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Abstract

Background: Circulating microRNAs have shown promise as non-invasive biomarkers and predictors of disease
activity. Prior asthma studies using clinical, biochemical and genomic data have not shown excellent prediction of
exacerbation. We hypothesized that a panel of circulating microRNAs in a pediatric asthma cohort combined with
an exacerbation clinical score might predict exacerbation better than the latter alone.

Methods: Serum samples from 153 children at randomization in the Childhood Asthma Management Program
were profiled for 754 microRNAs. Data dichotomized for asthma exacerbation one year after randomization to
inhaled corticosteroid treatment were used for binary logistic regression with miRNA expressions and exacerbation
clinical score.

Results: 12 of 125 well-detected circulating microRNAs had significant odd ratios for exacerbation with miR-206
being most significant. Each doubling of expression of the 12 microRNA corresponded to a 25–67% increase in
exacerbation risk. Stepwise logistic regression yielded a 3-microRNA model (miR-146b, miR-206 and miR-720) that,
combined with the exacerbation clinical score, had excellent predictive power with a 0.81 AUROC. These 3
microRNAs were involved in NF-kβ and GSK3/AKT pathways.

Conclusions: This combined circulating microRNA-clinical score model predicted exacerbation in asthmatic
subjects on inhaled corticosteroids better than each constituent feature alone.

Trial registration: ClinicalTrials.gov Identifier: NCT00000575.
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Background
Asthma is a chronic inflammatory respiratory disease
characterized by airway obstruction due to both smooth
muscle hyperresponsiveness and inflammation [1]. Both
asthma therapies and hospitalizations/doctor visits gen-
erate significant healthcare utilization [2]. Specifically, an
estimated US$62.8 billion was spent on the diagnosis
and management of asthma in the U.S. in 2009 with in-
flation adjusted costs continuing to rise [3]. Asthma is
the leading chronic disease cause of hospitalizations and
school absences in children [4]. Individuals with fre-
quent asthma exacerbations represent those with the
greatest morbidity and economic cost due to asthma [5,
6]. Thus, identification of children at highest risk for

exacerbations could result in personalized care and sub-
stantially improve outcomes. The current guidelines that
determine asthma control are related to clinical symp-
toms, lung function, and recent history of exacerbations
[7]. Despite ongoing efforts in asthma management and
control, acute exacerbations continue to be a significant
health care problem. Numerous studies have attempted
to predict asthma exacerbations in children using a var-
iety of clinical and biomarker inputs. These include clin-
ical prediction scores and exhaled breath condensate
interleukin-5 level [8], fractional exhaled nitric oxide
and inflammatory markers in exhaled breath condensate
alone and combined with clinical variables [9], recent
severe asthma exacerbations as an independent predictor
of future severe exacerbations [10], and addition of
single nucleotide polymorphisms (SNPs) in concert with
clinical parameters to predict exacerbation outcomes
[11]. In the latter, the authors used genome-wide
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genotypic data (~ 550,000 SNPs) to determine children
at risk for a severe asthma exacerbation. A predictive
panel consisting of 417 children and a validation sample
of 164 children was used; however, the addition of 160
SNPs to clinical data only increased the model Area
Under the Receiver Operator Characteristic (AUROC)
curve from 0.54 to 0.66 showing good, but not excellent,
predictive power. Similarly, each of the other aforemen-
tioned models has had variable success with respect to
prediction of asthma exacerbation [12], and there is on-
going need for improved prediction of asthma clinical
outcomes and discovery of biomarkers that achieve this
goal.
MicroRNAs (miRNA) are short, single-stranded RNA

molecules approximately 19–23 nucleotides that regulate
gene expression with various functions described in the
literature [13]. Circulating miRNAs are attractive bio-
markers for prediction of disease outcomes [14] and are
stable in the serum over long time frames even in harsh
conditions [15]. Circulating miRNA has been studied as
a non-invasive biomarker in heart transplant rejection
prediction [16], prediction of metastasis in breast cancer
patients with early disease [17], and prediction of thiazo-
lidinedione response in diabetes prevention [18]. Prior
studies of miRNA in asthma have focused mainly on
asthma case-control status, including studies involving
circulating miRNA expression in childhood asthmatics
compared to healthy controls [19], regulation of IL-5
expression by miRNA differential expression in
serum of asthmatics and health controls [20], and
differential expression of miRNA in epithelial and
airway cells [21]. A recent study showed that a sub-
set of circulating miRNAs is expressed uniquely be-
tween asthma and allergic rhinitis patients [22].
However, prediction of important clinical events,
such as asthma exacerbations, using circulating miR-
NAs has not been performed.
Our study investigated asthma exacerbation prediction

in the 12 months following randomization to the inhaled
corticosteroid treatment arm in 153 subjects in Child-
hood Asthma Management Program (CAMP) [23]. The
miRNA model was compared to a clinical score of ex-
acerbation risk [24]. Subsequently, we assessed the use
of a combined miRNA and exacerbation clinical score
model. We hypothesized that a miRNA model or a com-
bined miRNA-clinical score model would have predictive
capabilities superior to the clinical score alone. We iden-
tified a panel of 3 miRNAs with good predictive power
comparable to the clinical score. One of the 3 miRNAs
targets genes is well known in asthma pathobiology,
while the others have been associated with asthma. The
combined miRNA-clinical score model showed very
good predictive power superior to either the miRNA or
clinical score models alone.

Methods
CAMP inclusion criteria and definition of asthma
exacerbation
The CAMP study was a multi-center, randomized,
double-blinded clinical trial that investigated the safety
and efficacy of inhaled budesonide versus nedocromil
versus placebo in 1041 pediatric patients over a mean
follow-up of 4.3 years. The CAMP Genetics Ancillary
Study was approved by the Brigham and Women’s Hos-
pital Internal Review Board, protocol # 2015P001622/
BWH. Informed consent and assent was obtained from
parents and participants respectively.
The trial has been described [25]. Briefly, the inclusion

criteria were for 5–12 year old children at time of
screening, with chronic asthma symptoms for at least
6 months in the year prior to interview, PC20 < 12.5 mg/
mL, and other factors. Children were excluded if their
asthma was severe, had a confounding or complicating
condition, or the child could not perform acceptable
spirometry or methacholine challenge. Diary card and
other clinical characteristics were collected prior to
randomization.
Asthma exacerbations were defined as the need for

oral prednisone for treatment of asthma which are also
called steroid bursts [23]. Clinics instructed patients/
caregivers to recognize an asthma exacerbation based on
symptoms or by decrease in peak flow to < 80% personal
best. Oral prednisone was prescribed “if the patient uses
more than 12 puffs of albuterol in 24 hours”, or had
symptom code described as “one or more asthma epi-
sodes that last longer than 2 hours or result in shortened
normal activity, seeing a doctor for acute care, or going
to a hospital for acute care”, or if peak flow dropped to
< 50% of personal best despite bronchodilator usage.
Prednisone dose and duration in addition to tapering
protocol were specified in the protocol, and the phys-
ician could decide on an extended course of oral steroid
depending on the clinical response.

miRNA profiling
miRNA profiling of serum from 160 CAMP subjects
taken at the start of CAMP (i.e., enrollment or
randomization to treatment) using TaqMAN miRNA
quantitative PCR primers (Life Technologies Megaplex
RT Primers, Human Pool Set v3.0, Omaha, Nebraska)
containing 754 primers representing 738 unique human
miRNAs (miRBase release 14) was previously described
[26]. The initial quality control was performed per
manufacturer protocol using pre-defined thresholds for
amplification scores (> 1.24) and Cq (> 0.80) confidence
intervals. All miRNA in this paper are annotated using
miRBase release 14 [27] (http://www.mirbase.org/). The
complete miRNA dataset is accessible at the NCBI Gene
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Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) GSE74770.
Analysis of biological replicates was performed in 10%

of the samples showing high miRNA-miRNA correla-
tions (rank correlations of > 0.90; data not shown). All
subjects were self-identified non-Hispanic Caucasians to
limit the effect of race on miRNA expression [28], and
subjects were selected from the inhaled corticosteroid
arm of the trial. For data analysis, quantile normalization
on the detected miRNAs was performed sample-wise to
the mean of the data matrix using MatLab (MathWorks
Inc., Natick, Massachusetts) function quantilenorm. A
miRNA was included in the analysis if expression was
present in at least 70% of subjects: 125 miRNAs passed
this selection criterion. 7 subjects were excluded due to
incomplete steroid burst usage data yielding 153 subjects
for analysis. For subjects with replicate miRNA sample
profiles, only replicates #2 were used in this analysis.

Data analyses.
Asthma exacerbation clinical score calculation
Using a previously described approach for calculating
asthma exacerbation risk [24], a clinical score for predict-
ing pediatric asthma exacerbation was calculated from the
baseline history performed during CAMP enrollment in
addition to parental survey data [24]. The scoring table is
reproduced in Additional file 1: e-Table S1. Since, leukotri-
ene modifiers were not used in clinical practice at time of
study, we capped the total maximum score from the clin-
ical score to 15 (rather than total of 16).

Logistic regression models
Data for asthma exacerbation from the first year after
randomization to the inhaled corticosteroid arm was
used. Consistent with the National Asthma Education
and Prevention Program (NAEPP) guidelines [29], pa-
tient data were dichotomized into exacerbation status
with a total steroid burst counts of 0–1 (status 0, no ex-
acerbation) and > 1 (status 1, exacerbation). Logistic re-
gression was performed using R with this binary
exacerbation status as the dependent variable, and
miRNA cycle threshold (CT) values or exacerbation clin-
ical score as the independent variable, separately [30].
Both univariate and multivariate models adjusting for
clinical co-variates (age, sex) were performed. Missing
miRNA CT values were replaced by the sample-wise me-
dian in order to perform backwards stepwise selection
on significant miRNAs and clinical variables with
p-value < 0.05. Goodness of fit for each model was
assessed with the Hosmer-Lemeshow test in the R pack-
age ResourceSelection [31]. The likelihood ratio test was
performed comparing the different models with R pack-
age lmtest [32].

Model validation, receiver operator characteristic (ROC)
curves and area under ROC curves
R package caret [33] was used to create a 60% training
and 40% testing set balancing the class distributions of
the outcome, steroid bursts. The R function predict was
used to predict the outcomes of the models on the test-
ing data set. ROC curves and Area Under the ROC
curve (AUROC) were calculated using R packages pROC
[34] and ROCR [35]. R package cvAUROC [36] was used
to perform 10-fold cross validation of AUROCs on the
full data set.

Identification of miRNA-gene targets and pathway analysis
miRTarBase [37] Release 6.0 was used to identify gene
targets of the 3 miRNAs (miR-146b, miR-206 and
miR-720) with “Functional MTI” support type, i.e., func-
tionally validated targets. Pathway analysis with the gene
list was performed with use of Database for Annotation,
Visualization and Integrated Discovery (DAVID version
6.8, https://david.ncifcrf.gov//) [38].

Results
Study population
Population characteristics of the 153 CAMP subjects
stratified by asthma exacerbation status are shown in
Table 1. 38 of 153 (25%) of subjects experienced an ex-
acerbation during the first year of the trial, despite being
randomized to inhaled corticosteroids. The cohort was
restricted to self-identified non-Hispanic whites to elim-
inate confounding from race on miRNA expression [28].

miR association and prediction of asthma exacerbation
Logistic regression showed 12 of the 125 interrogated
miRNA were associated with exacerbation for pediatric
asthma exacerbation within the first year following
randomization (Table 2). The strongest miRNA associ-
ation for asthma exacerbation was miR-206 with a
logistic regression odds ratio (OR) of 0.60 (95% CI:
0.42–0.83). The miR-206 (Panel A) and exacerbation
clinical score (Panel B) logistic functions are shown in
Fig. 1. All 12 miRNA associations had OR < 1 indicating
decreasing risk of asthma exacerbation with increasing
miRNA CT (i.e. decreasing abundance of circulating
miRNA). Overall, each doubling of expression of the 12
associated miRNAs was associated with a 25 to 67%
(corresponding to OR 0.8 to 0.6) increase in risk of ex-
acerbations. Following our initial univariate models, we
formulated a prediction model from the 12 associated
miRNAs using backwards stepwise logistic regression.
Following selection, a 3-miRNA model showed best
fit – miR-146b-5p, miR-206 and miR-720 (Table 3).
Interestingly, we had previously reported 3 of the 12
(miR-223-5p, miR-339-3p, miR-454-3p) to be
associated with baseline FVC%, and 6 of the 12
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(miR-126-3p, miR-146b-5p, miR-206, miR-342-3p,
miR-409-3p, miR-454-3p) to be associated with base-
line FEV1/FVC [26].

miR vs. clinical score models
The logistic regression model for exacerbation status
relative to the exacerbation clinical score had an OR
1.36 (95% CI: 1.14–1.64) indicating an increasing risk of
asthma exacerbation with increasing clinical score. The
miRNA, clinical score and combined (miRNA-clinical
score) models are summarized in Table 3. Likelihood ra-
tio testing indicated that training set combined (miR-cli-
nical score) model was superior to the clinical model
alone (Χ2 = 11.7, P-value 0.009).

Model prediction was assessed via ROC curves gener-
ated for the miRNA, clinical score and combined models
testing set data (Fig. 2). The combined model showed
good predictive power (AUROC 0.81), significantly better
than the clinical model (AUROC 0.67) or miRNA model
(AUROC 0.71). 10-fold cross-validation for AUROC was
performed on the full data set showing that the estimated
AUROC for the combined model retained good predictive
value and remained higher than both miRNA and clinical
model (Additional file 1: e-Table S2).

Gene ontology and pathway analysis
Next we assessed miRTarBase-identified functionally-
validated gene targets of the 3 miRNAs (miR-146b,
miR-206 and miR-720) for pathway and ontologic en-
richment. 2 of the 4 top significant pathways in DAVID
Biocarta Pathway Analysis were asthma-related: “Inacti-
vation of GSK3 by AKT causes accumulation of b-catenin
in alveolar macrophages” (FDR p-value 1.7 × 10− 2) and
“NF-κβ signaling pathway” (FDR p-value 8.0 × 10− 2)
(Additional file 1: e-Table S3). Multiple gene targets
of these miRNAs were in the “Inactivation of GSK3
by AKT causes accumulation of b-catenin in alveolar
macrophages pathway” (Additional file 1: e-Figure S1).
The most significantly enriched DAVID Gene Ontol-
ogy category was “positive regulation of fibroblast
proliferation” (FDR p-value 1.5 × 10− 2) (Additional file 1:
e-Table S4).

Discussion
In this study, we examined baseline circulating miRNA
in childhood asthmatics prior to treatment with inhaled
corticosteroids (ICS) to predict exacerbations in the sub-
sequent year. We noted that 12 miRNAs (Table 2) were
significantly associated with future exacerbations, with

Table 1 Study cohort characteristics at the start of CAMP (except # of steroid bursts in one year) stratified by asthma exacerbation
status

No. Subjects No Exacerbationa

N = 115
Exacerbationa

N = 38

Characteristic Mean (SD) Mean (SD) p-value

Age – years 8.9 (2.0) 8.9 (2.2) 0.93

Male sex – % 54% 61% 0.48*

Height – centimetre 133.2 (13.4) 132.8 (13.8) 0.86

Body Mass Index – percentile 61.5 (28.3) 63.1 (26.4) 0.75

Forced Expiratory Volume pre-bronchodilator – litre 1.7 (0.5) 1.6 (0.5) 0.71

# of steroid bursts in one yeara 0.3 (0.4) 3.2 (1.7) 1.4 × 10− 12

Clinical Asthma Exacerbation Score (# of subjects) Low 13
Average 43
High 59

Low 1
Average 10
High 27

0.08^

(SD) is standard deviation, where present
aExacerbation status: Participant who received 0–1 steroid burst in one year were classified as “no exacerbations.” Two or more steroid bursts were classified
as “exacerbation”
*Chi-square test. ^Fisher’s exact test. Others p-values calculated by two-sided t-test assuming non-equal variance

Table 2 Univariate (unadjusted) logistic regression model for
microRNAs relative to exacerbation with missing cycle threshold
values replaced by its sample-wise cycle threshold value median

microRNA Odds ratio (OR) 95% Confidence Interval (CI) p-value

miR-206c 0.60 0.42–0.83 0.004

miR-146b-5pc 0.66 0.48–0.89 0.007

miR-222-3p 0.70 0.52–0.93 0.02

miR-409-3pc 0.73 0.56–0.95 0.02

miR-223-5pb 0.62 0.40-0.92 0.02

miR-126-5pc 0.68 0.48–0.93 0.03

miR-339-3pb 0.72 0.53-0.96 0.03

miR-30e-3p 0.70 0.49–0.95 0.03

miR-126-3p 0.74 0.56–0.96 0.03

miR-342-3pc 0.80 0.64–0.98 0.04

miR-454-3pa 0.77 0.60-0.98 0.04

miR-720 0.71 0.50–0.98 0.046
amiRNA previously reported to be associated with baseline bFVC% and
baseline cFEV1/FVC [26]
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each doubling of expression of these miRNAs associated
with a 25–67% increase in risk of exacerbations. We had
previously reported 3 of the 12 (miR-223-5p,
miR-339-3p, miR-454-3p) to be associated with baseline
FVC%, and 6 of the 12 (miR-126-3p, miR-146b-5p,
miR-206, miR-342-3p, miR-409-3p, miR-454-3p) to be
associated with baseline FEV1/FVC [26]. When com-
bined, 3 miRNAs (miR-146b-5p, miR-206 and miR-720)
by themselves provided comparable predictive power to
an established clinical model of exacerbations. Moreover,
when these 3 miRNAs were combined with the clinical
factors included in the model, there was significant in-
crease in the ability to predict future exacerbations with
AUROC 0.81.
Notably, all of the subjects within the current study

were randomized to inhaled corticosteroids as part of a
clinical trial cohort. Therefore, while our findings may

apply broadly to asthma exacerbations as a whole, this
information may also have pharmacogenomic implica-
tions via the identification of subjects who experience
exacerbations despite therapy with inhaled corticoste-
roids. Therefore, validation of these findings may identify
subjects who may benefit from alternate, or additional,
therapies.
Our top miRNA, hsa-miR-206, was significantly asso-

ciated with subsequent asthma exacerbations with OR
0.60 (95% CI: 0.42–0.83) (Table 2). Given that the distri-
bution of expression for miR-206 is broad (spanning
multiple cycle thresholds, Fig. 1, Panel A), this suggests
that the reported OR for the individual miRNAs are
likely conservative. Figure 1 shows the difference be-
tween the miRNA (Panel A) and asthma exacerbation
clinical score (Panel B) logistic regression functions with
fairly dispersed values for exacerbation status compared

Fig. 1 Univariate logistic regression models for miR-206 expression (Panel a) and asthma exacerbation clinical score (Panel b) relative to exacerbation.
The horizontal axis represents the miRNA cycle threshold and asthma exacerbation clinical score for panels a and b, respectively. The right vertical axis
represents number of patients. In each panel, the top (inverted) histogram represents subjects who had an exacerbation and the bottom histogram
represents subjects who did not have an exacerbation. The red line represents the unadjusted logistic regression function with
probability of exacerbation on the left vertical axis. For instance in panel a, as the miR-206 cycle threshold increases (abundance in
blood decreases), the risk of asthma exacerbation decreases. Whereas in panel b, as the asthma exacerbation clinical score increases,
the risk of asthma exacerbation increases
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to a division at miR-206 cycle threshold around 26. This
suggests miR-206 discriminates exacerbation status
better than clinical score.
Stepwise selection of significant miRNAs resulted in a

3-miRNA model (miR-146b, miR-206 and miR-720) that
was subsequently compared to and combined with an
asthma exacerbation clinical score model (Table 3). The
combined miR-clinical score model had very good pre-
dictive power to discriminate exacerbation from no ex-
acerbation (AUROC 0.81). This AUROC is higher than
prior clinical studies focused solely on the asthma ex-
acerbation clinical score [24] with an AUROC of 0.75 for
a Costa Rican cohort and AUROC 0.69 for the CAMP
cohort and Childhood Asthma Control Test (C-ACT)
with AUROC 0.72 [39]. The AUROC is also improved
compared to other biomarkers including addition of our

prior study of GWAS SNPs from the same cohort [11].
The combined miR-clinical score model far exceeded
the predictive capability for exacerbation status com-
pared to the miRNA or clinical score model alone. These
data support the hypothesis that optimal prediction
models for personalized medicine are likely to come
from a combination of ‘ omics and clinical variables.
The miRNAs used to build our predictive model over-

laps with miRNAs relevant to asthma pathobiology.
miR-146b, along with miR-146a, are negative regulators
of inflammatory gene expression in lung tissue [40]. A
murine model study of acute and chronic asthma
showed consistent upregulation of miR-146b, which is
also expressed by leukocytes and has been shown as a
negative regulator NF-κβ in human breast cancer cells
[41]. This could potentially explain why circulating
miR-146b may be a viable biomarker. In eosinophilic
esophagitis, miR-146b has been found both in esopha-
geal biopsies and differentially regulated in the plasma
[42]. Altered expression in the airway wall of the other 2
miRNAs in our predictive model, miR-206 and miR-720,
were noted in a mouse model of childhood allergic
asthma [43]. Moreover, miR-206 has been shown to be
involved in airway smooth muscle (ASM) innervation
[44], thereby enhancing the mechanistic significance
of our model. Integrative miRNA studies would be
needed for direct elucidation of interactions of our
miRNAs as they relate to asthma pathobiology. Path-
way analysis (Additional file 1: e-Table S3) also had
borderline significance for the NF-κβ pathway, which
correlates to the aforementioned miR-146b regulatory
role. Genes affected by the miRNA were also
involved in the inactivation of GSK3 by AKT causes
accumulation of b-catenin alveolar macrophages

Fig. 2 Comparison of Receiver Operator Characteristic curves between
3 models. Asthma exacerbation clinical score (blue), miRNA (red) and
combined (miRNA and clinical score, green) models in the testing set
data. AUROCs were 0.671, 0.714, and 0.807, respectively. A linear LOESS
smoothing function was applied with 95% confidence interval shown

Table 3 Summary of logistic regression models relative to exacerbation with coefficient odds ratios, 95% confidence intervals and
other model measures. Each column represents the regression coefficients for each of the 3 models

Variable miR modela Clinical model miR + Clinical model

hsa-miR-206b 0.64**$ (0.45,0.89) __ 0.65** (0.44, 0.92)

hsa-miR-146b 0.72** (0.52,0.98) __ 0.67** (0.47,0.93)

hsa-miR-720 0.75 (0.51, 1.1) __ 0.70* (0.46,1.03)

Clinical score __ 1.36*** (1.14,1.64) 1.38*** (1.15,1.69)

Age __ 1.01 (0.84,1.23) 0.97 (0.80,1.20)

Sex __ 0.79 (0.36,1.73) 0.70 (0.29,1.65)

Observations 153 153 153

Log Likelihood −76.8 −79.5 −69.9

Akaike Information Criterion (AIC) 161.6 167 153.7

Hosmer-Lemeshow Goodness of Fit Test^ Χ2 = 9.15
p-value = 0.33

Χ2 = 8.45
p-value = 0.39

Χ2 = 7.07
p-value = 0.53

aThe miRNA model was determined by backwards stepwise selection. The clinical score model was adjusted for age and sex per original publication
bEach of the model coefficients presents the odds ratio and the 95% confidence interval in parenthesis
P-values are marked by an asterisk (*) with: *p < 0.1, **p < 0.05, ***p < 0.01
^10 bins used to calculate quantiles with degree of freedom = 8

Kho et al. Respiratory Research  (2018) 19:128 Page 6 of 9



pathway (Additional file 1: e-Figure S1 and e-Table S3). In-
activation of GSK3 has been studied in a murine model
and is associated with ASM hypertrophy and possibly
linked to asthmatic airway remodeling [45]. Overall, fur-
ther study of these miRNA may suggest a functional ap-
proach to small RNA-directed therapies to treat or
prevent asthma exacerbations.
This study has several strengths including a large

number of interrogated miRNAs, large sample size of
pediatric asthma patients from the CAMP cohort, bio-
logically significant miRNAs found in modeling, and
comparison to a prior validated asthma exacerbation
clinical score. The CAMP cohort is clinically
well-characterized notably for both identification and
protocol-based treatment of asthma exacerbations,
which should reduce measurement error. Replicate ana-
lysis discussed in the methods section showed high
miRNA-miRNA correlations. While the primary CAMP
trial recruitment occurred several years ago, circulating
miRNAs have been shown to be stable over the course
of many years [46, 47]. While we do not yet have inde-
pendent replication, the maintenance of high AUROCs
in our cross-validation analyses supports potential
generalizability.

Conclusions
From a survey of 738 baseline circulating miRNA in
childhood asthmatics prior to ICS treatment, we identi-
fied 12 miRNAs that were significantly associated with
exacerbations in the subsequent year, with each doubling
of expression of these miRNAs associated with a 25–
67% increase in risk of exacerbations. When combined,
3 miRNAs (miR-146b-5p, miR-206 and miR-720) by
themselves provided comparable predictive power to an
established clinical model of exacerbations. Moreover,
when these 3 miRNAs were combined with the clinical
factors included in the model, there was significant in-
crease in the ability to predict future exacerbations with
AUROC 0.81. To our knowledge, this is the first study
to investigate prediction of asthma exacerbations with
miRNAs.
Our results are promising for the translation of circu-

lating miRNA to predict clinical outcomes related to
asthma and are consistent with prior studies using circu-
lating miRNA as biomarkers, predictors, or markers of
treatment response. miRNA as potential biomarkers for
a priori prediction of asthma exacerbations may be par-
ticularly salient, given the substantial morbidity and
health care costs associated with exacerbations. Add-
itionally, since this particular study restricted subjects to
inhaled corticosteroid therapy, its findings may have dir-
ect pharmacogenomic relevance in the prediction of
which participants respond to ICS therapy. Further study
of miRNA alone or in concert with other genomic and

epigenomic markers may reveal additional predictive
power for asthma risk assessment and even treatment
responses.

Additional file

Additional file 1: Circulating MicroRNAs and Prediction of Asthma
Exacerbation in Childhood Asthma. e-Table S1. Asthma Exacerbation
Clinical Score. e-Table S2. Cross-validation (10-fold) of AUROC (all data).
e-Table S3. DAVID Biocarta Pathway Analysis. e-Table S4. Top DAVID
GOTERM_BP DIRECT. e-Figure S1. DAVID (Database from Annotation,
Visualization, and Integrated Discovery) Biocarta Pathway analysis - Inactivation
of GSK3 by AKT causes accumulation of b-catenin in alveolar macrophages.
miRTarBase 6.0 was used to determine experimentally validated microRNA-
target interactions with genes. The gene list was subsequently used for
pathway analysis. The genes marked with the red star are targeted by the
microRNA. (DOCX 956 kb)
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