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Interleukin-32: its role in asthma and
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Abstract

Interleukin (IL)-32, also named natural killer cell transcript 4 (NK4), has increasingly been described as an immunoregulator
that controls cell differentiation and cell death and is involved in the stimulation of anti−/pro-inflammatory cytokines.
Abnormal presence of IL-32 has been repeatedly noticed during the pathogenesis of allergic, infectious, cancerous, and
inflammatory diseases. Of particular note was the observation of the anti-inflammatory property of IL-32 in a murine
ovalbumin model of allergic asthma. Compared to wild-type mice, IL-32γ transgenic mice show decreased levels of
inflammatory cells, recruited eosinophils, and lymphocytes in bronchoalveolar lavage fluid in a mouse model
of acute asthma. To date, the molecular mechanism underlying the role of IL-32 in asthma remains to be elucidated.
This review aims to summarize recent advances in the pathophysiology of asthma and describe the links to IL-32. The
possibilities of using IL-32 as an airway inflammation biomarker and an asthma therapeutic agent are also evaluated.
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Background
Interleukin (IL) -32, a cytokine that was identified in
1992 and originally called natural killer cell transcript 4
(NK4) [1–3], is involved in the pathogenesis of various
disorders including allergic, infectious, cancerous, and
inflammatory diseases. Kim et al. (2005) found that
IL-32 can induce the production of some inflammatory
cytokines (i.e., IL-8 and tumor necrosis factor alpha
[TNF-α]) [4]. Since then, the potential biological func-
tions of IL-32 have been widely investigated. High-dose
IL-2 can induce the mRNA expression of IL-32 in per-
ipheral blood mononuclear cells (PBMCs), especially NK
and mitogen-stimulated T cells [3, 5]. Other cytokines,
such as interferon gamma (IFN-γ), IL-18, TNF-α, and
Th1 cell cytokines can also induce the production of
IL-32 [5, 6]. The immunoregulatory functions of IL-32
have increasingly been mentioned in the recent litera-
ture, with studies showing that IL-32 influences cell dif-
ferentiation [7–9] and cell death [10, 11] and is involved
in the stimulation of anti−/pro-inflammatory cytokines
[12–14]. IL-32 may exert its function through both
extracellular and intracellular pathways. While the specific

surface IL-32 receptor remains to be identified, it is widely
accepted that IL-32 can bind to proteinase 3 and integrins
(e.g., αVβ3 and αVβ6) [15, 16]. In the presence of func-
tional αVβ3, recombinant IL (rIL)-32γ induces endothelial
cell tube formation in vitro [17]. The intracellular recep-
tors for IL-32 have not yet been discovered either. In AGS
cell lines co-cultured with Helicobacter pylori, IL-32 was
not detected by ELISA in supernatants, while high levels
of IL-32 was found in both cytosol and nuclear [18]. These
results are in line with the studies that demonstrated
intracellular IL-32 expression and leakage from apoptotic
cells [10, 19, 20].
The location of the human IL-32 gene is in chromo-

some 16p13.3. Interestingly, the IL-32 gene has not been
found in rodents. The lack of a mouse model has highly
limited the possibility of investigating IL-32 function in
vivo [21]. Appropriate approaches to study IL-32 would
be helpful, including but not limited to 3D cell culture,
ex vivo human lung, organoid-like models and lung on
a chip. IL-32 can promote the production of IL-8
through the nuclear factor-kappa B (NF-κB) and the
p38 mitogen-activated protein kinase (MAPK) path-
ways (Fig. 1) [4]. Intracellular nucleotide-binding
oligomerization domain (NOD) proteins 1 and 2 can
also synergize with IL-32 and induce the production of
IL-6 and IL-1β via a caspase 1-dependent signaling
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pathway (Fig. 1) [22]. To date, a total of nine IL-32
isoforms (α, β, γ, δ, ε, ζ, η, θ, ι) have been identified
[4, 10, 23]. Recent studies indicated that these IL-32
isoforms have different biological activities and prop-
erties compared to the other isoforms [23–27]. For
example, IL-32γ shows an effective antiviral property
against viruses like human immunodeficiency virus,
herpes simplex virus 2, influenza A virus, and vesicu-
lar stomatitis virus [28–32]. IL-32β can upregulate
IL-10 production through the protein kinase C (PKC)
δ pathway [27]. However, IL-32δ can suppress the
binding of IL-32β to PKCδ and thereby decrease the
IL-32β–induced IL-10 production. In other words, the
biological activities of IL-32 are regulated by its own
isoforms [27].
IL-32 is involved in the pathogenesis of a number of

chronic inflammatory diseases and allergic diseases in-
cluding but not limited to rheumatoid arthritis (RA),
chronic obstructive pulmonary disease (COPD), COPD
exacerbation, inflammatory bowel disease (IBD), chronic
rhinosinusitis and asthma (Table 1) [1, 6, 21, 33, 34]. In
the synovial tissues of RA patients, IL-32 is highly
expressed and positively correlated with disease activity
[35]. In addition to synovial macrophages, synovial fibro-
blasts can also produce TNF-α, which is a potent in-
ducer of IL-32. Interestingly, the mRNA transcription
levels of IL-1β and TNF-α were stabilized when IL-32

was overexpressed in these cells. In addition, a decreased
level of IL-32 was detected in the synovial tissue biopsies
when RA patients started anti-TNF-α therapy [12].
Thus, the interactions between TNF-α and IL-32 should
be seriously investigated in RA patients. Moreover, in
the patients with seasonal allergic rhinitis, dsRNA chal-
lenge increased IL-32 expression when compared to sa-
line challenge at the height of the pollen season [36]. In
bronchial epithelial cells, IL-32 was induced by dsRNA
via the NF-κB signaling pathway. Also, IL-32 is in-
volved in the pathogenesis of airway inflammation
[37]. In allergic asthma, Rhinovirus infection could in-
duce the expressions of the inflammation-related genes
and IL-32 [38].
In recent decades, many studies have been conducted

to demonstrate the broad-range functions of IL-32. The
abnormal presence of IL-32 has been linked to a variety
of diseases/disorders. Here we present recent advances
with regard to the role of IL-32 in the pathophysiology
of asthma.

IL-32 and inflammation
IL-32 is produced by a variety of immune cells (e.g., NK
cells, T cells, PBMCs, and monocytes) and nonimmune
cells (e.g., endothelial cells, fibroblasts, and keratino-
cytes) [3, 11, 19, 39]. The role of IL-32 in inflammation
is pleiotropic, since it is involved in not only promoting

Fig. 1 Production of IL-32 and its downstream signaling network. IL-32 is produced by a variety of cells (e.g., NK cells, T cells, monocytes, and
epithelial cells), and its production can be stimulated by different cytokines (e.g., TNF-α, INF-α, IL-2, IL-18, and IL-1β). IL-32 synergizes with NOD1
and NOD2 and subsequently induces the production of IL-6 and IL-1β via a caspase-1–dependent signaling pathway. IL-32 can also activate
NF-κB signaling through the IκB pathway (via NOD2-MDP or directly acting on IκB) and/or the p38-MAPK pathway
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pro-inflammatory cytokines but also stimulating anti-in-
flammatory cytokines [12–14]. IL-32 induces the pro-
duction of prostaglandin E2, a pro-inflammatory factor,
in in vitro systems (i.e., human blood monocytes and
mouse macrophages). In naïve mice, knee joint injection
of IL-32γ increases knee inflammation and causes joint
swelling and cartilage damage via TNF-α–dependent sig-
naling [35]. The level of IL-32 in synovial biopsies from
active RA patients is positively correlated with the
erythrocyte sedimentation rate, synovial inflammatory
status, and synovial levels of pro-inflammation cytokines
(i.e., TNF-α, IL-1β, and IL-18) [35]. Similarly, the expres-
sion (both mRNA and protein) of IL-32 in nasal mucosa
is increased in allergic rhinitis (AR) patients. In AR pa-
tients, the nasal mucosa IL-32 production is positively
correlated with the production of inflammatory factors (i.e.,
IL-1β, IL-18, and granulocyte-macrophage colony-stimulating
factor [GM-CSF]). The pro-inflammatory function of IL-32
was further confirmed in an AR animal model, in
which IL-32 increased the production of IgE and in-
flammatory cytokines [40]. In lung tissue and plasma
samples from COPD patients, IL-32 expression is
high and is positively correlated with the severity of
airflow obstruction [33, 41]. Further studies have
proved that during acute COPD exacerbation, inflam-
mation and oxidative stress can increase the expres-
sion of IL-32 in human bronchial epithelial (HBE)
cells through the JNK pathway. c-Jun and cAMP response
element binding protein play key roles in IFN-γ– and

H2O2–induced IL-32 expression [42]. In addition, the
serum IL-32 level is increased in patients with H1N1 in-
fluenza infection [43]. Of particular interest is that IL-32
can also inhibit the production of pro-inflammatory fac-
tors. For example, IL-32β can stimulate the expression of
IL-10, an anti-inflammatory cytokine that can suppress
the production of pro-inflammatory cytokines (e.g., IL-12,
IL-1β, and TNF-α) [14]. In phorbol myristate acetate
(PMA)–treated IL-32θ–expressing THP-1 cells, IL-32θ
can interact with PKCδ and induce STAT3 Ser727 phos-
phorylation, thereby decreasing the transcription of CC
chemokine ligand (CCL) 5 [44]. Similarly, in patients with
acute myeloid leukemia (AML), the PMA-induced TNF-α
expression can be inhibited by IL-32θ [45]. Future studies
should focus on the pro- and/or anti-inflammatory func-
tions of each IL-32 isoform.

IL-32 and monocytes/macrophages
IL-32 is involved in the monocyte-to-macrophage differ-
entiation process (Fig. 2). IL-32 induces the differenti-
ation of human blood monocytes into macrophage-like
cells that can phagocytize bacteria. The IL-32–driven
monocyte-to-macrophage differentiation is partly dependent
on the activity of the caspase-3 proteases. Also, IL-32
can enhance the function of muramyl dipeptide
(MDP), a ligand for NOD2 receptor that plays im-
portant roles in monocyte-to-macrophage differentiation
[7]. However, IL-32θ can inhibit the PMA-induced
monocyte-to-macrophage differentiation and inhibit the

Table 1 The presence of IL-32 in blood/tissue fluid of patients with inflammatory diseases

Disease Assay IL-32 level in blood/tissue fluid (pg/ml) Comments

COPD/Asthma ELISA (BioLegend, USA) Serum: healthy controls, 4.6 ± 1.0; COPD,
26.8 ± 2.6; asthma, 6.1 ± 1.2.
Broncho-alveolar lavage: healthy controls,
4.2 ± 1.1; COPD, 22.5 ± 2.5; asthma, 6.3 ± 1.1.
Induced sputum: healthy controls, 3.6 ± 0.7;
COPD, 19.7 ± 1.7; asthma, 5.8 ± 1.2.

Patients with COPD had increased levels of
IL-32 when compared to asthma patients and
healthy controls [62].

SLE ELISA (R&D Systems, USA) Plasma: healthy controls, 94.4 (40.2–233.7);
SLE, 34.7 (15.5–140.5).

SLE patients had lower levels of IL-32 than
healthy controls [63]. This decreased level may
be associated with drug treatment and the
chemotherapy-related bone marrow cytotoxicity.

HF ELISA (Hermes Criterion
Biotechnology, Canada)

Serum: healthy controls, 111 ± 59; HF,
237 ± 92.

Patients with HF had higher levels of IL-32
than healthy controls [64].

BD ELISA (R&D Systems, USA) Serum: healthy controls, 0.1 (0.1–14.7);
BD, 0.4 (0.1–736.2).

BD patients had higher levels of IL-32 than
healthy controls [65].

Helicobacter pylori GI/GC ELISA (BioLegend, USA) Gastritis tissue: healthy controls, 208 ± 133;
GI, 643 ± 492; GC, 1651 ± 488.

Patients with Helicobacter pylori-induced GI/GC
had higher levels of IL-32 than healthy controls.
GC patients had higher levels of IL-32 than GI
patients [18].

RA/OA ELISA (Biosource International,
USA)

Synovial fluid: RA, 107.5 ± 50.9; OA,
14.4 ± 5.9.

Patients with RA has higher levels of IL-32 than
those with OA [66].

MM ELISA (R&D Systems, USA) Plasma: healthy controls, 112 ± 45; MM,
1103 ± 345.

Compared to healthy controls, MM patients
had higher levels of IL-32 [67].

SLE Systemic Lupus Erythematosus, HF Heart Failure, GI Gastric Inflammation, GC Gastric Cancer, BD Behçet’s Disease, RA Rheumatoid Arthritis, OA Osteoarthritis,
MM Multiple Myeloma
Data are expressed as mean ± SD or median (IQR)
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adhesion capability and morphological change of THP-1
cells. Furthermore, IL-32θ was found to reduce the ex-
pression of various macrophage markers, namely, CD11b,
CD18, and CD36 [46].
IL-32 stimulates macrophages to produce pro-inflam-

matory factors (e.g., TNF-α, IL-1β, and IL-6; Fig. 2)
via the p38-MAPK and NF-κB pathways [7]. Human
IL-32 can promote the production of IL-1β, TNF-α, and
macrophage inflammatory protein 2 (MIP-2) in mouse
macrophages. Prostaglandin E2 production of human
PBMCs can be induced by IL-32 as well [35]. Similarly,
the production of IL-1β, IL-6, IL-8, and TNF-α was
down-regulated by silencing of IL-32 expression in mono-
cytes [32].

IL-32 and other cells
In Crohn’s disease (CD) and IBD, IL-32 stimulates the
expression of IL-6 and IL-8 in neutrophils, subsequently
inducing the productions of pro-inflammatory cytokines
in differentiated macrophages and dendritic cells (DCs)
and thereby recruiting T cells to the inflamed area.
Without the presence of immune suppressor molecules,
the concentrated immune cells could induce neutrophil
infiltration into the inflamed area. Eventually, the infil-
trating neutrophils could release a variety of neutrophil
proteinases that cause mucosal tissue damage and aug-
ment the inflammation status in CD and IBD patients
[8, 21, 47, 48]. IL-32 expression could be detected in

nasal mucosa eosinophils. Moreover, in a human eosino-
philic leukemia cell line, the expression of IL-32 was
highly stimulated by GM-CSF [40]. Furthermore, IL-32γ
exhibited synergistic effects [with the presence of
iE-DAP (NOD1 ligand) or MDP (NOD2 ligand)] on the
induction of allergic inflammation-related IL-1β, TNF-α,
and chemokines (CXCL8, CCL3, and CCL4), and on the
activation of human eosinophils (via the intracellular
caspase 1, ERKs, p38 MAPK, and NF-κB pathways).
IL-32γ (with the presence of iE-DAP or MDP) could also
increase the cell-surface expressions of adhesion mol-
ecule CD18 and ICAM-1 in eosinophils [49].

IL-32 in animal asthma models
The anti-inflammatory property of IL-32 has been dem-
onstrated in a murine ovalbumin (OVA) model of aller-
gic asthma (Fig. 2) [50]. In this asthma model, in the
broncho-alveolar lavage fluid (BALF), the numbers of
total inflammatory cells, recruited eosinophils, and lym-
phocytes were decreased; however, the numbers of mac-
rophages/IL-10–producing CD11b +mononuclear cells
were increased in IL-32γ transgenic (TG) mice com-
pared to those in wild-type (WT) mice. There was no
difference in BALF neutrophil counts between the two
groups. The anti-inflammatory function of IL-32 was
confirmed by the histological evaluation of lung tissues
after hematoxylin and eosin staining, which showed that
inflammatory cell infiltration around the vascular and

Fig. 2 Potential roles of IL-32 in asthma. Positive effects are presented using black arrows, and negative effects are presented using the T-shaped
ends. The expression of IL-32 in endothelial cells is indicated using a yellow arrow [61]. Another yellow-arrow is used to indicate that IL-32 can
stimulate anti-inflammatory IL-10 expression in dendritic cells [14]. DC, dendritic cell; IL, interleukin
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bronchial areas was decreased in IL-32γ TG mice com-
pared to that in WT mice. Moreover, the histopathologic
score of the lung sections indicated a lower degree of
peribronchial and perivascular inflammation in IL-32γ
TG mice than in WT mice. Also, the expression levels
of inflammatory cytokines, including Th2 and Th1 cyto-
kines, were reduced in IL-32γ TG asthma mice.
Similarly, rIL-32γ–treated asthmatic mice had de-

creased numbers of inflammatory cells (i.e., eosinophils,
neutrophils, and lymphocytes) in BALF. Histopathologic
examination showed a remarkable suppression of peri-
bronchial and perivascular inflammation in rIL-32γ–
treated mice as well [50].

IL-32 in human asthma
Asthma involves chronic airway inflammation and mani-
fests with airway hyperresponsiveness (AHR) and asth-
matic symptoms (e.g., wheezing, breath shortness, and
chest tightness) [51]. The airway inflammation is charac-
terized by abnormal responses of T-cells [52], especially
CD4+ T cells (e.g., Th1, Th2 and Th17) [53].
Asthma is a heterogeneous disease. Basically, asthma

can be sorted into four subtypes (neutrophilic, eosino-
philic, mixed granulocytic, and paucigranulocytic) ac-
cording to the presence of inflammatory cells in the
induced sputum samples. Thus, each asthma subtype
represents a special inflammatory disorder and should
be treated with a specific therapy [54–56]. Thus, the
underlying molecular mechanisms in the pathophysi-
ology of each asthma subtype need to be thoroughly elu-
cidated for the development of so-called “personalized
medicine”. Corticosteroids are currently the first-line
therapy for asthma. Eosinophilic asthma, which can be
corrected or partially corrected by corticosteroids, is a
well-characterized asthma subtype in which the
allergen-induced Th2 cytokines (e.g., IL-4, IL-5, IL-9,
and IL-13) play key roles [57]. By contrast, neutrophilic
asthma, which is resistant to corticosteroid treatment, is
driven by the activation of innate immune system proteins
such as Toll-like receptors (TLRs) and nucleotide-binding
oligomerization domain (NLRP) 3 inflammasome [58, 59].
To date, the underlying molecular mechanisms in the
pathophysiology of neutrophilic asthma are much less
characterized compared to those of eosinophilic asthma.
IL-32 has increasingly been suggested as a key player

in the pathophysiology of asthma. In asthma, the airway
presence of IL-32γ is negatively correlated with the
forced expiratory volume in 1 s (FEV1) and positively
correlated with the annual exacerbation rate [60]. In that
study, the authors concluded that the increased IL-32γ
level in the induced sputum samples correlated with an
increased risk of asthma exacerbation. These results
were consistent with those of Meyer et al.’s study, in
which the increased sera IL-32 level in asthma patients

was accompanied by increased sera levels of pro-inflam-
matory factors [61]. Because the supernatant of IL-32
siRNA-transfected normal human bronchial epithelial
cells increased in vitro angiogenesis of human umbilical
vein endothelial cells, IL-32 might be also an inhibitor of
airway remodeling in asthma patients [61]. Accordingly,
inhibition of IL-32 signal might be a potential thera-
peutic direction for asthma treatment. Notably, the roles
of IL-32 may be different for each subtype of asthma,
and these should be further investigated.
From this summary of the recent literature, it is clear

that the roles of IL-32 in asthma remain controversial
based on the inconsistencies in the results from in vivo
or in vitro studies. For example, in the study by Bang et
al. (2014), the IL-32 level was decreased [50], but not in-
creased as reported by Meyer et al. (2012) [61], in spu-
tum and serum samples from asthma patients compared
to levels in healthy controls. These contradictions might
be explained by the nature of asthma airway inflamma-
tion (heterogeneity, four subtypes) and the functional
differences between IL-32 isoforms. Additional studies
should be conducted to investigate the presence of IL-32
isoforms in patients with difference asthma subtypes.

Conclusion
IL-32 has repeatedly been proposed to be an effective
regulator of the systemic inflammatory status both in
vivo and in vitro. Targeting of IL-32 signaling might be a
potential therapeutic strategy for asthma treatment.
While IL-32 has widely been accepted as a pro-inflam-
matory cytokine, recent studies demonstrate its
anti-inflammatory functions as well. These controversial
results need to be investigated in upcoming studies.
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