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Abstract

Background: Platelet-derived growth factor (PDGF)-BB and its receptor PDGFR are highly expressed in pulmonary
hypertension (PH) and mediate proliferation. Recently, we showed that PDGF-BB contracts pulmonary veins (PVs)
and that this contraction is prevented by inhibition of PDGFR-β (imatinib/SU6668). Here, we studied PDGF-BB-
induced contraction and downstream-signalling in isolated perfused lungs (IPL) and precision-cut lung slices (PCLS)
of guinea pigs (GPs).

Methods: In IPLs, PDGF-BB was perfused after or without pre-treatment with imatinib (perfused/nebulised), the
effects on the pulmonary arterial pressure (PPA), the left atrial pressure (PLA) and the capillary pressure (Pcap) were
studied and the precapillary (Rpre) and postcapillary resistance (Rpost) were calculated. Perfusate samples were
analysed (ELISA) to detect the PDGF-BB-induced release of prostaglandin metabolites (TXA2/PGI2). In PCLS, the
contractile effect of PDGF-BB was evaluated in pulmonary arteries (PAs) and PVs. In PVs, PDGF-BB-induced
contraction was studied after inhibition of PDGFR-α/β, L-Type Ca2+-channels, ROCK/PKC, prostaglandin receptors,
MAP2K, p38-MAPK, PI3K-α/γ, AKT/PKB, actin polymerisation, adenyl cyclase and NO. Changes of the vascular tone
were measured by videomicroscopy. In PVs, intracellular cAMP was measured by ELISA.

Results: In IPLs, PDGF-BB increased PPA, Pcap and Rpost. In contrast, PDGF-BB had no effect if lungs were pre-treated
with imatinib (perfused/nebulised). In PCLS, PDGF-BB significantly contracted PVs/PAs which was blocked by the
PDGFR-β antagonist SU6668. In PVs, inhibition of actin polymerisation and inhibition of L-Type Ca2+-channels
reduced PDGF-BB-induced contraction, whereas inhibition of ROCK/PKC had no effect. Blocking of EP1/3- and TP-
receptors or inhibition of MAP2K-, p38-MAPK-, PI3K-α/γ- and AKT/PKB-signalling prevented PDGF-BB-induced
contraction, whereas inhibition of EP4 only slightly reduced it. Accordingly, PDGF-BB increased TXA2 in the
perfusate, whereas PGI2 was increased in all groups after 120 min and inhibition of IP-receptors did not enhance
PDGF-BB-induced contraction. Moreover, PDGF-BB increased cAMP in PVs and inhibition of adenyl cyclase
enhanced PDGF-BB-induced contraction, whereas inhibition of NO-formation only slightly increased it.

Conclusions: PDGF-BB/PDGFR regulates the pulmonary vascular tone by the generation of prostaglandins, the
increase of calcium, the activation of MAPK- or PI3K/AKT/mTOR signalling and actin remodelling. More insights in
PDGF-BB downstream-signalling may contribute to develop new therapeutics for PH.
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Background
Regulation of platelet-derived growth factor (PDGF)-BB
and its receptor PDGFR-β are strongly involved in the
pathogenesis of pulmonary hypertension (PH) [1, 2], as they
highly act proliferative on pulmonary vessel [3]. This in-
stance provides for the fact that PDGFR-inhibition by tyro-
sine kinase inhibitors (TKIs), e.g. imatinib, resembles a new
intriguing approach to treat PH, as it counteracts the vascu-
lar remodelling [4]. Recent research also revealed consider-
able pulmonary vasorelaxant effects of TKIs, e.g. imatinib
relaxes the pulmonary arterial bed of healthy and pulmon-
ary hypertensive rats [5, 6]. Within this context, the relax-
ant effects of TKIs appear to be not limited to the
pulmonary arterial bed, as imatinib, just as the
PDGFR-β-inhibitors SU6668 or DMPQ also relax pulmon-
ary veins (PVs) [7]. With regard to imatinib, it even exerts
pulmonary venous relaxation if it is inhaled [7]. The dual
action of imatinib on pulmonary vascular remodelling and
vessel tone [2, 5–7] is still more remarkable, as PDGF-BB
also contracts PVs [7]. Consecutively, aside the involvement
in vascular remodelling [2, 3], PDGF-BB and PDGFR ap-
pear to regulate the tone of pulmonary vessels. In this re-
gard, previous studies in systemic vessel revealed conflictive
results of PDGF, e.g. contraction of the basilar artery [8] or
aorta [9, 10], but relaxation of the mesenteric artery [11,
12].
PDGFR consists of two subunits, either αα, αβ or ββ

and all of them are assigned to various functions, e.g.
PDGFR-α is involved in organogenesis (lungs, skin, go-
nads or central nervous system), whereas PDGFR-β is re-
sponsible for the formation of vessel [3] and for
proliferation in pulmonary vascular remodelling [1]. The
various PDGFR subunits are activated by different ligands,
e.g. in vivo PDGFR-α is activated by PDGF-AA or
PDGF-CC, whereas PDGFR-β is activated by PDGF-BB
[3]. In contrast, more possibilities are conceivable in vitro,
e.g. the activation of PDGFR-αβ by PDGF-BB [3].
We designed this study to evaluate the contractile effects

of PDGF-BB on the pulmonary arterial and venous bed in
isolated perfused lungs (IPL) of guinea pigs (GPs) [7, 13,
14]. Further, we analysed the PDGF-BB-induced release of
the prostaglandins TXA2 and PGI2 in supernatants of
IPL-perfusate samples. Next, we compared the contractile
effect of PDGF-BB in pulmonary arteries (PAs) or PVs after
or without inhibtion of PDGFR-α (ponatinib) or PDGFR-β
(SU6668) in GPs’ precision-cut lung slices (PCLS) [13, 15,
16]. Further, we studied the mechanisms beyond
PDGF-BB-induced contraction in PVs. In this context, we
examined the involvement of L-Type Ca2+-channels, Ca2
+-sensitisation (ROCK/PKC), prostaglandin receptors and
cellular pathways such as p38-MAPK, MAP2K, PI3K-α/γ,
or AKT/PKB. Beyond that, we evaluated the impact of sig-
nalling cascades generally attributed to vasorelaxation; e.g.
PGI2, cAMP or NO. Within the framework of the above

mentioned signalling cascades, smooth muscle cell (SMC)
contraction depends on myosin light chain (MLC) phos-
phorylation, regulated either by Ca2+-sensitisation or by the
increase of intracellular calcium [17–25]. Aside MLC phos-
phorylation, SMC contraction depends on actin polymer-
isation and cytoskeletal remodeling [26, 27] which we
inhibited by cytochalasin D and latrunculin A.
PCLS resembles an ex vivo model which allows to

study the tone of PAs, PVs and airways concurrently
within their tissue organisation excluding the exposure
to in vivo factors such as shear stress, vascular filling
pressure or thromboembolism [13, 15, 16, 28]. As a
major advantage, PCLS allow to compare how pulmon-
ary vessel or airways react to several stimulants within
the different species [13, 28–30].
With regard to PH, there are multiple open questions

concerning the role of PDGF-BB and PDGFR. We adressed
the following points: 1) Does PDGF-BB contract in addition
to PVs also PAs and is this contraction related to
PDGFR-β? 2) How does PDGF-BB alter PPA, Pcap, Rpre and
Rpost in IPLs? 3) How does PDGF-BB affect the pulmonary
vascular tone, if lungs are pre-treated with the TKI imatinib
(perfused/inhaled)? 4) What are the mechanisms beyond
PDGF-BB-induced contraction?

Methods
Lung tissue from GPs’
Female Dunkin Hartley GPs (350 ± 50 g) were delivered
from Charles River (Sulzfeld, Germany). All animal exper-
iments were approved by the Landesamt für Natur, Um-
welt und Verbraucherschutz Nordrhein-Westfalen (ID:
84–02.04.2013A146, 8.87–51.05.20.10.245 and 50066A4)
and strictly performed according to the rules of the Dir-
ective 2010/63/EU of the European Parliament.

Isolated perfused lungs of the GP
GPs’ lungs were prepared as described [7, 13, 14]. In brief,
intraperitoneal anaesthesia was performed (pentobarbital:
95 mg kg− 1) and verified by missing reflexes. The animal
was exsanguinated, the trachea cannulated and the lung
ventilated with positive pressure (70 breaths/min). The
apex of the left ventricle was cut and cannulas were placed
in the PA (perfusion inflow) and in the left atrium (perfu-
sion outflow). The lung was perfused at constant flow
(20 mL/min) with Krebs-Henseleit buffer, containing 2%
bovine serum albumin, 0.1% glucose, 0.3% HEPES and
50 nM salbutamol to prevent bronchoconstriction [31].
The temperature of the perfusate was maintained at 37 °C
with a water bath and the pH was adjusted between 7.35
and 7.45 by gassing with CO2. Heart and lungs were with-
drawn and transferred into a negative-pressure chamber,
the so-called artificial thorax chamber. Next, ventilation
was switched from positive pressure to negative pressure.
To prevent the formation of lung oedema during constant
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flow perfusion and negative pressure ventilation, a pressure
balancing chamber was established in the perfusion outflow
which was connected by tubing to the artificial thorax
chamber. To prevent atelectasis of the lung, every 5 min a
deep breath was applied. Tidal volume (TV), dynamic com-
pliance (Cdyn), resistance (Res), pulmonal arterial pressure
(PPA), left atrial pressure (PLA) and the flow were continu-
ously monitored. Further, the capillary pressure (Pcap) was
measured every 10 min by the double occlusion method
[14] and the precapillary (Rpre) and postcapillary resistance
(Rpost) were calculated by the following equations: Rpre =
PPA−Pcap

flow and Rpost =
Pcap−PLA

flow .

As soon as respiratory and haemodynamic parameters
remained stable over 10 min (baseline), imatinib (10 μM)
was perfused at time point 10 min. At a buffer volume of
200 mL, a concentration of 10 μM imatinib corresponds to
a total dose of 1.18 mg imatinib or to 3.5 mg/kg body
weight imatinib, respectively. Control lungs remained un-
treated. Next, PDGF-BB (10 nM) was added to the recircu-
lating perfusion buffer (total volume 200 mL) at time point
30 min and perfused in untreated lungs and
imatinib-pre-treated lungs. Beyond that, imatinib mesylate
was nebulised in some lungs prior to the perfusion of
PDGF-BB. Therefore, 29.38 mg imatinib mesylate were
solved in 3 ml aqua to obtain a solution of 16.6 mM and
nebulised over a period of 130 min. Assuming a lung flow
of 0,21 L/min (70 breaths à 3 mL) and a pressure of 1.5 bar,
the total amount of inhaled imatinib corresponds to less
than 4% of the nebulised amount of imatinib [32], namely
1.18 mg, corresponding to 3.5 mg/kg body weight imatinib,
respectively. To measure PGI2 and TXA2, IPL-perfusate
samples were obtained at time point 0, 30 (before the appli-
cation of PDGF-BB) and 120 min. The different groups and
the timeline of the experiments are illustrated in Fig. 1.

Precision-cut lung slices (PCLS) from GPs
In GPs, intraperitoneal anaesthesia was performed with
95 mg kg− 1 pentobarbital (Narcoren; Garbsen, Germany)

and verified by missing reflexes. The GP was bled, the tra-
chea cannulated and the diaphragm opened. Thereafter,
PCLS were prepared as described before [13, 16, 30].
Whole lungs were filled via the trachea with 1.5%
low-melting agarose and cooled on ice to harden the
lungs. Afterwards, tissue cores (diameter 11 mm) were
prepared and cut into 300 μm thick slices with a Krum-
dieck tissue slicer (Alabama Research & Development,
Munford, AL, USA). PCLS were incubated at 37 °C and
repeated medium changes were performed to wash out
the agarose.

Identification of the vessels, histology
Pulmonary vessels from GPs were identified by their
anatomical landmarks; e.g. PAs accompany the airways
and PVs lie aside [13, 16].

Pharmacological interventions, measurements and
videomicroscopy
To evaluate the contractile effect of PDGF-BB in PAs/
PVs from GPs, PCLS were exposed for 60 min to
100 nM PDGF-BB (Figs. 3, 4 and 5, Figs 7, 8 and 9). If a
signalling pathway was evaluated (Figs. 3,4 and 5, Figs 7,
8 and 9), PCLS were additionally pre-treated for 1 h with
one of the following inhibitors at concentrations about
10–100 fold above the IC50 value of the target:
PDGFR-α: 100 nM ponatinib (IC50: 1.1 nM) [33–35];
PDGFR-β: 5 μM SU6668 (IC50: 0.008–0.1 μM) [36–38];
PDGFR-α/β: 100 μM imatinib (IC50: 0.6–1.8 μM) [39];
L-Type Ca2+-channels: 100 nM amlodipine (IC50:
1.9 nM) [40]; Rho-Kinase: 10 μM fasudile (IC50: 1.4 μM)
[41]; protein kinase C (PKC): 5 μM calphostin C (IC50:
50 nM) [42]; cyclooxygenase 1/2: 3 μM indomethacin
(IC50: 13–26 nM) [43, 44]; EP1: 1 μM SC51322 (IC50:
13.8 nM) [45]; EP2: 1 μM PF04418948 (IC50: 2.7 nM)
[46, 47]; EP3: 1 μM L798106 (IC50: 10 nM) [48, 49]; EP4:
1 μM L161982 (IC50: 3.2 nM) [48]; TP: 10 μM SQ29548
(IC50 10 nM) [48]; IP: 1 μM RO-1138452 (IC50: 5–
10 nM) [50]; MAP2K: 50 μM PD98059 (IC50: 2–7 μM)

Fig. 1 Overview of the timeline. This overview illustrates the different groups and the timeline of all experiments using the IPL
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[51]; MAP2K: 5 μM U0126 (IC50: 58–72 nM) [52];
p38-MAPK: 5 μM SB203580 (IC50: 0.5 μM, for AKT/
PKB 3–5 μM) [53, 54]; PI3K-α: 100 nM GSK 1059625
(IC50: 2 nM); PI3K-γ: 100 nM AS252424 (IC50: 33 nM)
[55]; AKT/PKB: 10 μM 10-DEBC (IC50: 2 μM) [56];
actin polymerisation: 10 μM cytochalasin D (IC50:
100 nM) [57] or 1 μM latrunculin A [58]; adenyl cyclase
(AC): 100 μM SQ22536 (IC50: 1.4–200 μM) [59] and
NO-synthase (NOS): 100 μM L-NAME (IC50: 25 μM).
In PCLS, all changes of the initial vessel area (IVA)

were quantified in % and indicated as “Change [% of
IVA]”. Thus, an IVA < 100% indicates contraction and
an IVA > 100% indicates relaxation. To compare the
contractile effect of PDGF-BB in pre-treated vessels, the
intraluminal area was defined after pre-treatment again
as 100%. In the graphs, all pre-treatments were indi-
cated. The intraluminal area of PAs and PVs was moni-
tored with a digital video camera (Leica Viscam 1280,
Leica DFC 280). The images were analysed with Op-
timas 6.5 (Media Cybernetics, Bothell, WA).

ELISAs
To analyse cAMP, PVs were isolated out of tissue cores
guided by their anatomical landmarks, e.g. the PAs ac-
company the airways and PV lies aside. PVs were incu-
bated in medium, flushed with PDGF-BB (100 nM) and
after 30 min frozen by liquid nitrogen. Cyclic AMP was
quantified with ELISA-kits following the manufacturer’s
protocol. Samples/standards were acetylated for stabil-
isation. To measure cAMP, all samples were diluted 1:2
with 0.1 M HCL. The ELISA was analysed at 405 nM
(GENIOS, Tecan, Switzerland).
To analyse prostacyclin (synonym: prostaglandine I2

(PGI2)) and thromboxane A2 (TXA2), IPL perfusate sam-
ples were obtained at 0, 30 (before PDGF-BB was ap-
plied) or 120 min and stored at − 80 °C. PGI2 and TXA2

are quickly metabolised, hence the metabolites 6-keto
prostaglandin F1α (6-keto PGF1α) and 11-dehydro TXB2

and 2,3-dinor (TXB2) were measured to estimate the
generation of PGI2 and TXA2, respectively. Prostaglan-
din metabolites were quantified with ELISA-kits follow-
ing the manufacturer’s protocol and measured at
412 nM (GENIOS, Tecan, Switzerland).

Chemicals
PDGF-BB was provided by Peprotech (Hamburg, Germany).
Imatinib mesylate, amlodipine, fasudile, calphostin C, indo-
methacin, SC51322, PF04418948, L798106, L161982, GSK
1059615, AS 252424, 10-DEBC and SQ22536 were pur-
chased from Tocris Bioscience (Ellisville, Missouri, USA).
Ponatinib was acquired from SelleckChem (Munich,
Germany). SQ29548, RO-1138452, SU6668, SB203580,
PD98059 and U0126 were acquired from Cayman Europe
(via Biomol, Hamburg, Germany). The cAMP ELISA-kit

was acquired from Enzo (Lörrach, Germany), whereas all
ELISA-kits applied to quantify prostaglandin generation
were acquired from Cayman Europe (via Biomol, Hamburg,
Germany). L-Name, cytochalasin D, latrunculin A or stand-
ard laboratory chemicals were provided by Sigma (Stein-
heim, Germany).

Statistical analysis
Statistics were conducted using SAS software 9.3 (SAS
Institute, Cary, North Carolina, USA) and GraphPad
Prism 5.01 (GraphPad, La Jolla, USA). The data in
Fig. 6a/c were analysed by the Wilcoxon signed rank test
(matched pairs), whereas the data in Fig. 6b/dor Fig. 8c
were analysed by the Mann-Whitney U test (no matched
paired). All other data were analysed using a linear
mixed model analysis (LMM) with the covariance struc-
ture AR(1). All p-values were adjusted for multiple com-
parisons by the false discovery rate and are presented as
mean ± SEM; n indicates the numbers of animals. P <
0.05 was considered as significant.

Results
We studied the pulmonary vascular effects of PDGF-BB
using healthy lungs (IPL/PCLS) from GPs. Beyond that,
we studied the downstream-signalling of
PDGF-BB-induced contraction in PVs of GPs.

IPL: Effect of PDGF-BB on the pulmonary vascular tone
Perfusion of PDGF-BB (final concentration in the buffer:
10 nM) increased PPA up to 116% (p < 0.05), whereas
PPA remained stable over 140 min in untreated control
lungs (Fig. 2a). Pre-treatment with perfused imatinib
(final concentration in the buffer: 10 μM) completely
prevented the PDGF-BB-related increase of PPA (p <
0.05) (Fig. 2a) and even decreased PPA compared to
baseline values (p < 0.001). Pre-treatment with nebulised
imatinib also prevented the PDGF-BB-induced increase
of PPA (p < 0.05) (Fig. 2a). In addition, the soley perfu-
sion of imatinib significantly decreased PPA compared to
baseline values (p < 0.001) (Fig. 2a).
Perfusion of PDGF-BB (final concentration in the buf-

fer: 10 nM) increased Pcap up to 193% (p < 0.001) com-
pared to control lungs and to baseline values (Fig. 2b).
According to the effects on PPA, the PDGF-BB-induced
increase of Pcap was completely prevented (p < 0.001), if
the lungs were pre-treated with perfused or nebulised
imatinib (Fig. 2b). Further, perfusion of imatinib lowered
Pcap, at time points 60, 100 or 120 min (for all: 0.04)
(Fig. 2b). Neither perfusion of PDGF-BB, nor perfusion
of imatinib affected anyhow Rpre (Fig. 2c).
Perfusion of PDGF-BB significantly increased Rpost (p

< 0.001). This effect was completely prevented, if lungs
were pre-treated with imatinib (p < 0.001), either per-
fused or nebulised. Further, perfusion of imatinib alone
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decreased Rpost (p < 0.05) compared to control lungs and
to baseline values (Fig. 2d). The addition of PDGF-BB
did not alter PLA (data not shown).

PCLS: PDGF-BB contracts PAs and PVs via activation of
PDGFR-β
In IPLs, PDGF-BB contracted the pulmonary vascular bed
and this was preventable by the TKI imatinib (Fig. 2). Next,
we tried to find out in PCLS if PDGF-BB contracts PAs
and if this contraction predominantly depends on
PDGFR-β, as it was shown for PVs (Fig. 3a) [7]. PDGF-BB
contracted PAs up to 87% of IVA (p < 0.05) and this con-
traction was prevented, if PCLS were pre-treated with the
PDGFR-β inhibitor SU6668 (p < 0.01), whereas
pre-treatment with the PDGFR-α inhibitor ponatinib had
no effect (Fig. 3b). In PVs, PDGF-BB-induced contraction
was stronger than in PAs (p < 0.01, Fig. 3c).

PCLS: Mechanisms beyond PDGF-BB induced contraction
in PVs
To get insights if there is a link between PDGF-BB-induced
contraction and the pathogenesis of PH, we focused the
mechanisms beyond PDGF-BB-induced contraction. Due
to the weak contractile effect of PDGF-BB in PAs; we stud-
ied PDGF-BB downstream-signalling in PVs.

The role of calcium in PDGF-BB-induced contraction
PVs were pre-treated for 60 min with 100 nM amlodipine
(L-Type Ca2+-channels), 10 μM fasudile (Rho kinase inhibi-
tor) or 5 μM calphostin C (PKC) prior to the application of
100 nM PDGF-BB. Amlodipine significantly reduced the
contractile effect of PDGF-BB (p < 0.05) (Fig. 4a), whereas
fasudile (Fig. 4b) or calphostin C (Fig. 4c) were without sig-
nificant effect (p > 0.05 for both).

The role of prostaglandins in PDGF-BB-induced
contraction
Next, we studied, whether the contractile effect of PDGF-BB
is mediated via contractile prostaglandins. PCLS were
pre-treated with the non-selective cyclooxygenase-inhibitor
indomethacin (3 μM), with the EP1-receptor antagonist
SC51322 (1 μM), with the EP2-receptor antagonist
PF04418948 (1 μM), with the EP3-receptor antagonist
L798106 (1 μM), with the EP4-receptor antagonist L161982
(1 μM), with the TP-receptor antagonist SQ29548 (10 μM)
and with the IP-receptor antagonist RO-1138454 (1 μM).
Inhibition of prostaglandin synthesis (indomethacin) did not
significantly alter PDGF-BB-induced contraction (Fig. 5a),
although the sustained effect of PDGF-BB appeared to be
reduced. PDGF-BB-induced contraction was significantly re-
duced, if EP1-receptors (p < 0.01; Fig. 5b), EP3-receptors (p
< 0.001; Fig. 5b) or TP-receptors (p < 0.01; Fig. 5e) were

Fig. 2 IPL: Effect of PDGF-BB on the pulmonary vascular tone. a Effect of PDGF-BB on PPA. b Effect of PDGF-BB on Pcap. c Effect of PDGF-BB on
Rpre. d Effect of PDGF-BB on Rpost. For all: (○) control (n = 7); (■) PDGF-BB (n = 7); (grey circle) imatinib (n = 7); (grey square) perfused imatinib /
PDGF-BB (n = 7); (□) nebulised imatinib / PDGF-BB (n = 6); a-d Statistics was performed by a LMM. P < 0.05 are considered as significant: * p < 0.05,
** p < 0.01 and *** p < 0.001. a grey square / grey circle Time point 0 (§) vs. 140 (§§) min: p < 0.001. d grey circle Time point 0 (§) vs. 140 (§§)
min: p < 0.05
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blocked. In contrast, inhibition of EP4-receptors (Fig. 5d)
only attenuated PDGF-BB-induced contraction from time
point 45 min, whereas inhibition of EP2-receptors (Fig. 5c)
or IP-receptors (Fig. 5f) did not affect the maximal contract-
ile effect of PDGF-BB. However, pre-treatment with the

IP-receptor antagonist RO-1138454 strongly contracted PVs
to 75.5% of IVA (p < 0.001; data not shown). Finally, inhib-
ition of EP3-receptors (Fig. 5b) was most potent and nearly
completely prevented PDGF-BB-induced contraction.
In IPL-perfusate samples, we studied the effect of

PDGF-BB on the generation of prostaglandins, e.g. TXB2

for TXA2 and 6-keto PGF1α for PGI2 (Fig. 6). After
120 min of perfusion, PDGF-BB enhanced TXB2 com-
pared to basic values (p < 0.05; Fig. 6a). Further at
120 min, TXB2 was significantly increased compared to
1) the control, 2) the imatinib/PDGF-BB and 3) the ima-
tinib group (p < 0.05; Fig. 6b), whereas at 0 or 30 min,
the four treatment groups did not differ (Fig. 6b). In
contrast, the PGI2-metabolite 6-keto PGF1α was in all
groups significantly increased (p < 0.05) in dependence
to the perfusion time (Fig. 6c). At 120 min, 6-keto PGF1α
reached a level of 341 pg/ml in the PDGF-BB group
compared to 193 pg/ml in the control group (p > 0.05)
and to 124 pg/ml in the imatinib/PDGF-BB group (p <
0.05; Fig. 6d). Hence, 6-keto PGF

1α
was significantly

lower, if IPLs were pre-treated with imatinib compared
to PDGF-BB alone, although PDGF-BB did not signifi-
cantly increase 6-keto PGF1α compared to the control
group. With regard to 6-keto PGF1α, no differences were
found at 0 or 30 min (Fig. 6d).

MAPK-pathway and PI3K-α/γ and AKT/PKB
Next, we studied if the PDGF-BB downstream-signalling
involved in proliferation [3] also contributes to
PDGF-BB-induced contraction. Therefore, we inhibited
cellular pathways such as MAP2K (5 μM U0126 /
50 μM PD98059), p-38 MAPK (5 μM SB203580),
PI3K-α (100 nM GSK 1059625), PI3K-γ (100 nM
AS252424) and AKT/PKB (10 μM DEBC). Inhibition of
MAP2K (p < 0.05, p < 0.001; Fig. 7a), p38-MAPK (p <
0.05; Fig. 7b), AKT/PKB (p < 0.001; Fig. 7e), PI3K-α (p <
0.5; Fig. 7c) and PI3K-γ (p < 0.05) reduced the contractile
effect of PDGF-BB (Fig. 7d).

PDGF-BB-induced generation of relaxant mediators
The data from Fig. 7a/e reveal weak relaxation due to
PDGF-BB leading to an IVA > 100%. Together with the
observations that some PVs contract to less than 80% of

Fig. 3 PCLS: PDGF-BB contracts PAs and PVs via activation of
PDGFR-β. a PDGF-BB contracts PVs: (■) no pre-treatment / 100 nM
PDGF-BB (n = 7); (grey square) 100 nM ponatinib / 100 nM PDGF-BB
(n = 7); (□) 5 μM SU6668 / 100 nM PDGF-BB (n = 7). b The contractile
effect of PDGF-BB in PAs: (●) no pre-treatment / 100 nM PDGF-BB (n
= 7); (grey circle) 100 nM ponatinib / 100 nM PDGF-BB (n = 7); (○)
5 μM SU6668 / 100 nM PDGF-BB (n = 7). c PDGF-BB-induced
contraction in PAs/PVs: (●) PAs: 100 nM PDGF-BB (n = 7); (■) PVs:
100 nM PDGF-BB (n = 7). a-c Statistics was performed by a LMM. P <
0.05 are considered as significant: * p < 0.05, ** p < 0.01 and
*** p < 0.001
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IVA (Fig. 7a; p= 0.003), the idea was obvious that PDGF-BB
downstream-signalling might involve relaxant mediators dif-
ferent from PGI2 (Fig. 6c/d), e.g. cAMP or NO. To study
this issue, PVs were pre-treated with the AC-inhibitor
SQ22536 or with the endothelial NOS-inhibitor L-NAME
prior to the application of PDGF-BB. Inhibition of
cAMP-generation (SQ22536) increased the contractile effect
of PDGF-BB until time point 35 min (p < 0.001) (Fig. 8a),
whereas inhibition of endothelial NOS (eNOS) only slightly
enhanced it (Fig. 8b), as this increase only reached statistical
significance between the time points 30–45 min (p < 0.05;
Fig. 8b). Further, 100 nM PDGF-BB increased cAMP (p <
0.001) in PVs (Fig. 8c) suggesting that PDGF-BB-induced
generation of cAMP influences the pulmonary venous tone,
whereas PDGF-BB-related NO-synthesis appears to play a
minor role in PVs.

The role of actin polymerisation in PDGF-BB-induced
contraction
PDGF-BB-induced contraction appears to depend on
complex intracellular pathways. Next, we analysed the
role of actin polymerisation by 10 μM cytochalasin D or
1 μM latrunculin A. Inhibition of actin polymerisation
significantly lowered the contractile effect of PDGF-BB,
as indicated for cytochalasin D (p < 0.001; Fig. 9a) and
latrunculin A (p < 0.05; Fig. 9b).

Discussion
PDGF and PDGFR play a critical role within the remodel-
ling in PH [1, 2]. We show that PDGF-BB contracts the
pulmonary vascular bed of GPs via activation of PDGFR-β.
In PVs, PDGF-BB-induced contraction depends on L-Type
Ca2+-channels, PI3K-α/γ, MAPK- and AKT/PKB-signalling
and actin remodelling. Beyond that, stimulation of EP1/3- or
TP-receptors plays a significant role in PDGF-BB-induced
contraction, whereas stimulation of IP-receptors is not rele-
vant. In addition, PVs treated with PDGF-BB show in-
creased cAMP levels which do not appear to rely on PGI2.

Effects of PDGF-BB on the pulmonary vascular bed
In the IPL, recirculating perfusion of 10 nM PDGF-BB
significantly enhanced PPA up to 116% (Fig. 2a). These

Fig. 4 PCLS: The role of Ca2+ in PDGF-BB-induced contraction in
PVs. a PDGF-BB-induced contraction depends on the activation of L-
Type Ca2+-channels: (■) no pre-treatment / 100 nM PDGF-BB (n = 8);
(□) 100 nM amlodipine / 100 nM PDGF-BB (n = 8). b PDGF-BB-
induced contraction does not depend on the activation of Rho
Kinase: (■) no pre-treatment / 100 nM PDGF-BB (n = 8); (□) 10 μM
fasudile / 100 nM PDGF-BB (n = 8). C) PDGF-BB-induced contraction
does not depend on the activation of protein kinase C (PKC): (■) no
pre-treatment / 100 nM PDGF-BB (n = 8); (□) 5 μM calphostin C /
100 nM PDGF-BB (n = 8). a-c Statistics was performed by a LMM. P <
0.05 are considered as significant: * p < 0.05, ** p < 0.01 and
*** p < 0.001
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results confirmed those from PCLS; where 100 nM
PDGF-BB contracted PAs up to 87% of IVA (Fig. 3b).
According to the Hagen-Poiseuille law, the resistance in-
creases 16 fold, if the radius is splitted in half. Hence,
PPA would have increased even above 116%, if lungs
were perfused with 100 nM PDGF-BB. Further in the
IPL, PDGF-BB-induced alteration of the vascular tone is
detected even at lower concentrations compared to
PCLS. This is supported by the fact that 10 nM
PDGF-BB did not contract GPs’ PAs in PCLS (data not
shown), whereas 10 nM PDGF-BB enhanced PPA to
116% in the IPL (Fig. 2a). In contrast to these results,
PDGF-BB did not alter Rpre (Fig. 2c) indicating a minor
effect on the cavine precapillary pulmonary vascular bed.
Possible reasons for this observation might be 1) a lower
receptor density; 2) a varying receptor equipment with
reduced sensitivity. Most probably, our results regarding
the effect of PDGF-BB on Rpre are not transferable to
the human situation, as small human PAs are equipped
with PDGFR-β [1]. In general, GPs’ PCLS allow to study

more central pulmonary vessel, but do not represent the
precapillary part of the pulmonary circulation [13]. In
contrast, the IPL allows addressing the entire pulmonary
vascular bed (except central PVs); particularly, it enables
to determine the segmental vascular resistance (Rpre /
Rpost) by the double occlusion method [7, 13, 14]. Be-
yond PDGF-BB-induced pulmonary arterial contraction,
PDGF-BB increased Pcap (Fig. 2b) and Rpost (Fig. 2d) up
to 200 and 140% of baseline values, respectively. Further,
PDGF-BB contracted central PVs from GPs up to 70%
(Fig. 3a).
Hence, our GP’ data from both models suggest that

PDGF-BB exerts significant contraction along the pul-
monary vascular bed and give strong evidence that
PDGF-BB-induced contraction is accentuated in the pul-
monary venous system PVs (Fig. 2; Fig. 3). This result is
of high clinical relevance, as the pulmonary venous bed
contributes about 40% to pulmonary vascular resistance
(PVR) [60] and plays a major role in PH due to left heart
disease [61], the most common cause of PH [62, 63].

Fig. 5 PCLS: The role of prostaglandins in PDGF-BB-induced contraction in PVs. a Effect of inhibited cyclooxygenase on PDGF-BB-induced
contraction: (■) no pre-treatment / 100 nM PDGF-BB (n = 8); (□) 3 μM indomethacin / 100 nM PDGF-BB (n = 8). b PDGF-BB-induced contraction is
mediated via EP1/3-receptors: (■) no pre-treatment / 100 nM PDGF-BB (n = 8); (□) 1 μM SC51322 (EP1) / 100 nM PDGF-BB (n = 8); (grey square)
1 μM L798106 (EP3) / 100 nM PDGF-BB (n = 7). c PDGF-BB-induced contraction does not depend on EP2-receptors: (■) no pre-treatment / 100 nM
PDGF-BB (n = 5); (□) 1 μM PF04418948 / 100 nM PDGF-BB (n = 5). d PDGF-BB-induced contraction depends on EP4-receptors: (■) no pre-treatment
/ 100 nM PDGF-BB (n = 5); (□) 1 μM L161982 / 100 nM PDGF-BB (n = 5). e PDGF-BB-induced contraction depends on TP-receptors: (■) no pre-
treatment / 100 nM PDGF-BB (n = 7); (□) 10 μM SQ29548 / 100 nM PDGF-BB (n = 7). f PDGF-BB-induced contraction does not depend on IP-
receptors: (■) no pre-treatment / 100 nM PDGF-BB (n = 4); (□) 1 μM RO-1138452 / 100 nM PDGF-BB (n = 4). a-f Statistics was performed by a
LMM. P < 0.05 are considered as significant: * p < 0.05, ** p < 0.01 or *** p < 0.001
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PDGF-BB contracts the pulmonary vascular bed via
activation of PDGFR-β
PDGF-BB-induced contraction of the pulmonary vascu-
lar bed was completely prevented if IPLs (Fig. 2) were
pre-treated with the PDGFR-α/β inhibitor imatinib, ei-
ther perfused or nebulised; indicating that
PDGF-BB-induced contraction specifically relies on the
activation of PDGFR-α/β. With regard to GPs’ PVs, we
recently showed that PDGF-BB-induced contraction
mainly depends on the activation of PDGFR-β (Fig. 3a),
whereas activation of PDGFR-α only plays a minor role
[7]. In this work, we validated this also for GPs’ PAs as
we found that inhibition of PDGFR-β (SU6668) com-
pletely prevented PDGF-BB-induced contraction of PAs
(Fig. 3b) and inhibition of PDGFR-α (ponatinib) had no
effect (Fig. 3b). In the IPL, perfusion of imatinib did not
only prevent the PDGF-BB-induced increase of PPA, Pcap
and Rpost, but also decreased PPA, Rpost and in part Pcap
(time points 90 and 110 min after addition) compared to
untreated control lungs. These data suggest the exist-
ence of endogenously produced PDGF-BB and the per-
manent activation of PDGFR.

Mechanisms beyond PDGF-BB induced contraction
After identification of PDGF in the seventies,
PDGF-BB-induced contraction [8–10, 64] and relaxation
[11, 12] was proven in systemic arteries. Afterwards, the
vascular effects of PDGF disappeared in the background
and research focused on the proliferative effects of
PDGF [1, 2] leading to the introduction of TKIs in the
therapy of PH [2, 4, 65]. With this regard, TKI-induced
relaxation has been uncovered [5–7] and the contractile
effects of PDGF-BB have been proven in PVs [7]. Thus,
it becomes apparent that PDGF-BB promotes aside pro-
liferation also contraction of PAs/PVs, both promoting
the progress of PH. Therefore we studied the mecha-
nisms beyond the contractile effect of PDGF-BB in GPs’
PVs.

The role of calcium in PDGF-BB-induced contraction
In PVs, PDGF-BB-induced contraction depended on the ac-
tivation of L-Type Ca2+-channels (Fig. 4a), whereas Ca2
+-sensitisation did not play a role, as inhibition of
Rho-Kinase or PKC did not alter PDGF-BB-induced con-
traction (Fig. 4b/c). In line with our results, PDGF-AB or

Fig. 6 The effect of PDGF-BB on TXB2 and 6-keto PGF1α. a TXB2-generation in dependence of the perfusion time. b Comparison of TXB2-
generation within the groups at the same time. c 6-keto PGF1α-generation in dependence of the perfusion time. d Comparison of 6-keto PGF1α-
generation within the groups at the same time. For all (□) control (n = 6); (■) perfusion with PDGF-BB (n = 6); (grey square) perfusion with imatinib
/ PDGF-BB (n = 6); (□) perfusion with imatinib (n = 6). a/c Statistics was performed by the Wilcoxon signed ranked test. b/d Statistics was
performed by the Mann-Whitney U test. P < 0.05 are considered as significant: * p < 0.05 and ** p < 0.01
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PDGF-BB contract extra pulmonary vessels in a calcium
dependent manner [8–10, 64, 66] and vice versa, TKIs
modulate the activity of L-Type Ca2+-channels in portal
veins [67, 68]. Anyhow, differences exist within the PDGF
dimers AA, AB or BB; e.g. Sachinidis et al. [10] reported in
rats’ aortic rings that PDGF-BB contracts stronger and rises
intracellular calcium more potently than PDGF-AB, whereas
PDGF-AA acts only poorly contractile and does not rise
intracellular calcium [10]. In rat aortic smooth muscle cells
(SMCs), the same group [10, 69] found that PDGF-AA po-
tently stimulates PKC, whereas PDGF-BB activates PKC
only in a minor degree. These findings suggest that
PDGF-AA rather acts via Ca2+-sensitisation, whereas
PDGF-BB mainly exerts contraction via the increase of cal-
cium. Moreover, with regard to tone or endothelial barrier,
pulmonary and systemic vessels are diversely regulated [70].
This circumstance might also explain contrasting results.

The role of prostaglandins in PDGF-BB-induced
contraction
So far, it is unknown, if prostaglandins mediate the con-
tractile effect of PDGF-BB in pulmonary vessel. Although,

PDGFR downstream-signalling is linked to the generation
of prostaglandins [71–73] and prostaglandin receptors,
e.g. TP- or EP1/3-receptors are involved within the regula-
tion of the tone of human PAs [74] and PVs [75, 76].
Now, our data reveal that PDGF-BB-induced contrac-

tion goes ahead with the activation of TP-receptors, as
1) inhibition of TP-receptors strongly reduced the con-
tractile effect of PDGF-BB and as 2) TXB2, the inactive
metabolite of TXA2 was significantly enhanced in
PDGF-BB perfused lungs. TXA2 acts as a potent vaso-
constrictor and highly contributes to increased vascular
tone in PH [77–79]. TP-receptors represent
G-Protein-coupled receptors (GPCR) which are mainly
coupled to Gαq/11 and Gα12/13, but also to Gαs/i, Gh and
Gβγ; finally their stimulation leads to the regulation of
phospholipase C (PLC)/inositol trisphosphate (IP3)/cal-
cium, Rho and AC [80]. Beyond that, MAPK- and
PI3K-signalling is also involved [80]. In line with our
data, Sachinidis et al. [10] showed in systemic vessels
that PDGF-BB leads to the generation of TXA2 which
exerts as well as the TP-agonist U46619 a strong and
long-lasting contraction along the pulmonary vascular

Fig. 7 PCLS: PDGFR downstream-signalling: MAPK- and PI3K/AKT/PKB-pathway in PVs. a PDGF-BB-induced contraction depends on MAP2K: (■) no
pre-treatment / 100 nM PDGF-BB (n = 4); (□) 50 μM PD98059 / 100 nM PDGF-BB (n = 4); (grey square) 5 μM U0126 / 100 nM PDGF-BB (n = 4). b
PDGF-BB-induced contraction depends on p-38/MAPK: (■) no pre-treatment / 100 nM PDGF-BB (n = 4); (□) 5 μM SB203580 / 100 nM PDGF-BB (n
= 4). c PDGF-BB-induced contraction is mediated via PI3K-α: (■) no pre-treatment / 100 nM PDGF-BB (n = 6); (□) 1 μM GSK 1059625 / 100 nM
PDGF-BB (n = 6). d PDGF-BB-induced contraction does not interact with PI3K-γ: (■) no pre-treatment / 100 nM PDGF-BB (n = 5); (□) 1 μM
AS252424 / 100 nM PDGF-BB (n = 5). e PDGF-BB-induced contraction depends on the AKT/PKB signalling: (■) no pre-treatment / 100 nM PDGF-BB
(n = 4); (□ 10 μM 10-DEBC / 100 nM PDGF-BB (n = 4). a-e) Statistics was performed by a LMM. P < 0.05 are considered as significant: * p < 0.05, ** p
< 0.01 and *** p < 0.001
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bed [81–84]. Our data show no involvement of Rho/
PKC in PDGF-BB downstream-signalling. This is oppos-
ing to Murtha et al. [84] who showed in rabbits’ pul-
monary arterial rings that the contractile effect of TXA2

depends on PKC. Further, TP-receptors are coupled to
Gα12/13, hence their stimulation should activate Rho [85],
unless TP-receptors are primarily coupled to Gαq/11 [80].
Notably, vasoconstrictors such as endothelin-1 or
platelet-activating factor also mediate their contractile
effect via the release of TXA2 [86, 87].
Our results indicate that PDGF-BB-induced contrac-

tion goes ahead with the activation of EP1/3/4-receptors,
whereas stimulation of EP2-receptors does not play a
role (Fig. 5c). Hence, PGE2 as the most widely produced
prostaglandin of the body binding to EP1–4-receptors
(GPCRs) [25] appears to be highly involved in
PDGF-BB-induced contraction. EP1-receptors are
coupled to Gαq/11 [25, 88] and their activation triggers
the intracellular increase of PLC, IP3 and calcium [88].
In contrast, EP3-receptors are mainly coupled to Gαi and
their activation inhibits the AC leading to decreased
cAMP-levels [25, 88]. Here, inhibition of EP3-receptors
nearly completely prevented PDGF-BB-induced contrac-
tion, although inhibition of EP1- or TP-receptors was
also very effective in preventing the contractile effect of
PDGF-BB. So, the question comes up if the EP3-receptor
antagonist L798106 acts unspecific and also binds to
EP1- or TP-receptors. According to IC50 values, this is
not the case [48]. However, the prominent effect of
EP3-inhibition on PDGF-BB-induced contraction might
be explainable by the consideration that EP3-inhibition
may provoke an overwhelming cAMP-generation coun-
teracting other contractile mediators activated by
PDGF-BB. In general, EP3-agonists strongly contract hu-
man PAs [74]. Beyond that, they influence the progress
of PH, as EP3-receptor deficiency attenuates the expres-
sion of PH [89]. Aside EP1/3-receptors, PGE2 also acti-
vates EP2- and EP4-receptors which are both coupled to
Gαs leading to the activation of AC, to the increase of
cAMP and to reduced vessel tone [25, 88]. Moreover,
EP4-receptors also couple to Gαi representing the coun-
ter player of Gαs [25, 88]. Here, inhibition of EP2-recep-
tors did not enhance the contractile effect of PDGF-BB,
inhibition of EP

4
-receptors reduced PDGF-BB-induced

Fig. 8 Relevance of relaxant signalling cascades in PDGFR-signalling
in PVs. a Role of cAMP in PDGFR-signalling: (■) no pre-treatment /
100 nM PDGF-BB (n = 10); (grey square) 100 μM SQ22536 / 100 nM
PDGF-BB (n = 10). b Role of NO in PDGFR-signalling: (■) no pre-
treatment / 100 nM PDGF-BB (n = 10); (grey square) 100 μM L-NAME
/ 100 nM PDGF-BB (n = 10). c PDGF-BB increases intracellular cAMP:
(□) no PDGF-BB (control) (n = 10); (■) 100 nM PDGF-BB (n = 11) a/b
Statistics was performed by a LMM. C) Statistics was performed by
the Mann-Whitney U test. P < 0.05 are considered as significant: * p
< 0.05, ** p < 0.01 and *** p < 0.001
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contraction and PVs treated with PDGF-BB showed in-
creased cAMP-levels. These data suggest 1) a possible
minor expression of EP2-receptors in GPs’ PVs or 2) a
possible dominant coupling of EP4-receptors to Gαi [90]
which has been already reported in the hypoxic pulmon-
ary arterial bed of the rat. In addition, although EP4-re-
ceptors appear to couple dominantly to G

αi
,

Gαs-coupling seems to be of relevance, as PDGF-BB sig-
nificantly increased cAMP-levels in PVs. This idea is
supported by the circumstance that PGI2, as a main
source for cAMP [91] did not significantly increase due
to PDGF-BB. Thus, the production of cAMP should de-
rive from PDGF-BB-induced activation of prostaglandin
receptors others than IP, but also coupled to Gαs.
In general, the various prostaglandins mediate contrac-

tion or relaxation. In this work, EP1/3/4- and TP-receptors
reduced the contractile effect of PDGF-BB, whereas none
of the inhibitors, including the IP-receptor antagonist
RO-1138452, did increase PDGF-BB-induced contraction.
At first glance, PDGF-BB-downstream-signalling appears
to be dominated by the generation of contractile prosta-
glandins. At second view, this assumption is opposed, as
inhibition of prostaglandin synthesis (indomethacin) did
not significantly alter PDGF-BB-induced contraction (Fig.
5a); a fact which suggests that PDGF-BB-dependent pros-
taglandin generation is well-balanced between contractile
and relaxant ones. Further, inhibition of MAP2K- and
AKT/PKB-signalling (Fig. 7a/e) unmasked a slight relax-
ant effect of PDGF-BB supporting the hypothesis that
PDGFR-downstream-signalling is anyhow related to relax-
ant pathways. Our results indicate that PGI2 is of less rele-
vance within the regulation of the pulmonary vascular
tone by PDGF-BB, as 1) inhibition of IP-receptors did not
enhance the contractile effect of PDGF-BB (Fig. 5f). 2)
PDGF-BB did not increase PGI2 (Fig. 6c/d), though a
trend appears to be evident which is enforced by the fact
that pre-treatment with imatinib significantly lowered
PGI2-levels compared to PDGF-BB perfusion alone. The

observation that PGI2 increased time-dependently in the
perfusate of all IPL-groups (Fig. 6c), including control
lungs is explainable by the endothelial release of PGI2
counteracting the increased shear stress in perfused lungs
[92, 93]. In general, the release of PGI2 strongly depends
on shear stress [94]. In contrast, in PCLS shear stress is
hardly effective [95], hence time-dependent PGI2-release
is not expected. However, we could show that basal
PGI2-release should occur, as inhibition of IP-receptors in-
creased the tone of PVs. Finally, our data indicate that
PDGF-BB-induced PGI2-release is less relevant, although
we cannot exclude that PDGF-BB potentiates anyhow the
release of PGI2 due to shear stress. Our results are differ-
ent from those of Yamawaki et al. [12] who proved that
PDGF-BB relaxes rat mesenteric arteries in dependence to
the release of PGI2. Finally, the role of PDGF-BB-induced
PGI2-release might depend on the vessel localisation, e.g.
pulmonary vessels versus systemic vessels and on the
species.
In spite of the fact that PDGF-BB contracts GPs’ PVs, the

generation of relaxant mediators such as cAMP and cGMP
plays a relevant role in PDGFR-downstream-signalling. 1)
Inhibition of AC (Fig. 8a) enforced the contractile effect of
PDGF-BB, 2) PVs treated with PDGF-BB had higher
cAMP-levels than control PVs (Fig. 8c) and 3) inhibition of
eNOS slightly enforced the contractile effect of PDGF-BB
(Fig. 8b). Our results are supported by those of Graves et al.
[96] who found in human arterial SMCs that
PDGF-BB downstream-signalling goes ahead with the
generation of cAMP/PKA, just as the cAMP gener-
ation depends on the release of arachidonic acid,
probably activating EP2/4- or IP-receptors. These results
were also proven in rat myometrial cells [71] and in GPs’
airway SMCs [97]. Usually, stimuli which activate prosta-
glandin receptors coupling to Gαs; e.g. EP2/4, IP or DP
should increase intracellular cAMP [98, 99].
Aside from cAMP, NO seems to be of impact in

PDGF-BB downstream-signalling. Though, NO-inhibition

Fig. 9 The role of actin polymerisation in PDGF-BB-induced contraction. a. Inhibition of actin polymerisation by cytochalasin D: (■) no pre-
treatment / 100 nM PDGF-B (n = 4); (□) 10 μM cytochalasin D / 100 nM PDGF-BB (n = 4). b Inhibition of actin polymerisation by latrunculin A: (■)
no pre-treatment / 100 nM PDGF-BB (n = 4); (□) 1 μM latrunculin A / 100 nM PDGF-BB (n = 4). a/b Statistics was performed by a LMM. P < 0.05 are
considered as significant: * p < 0.05 and *** p < 0.001
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only slightly enhanced PDGF-BB-induced contraction
(Fig. 8b). Our results are in line with those from Takase et
al. [11] who perfused rat mesenteric arteries; there
PDGF-BB stimulated NO-release even relaxed rat mesen-
teric arteries. The different characteristic of
PDGF-BB-induced NO-release might be due to two facts;
1) Takase et al. [11] exposed rat mesenteric arteries to
shear stress, generally going ahead with endothelial
NO-release [100], 2) systemic and pulmonary vessel be-
have different to similar stimuli [70].

PDGFR downstream-signalling: MAPK-pathway and PI3K-
α/γ and AKT/PKB
With regard to cellular regulation (migration, differenti-
ation, proliferation, growth or survival of cells), PDGFR
downstream-signalling mainly activates two pathways: 1)
the MAPK-pathway and 2) the PI3K/AKT/mTOR path-
way [101]. Our data show that both inhibition of MAP2K
by PD98059 or U-0126, as well as inhibition of
p38-MAPK by SB 203580 almost prevented the contrac-
tion by PDGF-BB (Fig. 7a/b). Notably, GPs’ PVs even re-
laxed slightly (Fig. 7a). In line with our data, Schaafsma et
al. [102] showed in GPs’ tracheal strips that
PDGF-BB-induced contraction highly depends on the ac-
tivation of MAP2K. Next, Boulven et al. [71] proved in rat
myometrial cells that PDGF-BB-dependent synthesis of
prostaglandins is up to MAP2K. Conversely, the stimulat-
ing effect of PDGF-BB on phospholipase A2 (PLA2) and
subsequent prostaglandin synthesis also depends on
MAP2K [71, 103–105]. Finally, MAPK-signalling is highly
involved in PDGF-BB-induced prostaglandin synthesis.
The PI3K/AKT/mTOR pathway highly contributes to

mediate the proliferative aspects of PDGFR [3, 101].
Here both, PI3K-α which is expressed ubiquitously [106]
and PI3K-γ which is expressed in the cardiovascular sys-
tem [106] contribute to the contractile effect of
PDGF-BB. Hence, PI3K-γ does not only regulate the sys-
temic vascular tone [106], but is also of impact for the
regulation of the pulmonary vascular tone. Together
with the fact that inhibition of AKT/PKB (Fig. 7e) pre-
vented the contractile effects in PVs, our results suggest
a role of PI3K/AKT/mTOR-signalling within the con-
tractile effect of PDGF-BB. Our data are supported by
Hua et al. [107] who showed that AKT prevents the deg-
radation of cytosolic PLA2 (cPLA2), finally promoting
prostaglandin synthesis. Beyond that, activation of AKT
is linked to the activation of eNOS [108], an issue which
seems to be negligible within PDGF-BB-induced regula-
tion of the pulmonary venous tone, as 1) inhibition of
AKT did not contract PVs and 2) as inhibition of eNOS
enhanced the contractile effect of PDGF-BB only slightly
(Fig. 8b). Further, our results are contrasting to those of
Macrez et al. [109] who showed in vascular SMCs that
the PDGF-BB-induced intracellular increase of calcium

depends on PI3K-β, but not on PI3K-α which are both
coupled to receptor tyrosine kinases (RTKs) [110–112].
Regarding PDGF-BB-signalling, non-direct activation of
MAPK and PI3K is conceivable, as TP-receptors are also
linked to Gβγ, finally leading to the activation of MAPK-
or PI3K/Akt/mTOR signalling [80].
In conclusion, prostaglandin generation appears to be

a major mechanism beyond PDGF-BB-induced regula-
tion of the pulmonary venous tone. Within this context,
there are several possibilities to activate cPLA2, 1) by the
increase of intracellular calcium [71, 104, 113], 2) by
PDGF-BB-induced MAPK-signalling [71, 103–105] and
3) by the inhibitory properties of AKT on cPLA2-degra-
dation [107]. In addition, 4) the transactivation of
PDGFR by the G

αq
-coupled AngII is described [101],

leading to the activation of PLC and IP3 and to the sub-
sequent increase of intracellular calcium. For an over-
view, please see Fig. 10.

The role of actin polymerisation in PDGF-BB-induced
contraction
Aside MLC-phosphorylation, actin polymerisation plays
an important role within the contractile process of
SMCs [26, 27]. Within this context, it is of interest that
PDGF-BB – via activation of SRC - stimulates the abel-
son tyrosine kinase (ABL) [114–116] which itself pro-
motes actin polymerisation [27]. In contrast, the TKI
imatinib is known to inhibit ABL [27].
Our data indicate that PDGF-BB-induced actin poly-

merisation contributes to the contractile effect of
PDGF-BB, as inhibition of actin polymerisation by cyto-
chalasin D (Fig. 9a) or latrunculin A (Fig. 9b) strongly
reduced PDGF-BB-induced contraction in PVs. With re-
gard to the stimulating effect of PDGF-BB on ABL, our
results are comprehensible. They are even less unex-
pected, as MAPK-signalling which represents a corner-
stone of PDGF-BB downstream signalling influences
actin polymerisation [117, 118]. So far, the impact of
actin polymerisation for the regulation of the pulmonary
venous tone has not been shown. Although, its relevance
for SMC-contraction was shown in SMCs of various ves-
sel and species; e.g. canine carotids [119], ferret aorta
[120], rat mesenteric arteries [121, 122], rat thoracic
aorta [57] or rat extrapulmonary PAs [123], as well as in
SMCs from airways [124].

Link between PDGF-BB induced pulmonary vascular
contraction and remodelling in PH
PDGFR-downstream-signalling is associated with the in-
crease of intracellular calcium [9, 10, 64]. Here we show
that the contractile effect of PDGF-BB also depends on it.
Increased calcium-levels represent a major trigger for
vasoconstriction, proliferation and migration of vascular
SMCs [18, 80, 125–127]. Thus, stimuli which increase
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calcium-levels, e.g. TXA2 or ET-1 [80, 128], but also
hypoxia [125, 127] or PDGF-BB [2, 64] do not con-
strain to increase the pulmonary vascular tone, but
also promote pulmonary vascular remodelling. Hence,
enhanced tone and remodelling are closely linked with
each other. In PH, this circumstance could be benefi-
cial in view of new therapeutics, e.g. therapeutics ad-
dressing the mechanisms beyond PDGF-BB-induced
contraction may attenuate vasoconstriction and re-
modelling. Ultimately, calcium-levels could be
adressed directly by amlodipine or nifedipine, but also
indirectly via inhibition of TP/EP1/3- receptors. In re-
spect thereof it is worth mentioning that EP3-receptor
deficiency attenuates PH [89] and that prednisolone
inhibits PDGF-BB-induced proliferation of PAs’ SMCs
[129]. Further, inhibition of MAP2K-/AKT-signalling
and cPLA2 could be of interest. Notably, the men-
tioned pathways could be addressed in a systemic way,
but also topically, e.g. via inhalation to reduce sys-
temic side effects.

Conclusions
PDGF-BB contracts pulmonary vessels. The PDGF-BB re-
lated pulmonary vascular effects are prevented by the TKI
imatinib (perfused or nebulised). The mechanisms beyond
PDGF-BB-induced contraction depend on actin polymer-
isation, the intracellular increase of calcium, activation of
EP1/3/4- and TP-receptors and MAP2K- or PI3K/AKT--
signalling. In addition, PDGF-BB induces the release of
TXA2 and cAMP. Finally, aside the known proliferative ef-
fects of PDGF-BB in PH, PDGF-BB-induced contraction
might also contribute to the pathogenesis of PH. Thus,
TKI-inhibtion appears to be beneficial and particularly
nebulised imatinib might prevent systemic side effect
[130].
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