (thiol, SOD and CAT)

In LPS group, total thiol content, SOD and CAT activ-
ities in the serum were reduced to 26% (0.09 +0.01),
10% (0.28 £0.08) and 33% (0.01 +0.00), respectively,
relative to control group (0.36 +£0.02, 2.80+0.18 and
0.04+0.00, for total thiol content, SOD and CAT

respectively), (all, p<0.001). Additionally, total thiol
content, SOD and CAT activities in BALF were reduced
to 16% (0.07 £0.00), 13% (0.32 +£0.10) and 8% (0.01 =
0.00), respectively, relative to control groups (0.48 +
0.03, 2.38+0.13 and 0.14+0.00, for total thiol
content, SOD and CAT respectively), (all, p<0.001),
(Fig. 5b-d and Table 1).

In the serum of AG 150 mg/kg treated group, total
thiol content was increased by 232% (0.22 +0.02), and
SOD activity was increased by 585% (1.67 +0.41), (both,
p<0.01). Pre-treatment with AG 100 and 150 mg/kg
increased CAT activity to 165% (0.02 + 0.00) and 214%
(0.03£0.00), (p<0.01 and p<0.001, respectively),
(Fig. 4b-d and Table 1). In BALF of AG treated
groups, SOD activity was increased by 295% (0.96 +
0.10), 468% (1.53+0.12) and 528% (1.72+0.09), and
CAT activity was increased by 263% (0.03 £0.00),
398% (0.05 + 0.00) and 583% (0.07 + 0.00), (p <0.01 to
p<0.001), relative to LPS groups (0.32+0.10 and
0.01 £0.00, for SOD and CAT). Pre-treatment with
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AG 150 mg/kg increased total thiol content by 368% (0.28
+0.01), relative to LPS group (0.07 £ 0.00), (» < 0.001),
(Fig. 5b-d and Table 1).

Levels of IL-4, IFN-y, TGF-B1, and PGE2 in BALF

In LPS group, BALF level of IL-4 was reduced to 42%
(14.69 £1.93), (p<0.01), and the levels of IFN-y,
TGF-B1 and PGE2 were increased to 293% (115.15 +
13.51), 281% (189 +22.17) and 301% (26.52 + 3.11), re-
spectively, relative to control groups (34.55+3.57,
39.25+5.31, 64.42+8.71 and 9.04+1.22, for IL-4,
IFN-y, TGF-B1 and PGE2 respectively) (all, p <0.001),
(Fig. 6a-d and Table 1). In AG 150 mg/kg treated group,
IL-4 level was increased to 222% (32.75+ 3.00),
(p <0.001), while IFN-y level reduced to 45% (52.06 +
6.43), TGF-B1 level was reduced to 46% (85.45 + 10.55),
and PGE2 level was reduced to 42% (11.99 +1.48),
relative to LPS groups (14.69+1.93, 115.15+13.51,
189 £22.17 and 26.52 +3.11, for IL-4, IFN-y, TGF-p1
and PGE2 respectively), (all, p <0.01), (Fig. 6a-d and
Table 1).

Lung histopathological evaluation

Pathological changes in the LPS group, including the
interstitial inflammation and lymphoid infiltration were
increased to 732% (3.66 +0.21) and 666% (3.33 +0.21),
respectively relative to control group (0.5+0.22 for
the interstitial inflammation and lymphoid infiltra-
tion), (p <0.001 for both cases; Fig. 7 and Table 1).

In the treated groups, interstitial inflammation was re-
duced to 63% (2.33 £ 0.21) and lymphoid infiltration was
reduced to 79% (2.66 +0.21), 75% (2.5 +0.22) and 49%
(1.66 + 0.21), respectively, relative to LPS group (3.66 +
0.21 and 3.33 + 0.21, for the interstitial inflammation and
lymphoid infiltration), (Table 1) which were statistically
significant at doses of 50 and 100 mg/kg for lymphocyte
infiltration (p<0.05) and 150mg/kg for interstitial
inflammation and lymphoid infiltration (p <0.01 and
p <0.001, respectively).

Discussion

The results of the present study showed that chronic
i.p. administration of LPS for five weeks has led to an
increase in total nitrite concentration, and WBC
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.

count as well as elevated monocytes, lymphocytes and
neutrophils counts in the blood and lung lavage. LPS
also induced oxidative damage by increasing MDA
concentration and decreasing total thiol concentration
as well as SOD and CAT activities in the serum and
lavage. Decreased IL-4 level and increased IFN-y,
TGEF-B1, PGE2 levels in the lung lavage were also ob-
served due to chronic LPS administration. At five
weeks after LPS administration, severe pathological
changes including interstitial inflammation and
lymphoid infiltration were also observed.

Previous studies showed that long-term LPS exposure
induced various types of pulmonary diseases which char-
acterized by chronic inflammatory processes in the lung
[3]. In acute lung injury, a major component of the in-
flammatory response is infiltration of activated neutro-
phils into the lung [22]. Animal experiments have
demonstrated bronchoalveolar neutrophilia being the
most prominent cell response following bacterial LPS in-
halation [23]. LPS inhalation in healthy subjects in-
creased neutrophils and lymphocytes levels in BALF
[23]. Acute LPS exposure increased neutrophil count in
BALF in both rabbits [24] and rats [25]. Increased neu-
trophils count in BALF of mice was detected 1h post

LPS inhalation which was persisted for 48 h [26]. In the
present chronic lung injury model of LPS exposure,
there was no significant increase in neutrophil count in
BALF. However, the results indicated increased total
WBC in the blood by 141% which was due to increased
monocytes, lymphocytes and neutrophils counts but in
the lavage by 182% which was accompanied by increased
macrophage and lymphocytes. The reason of unchanged
neutrophil count in BALF of LPS group is unknown to
us.

LPS can activate neutrophils and macrophages to pro-
duce reactive oxygen species (ROS) [27] which lead to
the production of inflammatory mediators such as gen-
eration of diverse pro-inflammatory Thl type cytokines
including IFN-y [28] as well as inflammatory cytokines
and chemokines which recruit more neutrophils to tis-
sues exposed by LPS, and propagate the inflammation
process [27-29]. IL-4 also caused substantial reductions
in neutrophil content in BALF [30]. Thus, inhibition of
iNOS can be helpful in reducing systemic and lung
inflammation.

It was shown that TGF-p suppress the macrophage
response to LPS, in vitro and decreased systemic in-
flammation [31] and plays an important role in
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epithelial changes, sub-epithelial fibrosis, airway
smooth muscle remodeling, and microvascular
changes [32]. Previous studies also showed increased
serum levels of TGF-B in LPS-induced inflammation
[31], which is in agreement with results of the
current study.

Elevated IL-1f, IL-4, IL-6 and IFN-y levels in lung
tissue, one hour after administration [33] and in-
creased IL-1p mRNA, IL-10 mRNA, and IL-4 protein
at one hour after LPS challenge in the lung of mice
[34] were reported. Down-regulation IL-10, and
up-regulation off TNF-a, IL-6, IL-4 and IL-1f pro-
duction in the BALF [35] as well as a significant
up-regulation in the gene expression of TNF-a, IL-1,
IL-6 and IL-12, and a down-regulation in the gene
expression of IL-4 and IL-10 were observed in
LPS-induced acute lung injury in vivo and in vitro
[36]. In LPS three-hit model of rat acute lung injury
induced by LPS (1.5mg/kg) injected into the endo-
tracheal following by i.p. injection of LPS (3 mg/kg)
and then endotracheal administration of LPS (3 mg/kg)
48 h later, the expression of TNF-a and IEN-y was first en-
hanced but declined thereafter. The results of the above
mentioned studies were in line with the results of the

present study. Therefore, LPS induces Thl responses
(IFN-y) and inhibits Th2 responses through the
TLR4-dependent pathway that triggers the activity of
NOS-II [37].

PGE2 could modulate the activity of NOS by the direct
effect of TNFa on the release of NO from macrophages
or synergic effect of TNFa with IFN-y [38]. In a rat
acute lung injury model, intratracheal administration of
LPS reduced the content of arachidonic acid in blood
neutrophils and increased the level of PGE2 in BALF
[25]. The elevated level of PGE2 following administra-
tion of LPS may have a protective role in the lungs, but
its function may depend on acute or chronic nature of
inflammatory response.

LPS three-hits can induce rapid pulmonary fibrosis
which the first rapid pulmonary fibrosis stage oc-
curred on days 3-7, whereas from 14 to 21 days was
the second stage [39]. Acute infusion of LPS (5 mg/kg
over 60 min) in rabbits caused extensive morphologic
lung damage [24]. Chronic LPS exposure can cause
neutrophil-dependent emphysematous changes in lung
architecture and result in other pulmonary changes
such as airway wall thickening, mucus cell metaplasia,
irreversible alveolar enlargement, and the chronic
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inflammatory response [3, 10, 40]. Therefore, the in-
flammatory and pathologic changes were similar with
lung pathological changes in chronic inflammatory
lung diseases, especially COPD patients, suggesting
that this murine model could be applicable to the
pathogenesis of COPD condition [3].

Treatment with AG resulted in a decrease in total
nitrite concentration and WBC count. AG modified
oxidative status by decreasing the levels of MDA and
increasing total thiol content as well as SOD and
CAT activities both in serum and BALF of LPS-AG
groups. Increased IL-4 level and decreased IFN-y,
TGEF-B1, PGE2 levels in BALF of AG treated was also
observed. The pathological changes in the lung tissues
including interstitial inflammation and lymphoid infil-
tration were also improved due to AG treatments
dose-dependently.

The inhibitory effect of AG on iNOS was reported in a
dose-dependent manner [41] in various conditions such
as in rat model of hemorrhagic shock [42, 43] and in
LPS-induced increased NO production in the primary
culture of rat hepatocytes [15]. In the present study, the
similar pattern was observed for the inhibitory effect of
AG on nitrite level in the serum and BALF of chronic
LPS exposure-induced lung injury. Acute infusion of AG
(1 mg/kg one hour after the end of LPS infusion) in

rabbits decreased neutrophil count in BALF [24]. How-
ever, this effect was not observed in the LPS-induced
blood neutrophilia in the present study. This contradic-
tion may be related to the type of inflammation or may
be due to the acute and chronic effects of AG. The
present findings suggest that AG probably reduces
up-regulation of iNOS by decreasing alveolar macro-
phages. The relationships between COX-2 and iNOS iso-
forms were previously reported [44]. AG can reduce the
production of NO and PGE2 induced by LPS injection
and affected the PG metabolism by inhibiting COX-2 ex-
pression and its activity [45]. The current findings sug-
gest that iNOS-mediated NO production could result in
lung damage and this could lead to up-regulation of
COX-2, which increases the production of ROS and
toxic prostanoids.

AG is able to scavenge hydroxyl and peroxyl radi-
cals [46] in various conditions including experimental
model of diabetes mellitus which it reduced the levels
of pulmonary oxidative stress and increased collagen
synthesis and deposition in the lung [47] as well as
against a single dose of paraquat-induced oxidative
stress in the lung of mice [48] which support the re-
sults of the current study.

AG also preserved lung function and shifted the Th2
to the Thl response with a reduction of IL-4 and IL-13
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and increase in IL-1f production in ovalbumin sensi-
tized animals [49] which caused increase IL-4 level un-
like LPS-induced inflammation. Reduction of glomerular
iNOS and TGF-B1 mRNA expression in mice and rats
models of glomerulosclerosis and diabetic nephropathy
by AG were also reported [50, 51] which were in line
with the results of lung injury induced by LPS of the
present study. The absence of the effect of AG on in
vivo expression of TNFa and IL-1 in the lungs of endo-
toxemic rats was reported [41] but there are reports on
the effect of AG in the serum and tissue cytokine levels
[41]. However, the effect of AG on BALF level of

cytokine and oxidant, anti-oxidant has not been studied
extensively.

Histological examinations showed a reduction in
kidney, liver, lung, and brain damages for AG [42]. It
is suggested that the treatment of rabbits with infu-
sion of AG, attenuated acute lung injury and inflam-
mation following intravenous exposure to LPS [24].
AG also prevented bleomycin-induced lung fibrosis in
both rats and mice [52, 53] which were in agreement
with the present findings in the chronic lung injury
by LPS. Due to the role of TGF-f in most of the bio-
logical processes leading to the airway remodeling,
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reduced BALF level of TGF-B1 can lead to improved
pathological changes in the lung tissue.

There are no findings about the possible mechanisms
of AG in chronic lung injury induced by LPS. Based on
the results of this study, potential mechanisms of AG
may be via dual inhibition of NO and PGE2, enhanced
production of IL-4, as a strong anti-inflammatory cyto-
kine, which in turn decreased inflammatory cytokines,
IFN-y and TGEF-P1, as well as monocyte chemotaxis.
The radical scavenging properties of AG may help to ex-
plain the modulation of lung and systemic inflammation
by this compound.

Although the protective effects of AG on lung disor-
ders was examined in several previous studies as listed
above, the unique novelty of the present study is evalu-
ating of the effect of AG on chronic lung injury induced
by LPS administration which is an endotoxin-induced
lung injury model. However, there are some similarities
between chronic endotoxin-induced lung injury model
and COPD ([3]. In addition, LPS is present as a contam-
inant in cigarette-smoke [2] the main cause of COPD.
Therefore, AG could be also a potential therapeutic
candidate for treatment of COPD which should be ex-
amined in further studies.

There was no any mortality among studied animals
of different groups but body weight changes was not
evaluated which should be evaluated in further stud-
ies. In fact, both animal and human studies indicated
very low toxicity of AG. However, high doses of AG
are associated with some adverse effects such as auto-
immune symptoms, abnormal liver function, gastro-
intestinal disturbance, and flu-like symptoms [54, 55].
In the present study, the left lungs were removed and
placed into 10% buffered formalin for lung patho-
logical evaluation and the right lung was washed with
normal saline for preparation of BALF samples and
the pro-inflammatory mediator levels were measured
in BALF according the previous studies [18, 56]. It is
well-known that evaluation of all parameters in a sin-
gle study is impossible. Therefore, quantify steady
state mRNA levels of the proinflammatory molecules
and oxidative stress/antioxidative stress related genes
were not evaluated in the present study and should
be examined in further studies. Similarly, in vitro ex-
periments for the involvement of specific cell type in
systemic inflammation and lung injury induced by
chronic LPS administration should be also examined
in further studies.

Conclusion

The present study showed that AG modulated im-
mune and inflammatory responses in chronic lung in-
jury by LPS administration. Therefore, AG has a
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protective role in LPS-induced lung injury caused by
inflammation and oxidative stress. The results of the
present study suggest that inhibition of iNOS by AG
may be effective in the treatment of systemic and
lung inflammation by both decreasing the nitrite level
and/or possibly the involvement of cytokines.
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