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Abstract

Background: This study investigated the function of SMAD3 (SMAD family member 3) in regulating PAX6 (paired
box 6) in non-small cell lung cancer.

Methods: First, qRT-PCR was employed to detect SMAD3 expression in cancer tissues along with normal tissues and
four cell lines, including BEAS-2B, H125, HCC827 and A549 cells. SMAD3 was knocked down by small interference RNA
(siRNA), and then its expression was determined via qRT-PCR and Western blot analysis. The correlation between
SMAD3 and PAX6 was determined by double luciferase reporter experiments and chromatin immunoprecipitation
(ChIP) assay. Cell viability was evaluated by CCK-8 and colony forming assays, while cell migration and invasion were
detected by Transwell analysis.

Results: SMAD3 and PAX6 were upregulated in lung cancer tissues and cancer cells. Knocking down SMAD3 and PAX6
by transfection with siRNAs specifically suppressed the expression of SMAD3 and PAX6 mRNA and protein levels.
SMAD3 could promote PAX6 transcriptional activity by binding to its promoter. Reduced expression of SMAD3 led to
the downregulation of PAX6 mRNA and protein levels along with decreased cell migration, invasion, proliferation and
viability in A549 and HCC827 cells. PAX6 overexpression altered the si-SMAD3-induced inhibition of cell migration,
invasion, proliferation and viability in A549 and HCC827 cells. Additionally, PAX6 knockdown alone also repressed the
cell migration, invasion, proliferation and viability of the cell lines.

Conclusions: SMAD3 promotes the progression of non-small cell lung cancer by upregulating PAX6 expression.
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Background
One of the most common cancers is non-small cell lung
cancer (NSCLC), which accounts for 1/4 cancer-related
mortalities each year [1]. Tyrosine kinase inhibitors and
surgical resection are common treatments for patients
with NSCLC, but, in the virtue of drug resistance or

compromising cardiopulmonary reserves, the effects of
treatment are poor [2, 3]. Furthermore, a novel method
for treating lung cancer, stereotactic body radiation ther-
apy, could shorten the treatment course due to high doses
of radiation and precise targeting [4]. Although many ad-
vances in cancer research have been made, the prognosis
of NSCLC is still unsatisfactory, with a lower 5-year sur-
vival rate compared with other cancers [5]. Consequently,
investigating the pathogenesis of NSCLC might give us a
chance to discover impactful and effective treatment
methods for NSCLC, and has grown in importance.
Previous investigations have showed that members of the

transforming growth factor beta (TGF-β) superfamily and
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their associated downstream signaling components,
SMADs, play a crucial role in several aspects of breast
cancer onset and disease progression [6]. The role of
Smad3 in many cancers is an emerging area of intense
research. According to a former study, SMAD3 might
contribute to increasing the risk of breast cancer by en-
coding a key protein that interacts with BRCA2 [7].
Moreover, Li et al. reported that the deregulation of
SMAD3 expression was associated with ventricular sep-
tal defects [8]. Meanwhile, some studies have focused on
uncovering the correlation between SMAD3 and lung
cancer. For example, Samanta et al. reported that redu-
cing SMAD3 expression could abrogate TGF-β-mediated
growth inhibition, resulting in promoting tumorigenicity
[9]. Previous studies have shown that SMAD3 is in-
volved in aggressive tumor behavior in NSCLC and
might act as a potential target for the treatment of the
cancer [10]. A published paper reported that downregu-
lating TGFBR2 expression promoted the proliferation,
migration and invasion of NSCLC cells by reducing the
activation and phosphorylation of Smad2 and Smad3
[11]. Thus, the elusive mechanisms involving SMAD3 in
the development and progression of NSCLC deserve
more attention.
Paired box (PAX) proteins play a crucial role in nor-

mal embryogenesis, which can regulate cell prolifera-
tion, self-renewal and apoptosis and even participate in
the migration of embryonic precursor cells as well as
differentiation programs [12]. There is an emerging hy-
pothesis that PAX proteins might inhibit terminal dif-
ferentiation and apoptosis in issue-specific stem cells,
resulting in maintaining these cells [13]. This effect is
likely to be involved in cancer cell development and
progression. Moreover, PAX6, a paired box family gene,
was recently demonstrated to be involved in the devel-
opment of pancreatic neuroendocrine tumors [14]. Fur-
thermore, in the investigation by Li et al., PAX6
expression had been proven to be suppressed by
microRNA-7 in human colorectal cancer cells, resulting
in inhibited cell proliferation and invasion [15]. Simi-
larly, Luo et al. had suggested that miR-7 negatively
regulates PAX6 protein levels, which can promote the
proliferation and invasion of NSCLC cells via activation
of the ERK and MAPK signaling pathways [16]. Kiselev
et al. also showed that the transcription factor PAX6
was a novel prognostic factor and putative tumor sup-
pressor in non-small cell lung cancer [17]. Pax6 also in-
teracts with the Smad3 MH1 domain, and Pax6/Smad3
interactions appear to be necessary for TGF-β signaling
[18]. Tripathi et al. also indicated the involvement of
SPARC in the Smad3-dependent autoregulation of Pax6
to complete the loop and interact with Smad3 [19].
However, deeper investigation and discussion on
SMAD3 and PAX6 in NSCLC cells is still needed.

In this study, we investigated the function of SMAD3 in
non-small cell lung cancer using cell proliferation and mi-
gration experiments and explored the relationship between
SMAD3 and PAX6 with double luciferase reporter experi-
ments and chromatin immunoprecipitation assay (ChIP).

Methods
Clinical tissue samples
The 20 NSCLC tissue samples and 20 normal tissues
examined in the experiments were provided by Beijing
Chest Hospital, Capital Medical University & Beijing
Tuberculosis and Thoracic Tumor Research Institute.
Histopathological types were assigned using WHO
pathological staging criteria. The 20 tumor tissues
used in our study were adenocarcinomas. Frozen tis-
sue was used in our study. All patients investigated
were not treated with preoperative chemotherapy or
radiotherapy. The Ethics Committee of Beijing Chest
Hospital, Capital Medical University & Beijing Tuber-
culosis and Thoracic Tumor Research Institute and
the patients have approved the experiments in the
present study.

Cell cultures
The normal human lung epithelial cells, BEAS-2B,
and cancer cell lines, H125, HCC827 and A549,
were obtained from the BeNa Culture Collection
(Beijing, China). BEAS-2B and A549 cells were
maintained in Dulbecco’s modified Eagle’s medium
(DMEM)/F12 containing 10% heat-inactivated fetal
bovine serum, 100 IU/ml penicillin, and 10 g/ml
streptomycin. The H125 and HCC827 cell lines were
both incubated in RPMI1640 medium containing
10% heat-inactivated fetal bovine serum, 100 IU/ml
penicillin, and 10 g/ml streptomycin. All cell lines
were incubated in a 95% air and 5% carbon dioxide
(CO2) atmosphere at 37 °C.

Western blot analysis
Approximately 1 × 107 cells were solubilized in lysis buf-
fer purchased from the Beyotime Institute of Biotech-
nology (Shanghai, China). Twelve percent SDS-PAGE
was utilized to separate the proteins. Afterwards, ap-
proximately 60 μg of protein was transferred to a polyvi-
nylidene difluoride (PVDF) membrane. Then, the
membrane adsorbing the proteins was incubated with
TBST buffer (Tween 20) at room temperature contain-
ing 5% nonfat milk. After 3 h, the membrane was incu-
bated with primary antibodies for 3 h at room
temperature. After washing with TBST buffer (Tween
20), the membranes were treated with a matched sec-
ondary antibody for 1 h. The following primary anti-
bodies were used: rabbit anti-SMAD3 (1:5000 dilution,
ab40854) and rabbit anti-PAX6 (1:1000 dilution,
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ab5790); the secondary antibody was goat anti-rabbit la-
beled with HRP (horseradish peroxidase) (1:5000 dilu-
tion, ab205718). All antibodies were obtained from
Abcam (Cambridge, MA, USA). An ECL kit and the
Image-Pro plus software, version 6.0, from Media Cy-
bernetics (Rockville, MD, USA) were used to determine
the chemiluminescent and relative protein expression,
respectively, which was represented as the density ratio
vs. GAPDH.

Cell transfection
To knock down SMAD3 and PAX6, Lipofectamine
2000 (Invitrogen, Life Technologies, Carlsbad, CA,
USA) was used to transfect A549 and H125 cells with
siRNA-SMAD3. Two different SMAD3-specific siRNAs
(GenePharma, Shanghai, China), si-SMAD3 #1 and
si-SMAD3 #2, and a PAX6 siRNA, si-PAX6 (Gene-
Pharma, Shanghai, China), were transfected into the
cells to knockdown gene expression. Si-NC, a scram-
bled siRNA, was used as a control. The pcDNA3.1--
PAX6 (p-PAX6) and pcDNA3.1 (GenePharma,
Shanghai, China) control vectors were also transfected
with Lipofectamine 2000 according to the manufac-
turers’ instructions. The siRNA sequences are shown in
Additional file 1: Table S1.

Double luciferase reporter assay
The PAX6 promoter region was cloned into the
PGL3-luc luciferase reporter vector to construct the
PAX6-luc luciferase reporter vector. To investigate the
relationship between SMAD3 and PAX6, pCMV-SMAD3
was cotransfected with the PAX6-luc reporter plasmid
and pRL-TK plasmid as an internal control using Lipo-
fectamine™ 2000. Luciferase activities were detected 48 h
after transfection with the Dual-luciferase Reporter
Assay System (Promega, WI, USA). Firefly luciferase ac-
tivity was normalized to Renilla luciferase activity. The
primers for plasmid construction are shown in Add-
itional file 2: Table S2.

Real-time RT-PCR
The RNeasy® Mini Kit (Qiagen®, Venlo, Netherlands)
was performed to extract total RNA from collected tis-
sues or cultured cells, which was then reverse tran-
scribed into cDNA using the M-MLV reverse
transcriptase (Invitrogen). SYBR Premix Ex Taq from
TaKaRa Biotechnology (Tokyo, Japan) was used to
quantify SMAD3 and PAX6 expression. GUSB and
GAPDH were both used as internal controls for the tis-
sues and cells, respectively. The primer probes were
purchased from GenePharma (Shanghai, China). All
data were quantified with the 2−ΔΔCT method. The
qPCR primers are shown in Additional file 2: Table S2.

ChIP assay
One percent formaldehyde was used to treat and
crosslink cells from each group for approximately 10
min at room temperature. After lysis, the cells were
sonicated to breakdown the chromatin into 200 bp
to 1 kb fragments. Antibodies specific to SMAD3
(ab28379) or IgG (ab172730), as a negative control
(Abcam, Cambridge, MA, USA), were used to immu-
noprecipitate the chromatin by generating
antigen-antibody complexes. Afterwards, the com-
plexes were collected by protein A agarose beads
(Merck Millipore, Billerica, MA, USA), followed by
washing to remove any nonspecific binding. The
DNA was eluted from the immunoprecipitated com-
plexes on the agarose beads with 0.1 M NaHCO3

and 1% SDS. The primers for ChIP-qPCR are shown
in Additional file 2: Table S2.

CCK-8 assay
The Cell Counting Kit-8 (CCK-8) assay was used to
evaluate cell viability and proliferation. Briefly, the cell
lines were seeded onto 96-well plates (3000 cells/well,
Corning, NY, USA) and incubated for the indicated
time points (0, 24, 48, 72, or 96 h). Next, 10 μL of
CCK-8 solution was added to each well and the cells
were incubated in the dark at 37 °C for 2 h. After-
wards, the absorbance was detected at 490 nm to as-
sess cell viability.

Transwell migration assay
In total, 1 × 105 cells in 250 μL of medium containing
0.1% FBS were seeded into 24-well-plates (Corning,
NY, USA) with noncoated inserts for the migration
assay. Then, 750 μL medium supplemented with 10%
FBS was added into the lower chamber. After incu-
bating the cells for 24 h, nonmigrating cells in the
upper chamber were washed away and the cells in
the lower chamber were fixed with cold methanol.
Hoechst 33258 and a Zeiss Axiophot epifluorescence
microscope purchased from QImaging (Surrey, BC)
were used to stain and count cells in 5 random vis-
ible fields, respectively.

Transwell invasion assay
Serum-free medium was added to dilute the Matrigel
(1:7), and then 50 μL of diluted Matrigel was inocu-
lated into each chamber. The prepared chambers were
placed in an incubator at 37 °C for 4 h for the follow-
ing experiments. In total, 1 × 105 cells in 250 μL of
medium containing 0.1% FBS were seeded into the
apical chamber covered by diluted Matrigel, while
500 μL of culture medium with 10% FBS was added
to the basolateral chamber. After incubating for 36 h,
the nonmigrating cells in the upper chamber were
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washed away and the cells in the lower chamber were
fixed with cold methanol. Hoechst 33258 and a Zeiss
Axiophot epifluorescence microscope purchased from
QImaging (Surrey, BC) were used to stain and count
cells in 5 random visible fields, respectively.

Colony forming assay
After trypsinization, single-cell suspensions were col-
lected followed by seeding of approximately 300
cells/well into 6-well-plates (Corning, NY, USA). All
plates were cultured to form visible colonies at 37 °
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C. Afterwards, the cells in the plates were fixed with
methanol and counted using 0.5% crystal violet.

Statistical analysis
All measurements were performed in triplicate. The Stu-
dent’s t-test was employed to analyze the differences be-
tween two groups with P < 0.05 considered to be
significant. The differences among the groups of samples
were accomplished by one-way ANOVA. Data are pre-
sented as the mean ± SD.

Results
The high expression of SMAD3 and PAX6 in NSCLC tissues
and cells
QRT-PCR was utilized to investigate SMAD3 and PAX6 ex-
pression levels in 20 normal and 20 NSCLC cancer tissues.
Figure 1a and e suggest that SMAD3 and PAX6 are
up-regulated in NSCLC tissues compared with normal tis-
sues (P < 0.01). Similar SMAD3 and PAX6 mRNA and pro-
tein expression was observed in the four cell lines, including
the normal BEAS-2B human lung epithelial cells and H125,
HCC827 and A549 cancer cell lines. Figure 1b and f
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demonstrated that SMAD3 and PAX6 mRNA levels were
upregulated in cancer cell lines compared with the normal
cell line (P < 0.01). Furthermore, higher SMAD3 and PAX6
protein expression was observed in the cancer cell lines com-
pared with the healthy human lung epithelial cells (Fig. 1c, d,
g, h, Additional file 3: Figure S1a and b) (P < 0.01). Thus,
NSCLC tissues and cells displayed high SMAD3 and PAX6
expression compared with control tissues and cells.

Knocking down SMAD3 lowered PAX6 expression
To investigate the effect of SMAD3 on PAX6 expression,
SMAD3 was knocked down by siRNA transfection, followed
by the detection of PAX6 and SMAD3 expression levels by
qRT-PCR and Western blot in the A549 and HCC827 cell
lines. The results demonstrated that silencing SMAD3 down-
regulated PAX6, as shown by the lower PAX6 and SMAD3
mRNAs and proteins in the si-SMAD3#1 and si-SMAD3#1
groups compared with the NC group in the A549 (Fig. 2a,
b and Additional file 3: Figure S1c, all P < 0.05) and HCC827
(Fig. 2c, d and Additional file 3: Figure S1d) cell lines.

The SMAD3 protein regulated PAX6 transcription via
binding its promoter
Dual luciferase assay and ChIP assay were exploited to
assess the effects of SMAD3 on PAX6 promoter activity.
Sequence analysis revealed 3 putative SMAD3 binding
sites in the PAX6 promoter. Serial deletion showed that
the second and third SMAD3 binding sites were critical
for SMAD3-induced PAX6 trans-activation in A549 and
HCC827 cells (Fig. 3a and c). ChIP assay further con-
firmed that SMAD3 directly binds to the PAX6 pro-
moter in A549 and HCC827 cells (Fig. 3b and d). These
studies demonstrated that PAX6 was a direct transcrip-
tional target of SMAD3 in both cell lines.

SMAD3 downregulation on the physiological abilities of
A549 and HCC827 cells
To evaluate A549 and HCC827 cell proliferation,
invasion and migration after SMAD3 silencing and
explore whether SMAD3 exerts its biological activity
through PAX6, we performed CCK-8, colony forming
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and Transwell assays. Figure 4a and b demonstrated that
the A549 cell line si-SMAD3#1 group showed lower cell
migration (Fig. 4a) and invasion (Fig. 4b) compared with
the control group (P < 0.01). Moreover, when cells in the
si-SMAD3#1 group were cotransfected with pc-DNA3.1-
PAX6 (si-SMAD3+ p-PAX6), cell migration and invasion
were up-regulated compared with the si-SMAD3#1 group
(P < 0.01), which suggests that PAX6 overexpression could
reverse the cellular physiological abilities inhibited by
SMAD3 knockdown. Similar results were observed in the
HCC827 cell line, which are shown in Fig. 4c and d.
Similarly, the si-SMAD3#1 group cells showed lower
colony formation abilities compared with control
group in both the A549 and HCC827 cell lines
(Figs. 5a and b), and upregulating PAX6 expression
improved this situation (P < 0.01). The CCK-8 assay
showed that downregulation of SMAD3 suppressed
cell viability compared with control group and that

enhanced PAX6 expression improved the inhibition of
si-SMAD3 on cell viability in A549 and HCC827 cells
(Figs. 5c and d, P < 0.05). These results demonstrated that
the downregulation of SMAD3 acted as an inhibitor of
A549 and HCC827 cell physiological abilities, which could
be partially reversed by PAX6 overexpression.

SMAD3 and PAX6 knockdown to explore their relevance
in the A549 and HCC827 cell lines
To further explore the relevance and functional ef-
fects of PAX6, we depleted PAX6 and SMAD3
through the transfection of si-SMAD3 and si-PAX6,
respectively (Figs. 6 and 7). We demonstrated that
A549 cell migration (Fig. 6a), invasion (Fig. 6b), col-
ony forming ability (Fig. 7a) and cell viability (Fig. 7b)
were repressed in the si-PAX6 group, which show
lower decreasing trends compared with the si-SMAD3
group, though there were no significant differences.
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Similar experiments were also performed in the HCC827
cell line (Figs. 6c and d and 7c and d). PAX6 showed simi-
lar functions as SMAD3, but the tendency might be
weaker. Thus, SMAD3 might partially target PAX6 to
regulate cell migration, invasion, proliferation and viability
in NSCLC patients with positive correlations.

Discussion
In the present study, SMAD3 expression levels were
evaluated in healthy and NSCLC tissues and cells, show-
ing its high expression. This high SMAD3 expression
might play a crucial role in the development of NSCLC
through the targeted modulation of PAX6 expression,
resulting in the enhancement of cell migration, invasion,
proliferation and viability.
In a previous study, SMAD3 was significantly associated

with human osteoarthritis and upregulated in human
osteoarthritic cartilage, though not due to DNA methyla-
tion in the promoter region [20, 21]. Qian et al. showed that

enhancing SMAD3 phosphorylation was associated with
high metastatic potential in nonsmall cell lung cancer by
downregulating E-cadherin [22]. Furthermore, Yang et al.
demonstrated that inhibiting SMAD-dependent signaling
in NSCLC might repress the epithelial-mesenchymal transi-
tion and cell invasion [23]. However, SMAD3 is also likely
to play a role as a cancer suppressor in NSCLC through
other mechanisms. For example, in the study by Samanta
et al., smoking promotes tumorigenicity and results from
the reduction in SMAD3 expression along with the abroga-
tion of TGF-β-mediated growth inhibition [9]. It was also
shown that NORAD (also known as LINC00657 or
LOC647979), a cytoplasmic long noncoding RNA, indir-
ectly interacts between importin β1 and SMAD3 in
NSCLC, and is widely considered as a regulator of TGF-β
signaling [10]. Therefore, the function of SMAD3 in
NSCLC might have a dual character, which deserves deeper
investigation. In our study, high SMAD3 expression was
found in NSCLC cells and tissues and acts as an oncogene.
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Understanding on the effects of deregulated PAX6 ex-
pression on the development of NSCLC remains insuffi-
cient, and few studies have focused on the relationship
between SMAD3 and PAX6. In accordance with the study
by Zhao et al., PAX6 expression was significantly enhanced
in NSCLC tissues compared with matched adjacent tissues
and was associated with promoting cell cycle progression
[24]. Moreover, Zhang et al. demonstrated that PAX6 gene
methylation in NSCLC is usually associated with poor
prognosis in NSCLC via a methylation-specific PCR assay
[25]. Therefore, there is research that strongly supports the
assumption that PAX6 is a valid and positive prognostic
marker in node-positive NSCLC patients.
The relevance between SMAD3 and PAX6 has been ex-

plored. It was shown that SMAD3 interacted with PAX6
and repressed autoregulation of the PAX6 P1 promoter in
NSCLC cells. Therefore, in the present study, SMAD3 and
PAX6 and their interactions were deeply investigated; we
found that SMAD3 expression positively promoted PAX6
transcription, which then regulated NSCLC cell migration,

proliferation and viability. However, as the transfection effi-
ciency and quantitative examination were different, com-
paring the effects between knocking down SMAD3 and
PAX6 might make little sense, although we did find that
si-SMAD3 was more effective at affecting cell migration, in-
vasion, colony formation and proliferation than si-PAX6.
Generally, NSCLC tissues and cell lines had higher

SMAD3 and PAX6 expression level than normal tissues
and cell lines. Moreover, SMAD3 downregulation could
inhibit PAX6 transcription, resulting in the suppression
of PAX6 expression and hindering cell migration, inva-
sion, proliferation and viability in NSCLC cells. Based on
these findings, inhibiting SMAD3 and PAX6 should be
further explored and may become a promising mechan-
ism for treating nonsmall cell lung cancer in the future.

Conclusions
SMAD3 and PAX6 were upregulated in lung cancer
tissues and cancer cells. Knocking down SMAD3 and
PAX6 by transfection with specific siRNAs suppressed
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the expression of SMAD3 and PAX6 mRNA and pro-
tein levels. SMAD3 could promote PAX6 transcrip-
tional activity via binding to its promoter. Reduced
expression of SMAD3 downregulated PAX6 at the
mRNA and protein levels while also decreasing cell
migration, invasion, proliferation and viability in
NSCLC cells. PAX6 overexpression altered the inhibi-
tory effects of si-SMAD3 on cell migration, invasion,
proliferation and viability. PAX6 knockdown alone
could also inhibit A549 and HCC827 cell functions.
Thus, SMAD3 promotes the progression of nonsmall
cell lung cancer by upregulating PAX6 expression.
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