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Abstract

Background: Asthmatics that are exposed to inhaled pollutants such as cigarette smoke (CS) have increased
symptom severity. Approximately 25% of adult asthmatics are thought to be active smokers and many
sufferers, especially in the third world, are exposed to high levels of inhaled pollutants. The mechanism by
which CS or other airborne pollutants alter the disease phenotype and the effectiveness of treatment in
asthma is not known. The aim of this study was to determine the impact of CS exposure on the phenotype
and treatment sensitivity of rodent models of allergic asthma.

Methods: Models of allergic asthma were configured that mimicked aspects of the asthma phenotype and
the effect of CS exposure investigated. In some experiments, treatment with gold standard asthma therapies
was investigated and end-points such as airway cellular burden, late asthmatic response (LAR) and airway
hyper-Reactivity (AHR) assessed.

Results: CS co-exposure caused an increase in the LAR but interestingly attenuated the AHR. The effectiveness of
LABA, LAMA and glucocorticoid treatment on LAR appeared to be retained in the CS-exposed model system. The
eosinophilia or lymphocyte burden was not altered by CS co-exposure, nor did CS appear to alter the effectiveness of
glucocorticoid treatment. Steroids, however failed to reduce the neutrophilic inflammation in sensitized mice exposed
to CS.

Conclusions: These model data have certain parallels with clinical findings in asthmatics, where CS exposure did not
impact the anti-inflammatory efficacy of steroids but attenuated AHR and enhanced symptoms such as the
bronchospasm associated with the LAR. These model systems may be utilised to investigate how CS and
other airborne pollutants impact the asthma phenotype; providing the opportunity to identify novel targets.
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Background
Asthma is a respiratory disease that is increasing in preva-
lence globally. Airborne pollutants such as cigarette
smoke (CS, direct and passive) and traffic/industrial pollu-
tion are reported to increase asthma susceptibility, cause
quality of life issues and enhance symptom severity, fre-
quency of attacks and disease exacerbations [1–23]. Smok-
ing and passive smoking has also been shown to adversely
impact on the effectiveness of standard treatment such as

inhaled corticosteroid (ICS) in asthmatics [24–28] and
worsen disease outcome [29]. Despite the fact that asthma
is a severe and debilitating illness, a significant proportion
of asthma patients smoke or are exposed to passive smoke
[30]. As many as half of all adult asthma patients may be
active, or previous smokers [13, 14]. Thus with the in-
crease in airborne pollution levels, especially in developing
countries, and continued exposure to CS (either directly
or passively), it is important to try and understand the
mechanism by which these pollutants impact on asthma
pathogenesis and whether this contributes to treatment-
resistance.
Within allergic asthma, exposure to allergen results in

a biphasic bronchoconstrictor response. Immediate

* Correspondence: m.birrell@imperial.ac.uk
1Respiratory Pharmacology, National Heart and Lung Institute, Faculty of
Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, UK
2Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit,
AstraZeneca, Gothenburg, Sweden
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Belvisi et al. Respiratory Research  (2018) 19:89 
https://doi.org/10.1186/s12931-018-0799-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-018-0799-7&domain=pdf
mailto:m.birrell@imperial.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


bronchoconstriction as a result of exposure is termed
the Early Asthmatic Response (EAR) and typically oc-
curs within 1 h of contact with aeroallergen. The Late
Asthmatic Response (LAR) refers to a more prolonged
bronchoconstriction event taking place approximately
3–8 h following contact with allergen. The LAR is often
used within clinical studies exploring new therapeutic
options with which to treat asthma and as such is con-
sidered to be a clinically relevant endpoint [11, 31].
Airway Hyper-Responsivity (AHR) is a cardinal feature

of the asthma phenotype. It is defined as an increased
sensitivity to inhaled stimuli resulting in narrowing of
the airways, which would not usually occur in healthy
individuals. This response manifests as excessive bronch-
oconstriction and airflow limitation, resulting in short-
ness of breath and chest tightness. Stimuli of AHR
include pollution, allergens, cold air and spasmogens
such as Methacholine (MCh). The endpoint of AHR in
allergic asthmatics exposed to CS has been investigated
but results are sparse and conflicting.
Many features of allergic asthma have been success-

fully modeled in rats and mice. The Brown Norway rat
is considered to be one of the most suitable rat strain
for use as an allergic asthma model. This particular
strain is a high IgE producer, it produces robust
responses to allergens (distinct EAR and LAR) and the
infiltration of allergic airway inflammation is considered
to be similar to that seen in asthmatic patients [31, 32].
The mouse is also considered to be an advantageous
model of allergic asthma due to the possibility of the ap-
plication of genetically modified (GM) strains and the
fact that it comprises a highly characterised immune
system.
The aim of this study was to determine the effect of

CS co-exposure on the phenotype and treatment sensi-
tivity of rodent models of allergic asthma. In order to
investigate this, rodent models of allergic asthma were
co-exposed to CS and endpoints of the Late Asthmatic
Response (LAR), Airway Hyper-Responsivity (AHR) and
airway cellular burden were assessed. The effectiveness
of gold standard asthma treatments (i.e. ICS, LABA and
LAMA) were also investigated within these models. It
was hypothesised that the allergic asthma models
exposed to CS would exhibit enhanced LAR and AHR
responses and the efficacy of standard asthma treat-
ments would be diminished within these groups.

Methods
Animals
All experimental protocols were approved by a local eth-
ical review process and strictly adhered to the Animals
(Scientific Procedures) Act 1986 UK Home Office guide-
lines and performed according to the ARRIVE guide-
lines. Male Brown Norway rats (200-250 g) and male

C57BL/6 mice were obtained from Harlan, UK. All ani-
mals were housed in individually ventilated cages (IVC)
and a 12-h light-dark cycle maintained. Prior to and dur-
ing experimental periods, food and water was supplied
ad libitum.

Cigarette smoke exposure system
CS exposure was performed according to methods as
previously described by our laboratory [33, 34]. Briefly,
filtered research cigarettes (University of Kentucky
Research Cigarettes, [Ref: #3R4F]) were stored at 4 °C,
and 48 h prior to use they were brought to room
temperature and the filters removed. On the day of ex-
posures, the exposure system equipment was set up as
previously described [33, 34] and the system flow set to
1.5 L/min. Animals were placed in stainless steel cages
(rats: 12 per cage; mice: 40 per cage) before being placed
into the system. Cigarettes were administered to the sys-
tem via the pinch valve. Smoke exposure sessions lasted
for 50 mins, defined as the last cigarette being removed
from the system 50 mins from the first being lit. The
system flow was checked at 15 min intervals, and the
wellbeing of the animals checked continually through
each session with the use of a torch for visibility. Total
Suspended Particulate (TSP) was sampled at 30 min in-
tervals in each exposure session. A filter membrane was
weighed prior to being administered to the dry gas
meter sampling unit. Each TSP sample period was
1 min. The filter was weighed again at the end of the
sampling period. The dry gas meter recordings were
noted at the start and end of each exposure period. TSP
was calculated as follows:

Particulate weight mgð Þ
¼ post sampling filter weight

–pre−sampling filter weight

Total sample volume m3
� �

¼ End dry gas meter reading–start dry gas

meter reading

TSP mg=m3
� � ¼ Particulate Weight mgð Þ=

Total Sample Volume m3
� �

The TSP values were consistent and as such a consist-
ent CS burden could be confirmed.

Investigating the effect of cigarette smoke exposure in
the Brown Norway rat model of the LAR
A rat model of allergic asthma was used as previously
described [32]. Briefly, male Brown Norway rats were
sensitised on day 0, 14 and 21 with chicken ovalbumin
(OVA) (100 μg/rat, i.p., Grade V, Sigma, UK.) adminis-
tered with Alum (20 mg/rat aluminium hydroxide and
20 mg/rat magnesium hydroxide, i.p., Alum™ Thermo
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Scientific, UK). Rats were exposed to room air or CS for
1 h, twice a day (4 h apart) on day 21, 22, 23, 24, 25, 26,
and 27. On day 28 the rats were exposed to air/smoke in
the morning and in the afternoon the rats were chal-
lenged with vehicle (saline, aerosolised for 30 min) or
OVA (1% w/v, aerosolised for 30 min). The LAR was
monitored in conscious BN rats for 1 to 6 h after chal-
lenge as previously described [31, 35]. The following day
the animals were euthanised with pentobarbitone
(200 mg/kg, i.p., Centaur Services, UK). Bronchoalveolar
lavage (BAL) was carried out by injecting 3 ml of RPMI
culture medium (Invitrogen, UK) via a cannula inserted
into the trachea, waiting 30 s and then removing it. This
was repeated and the collected BAL fluid (BALF) pooled.
Total and type of white cells in the BALF were deter-
mined as previously described [32, 35].

Assessing the effectiveness of standard asthma therapies
in the CS co-exposed rat model of the LAR
To determine if CS co-exposure alters the effectiveness
of current asthma therapies, rats were treated with top-
ical glucocorticoid, budesonide; LABA, Olodaterol, and
LAMA, glycopyrrolate. Briefly, under inhaled anaes-
thetic, rats (n = 8) received vehicle (0.5% ethanol in
saline, 1 ml/kg, intratracheal), Olodaterol (1 mg/kg, dose
selected from preliminary studies), budesonide (3 mg/kg,
dose selected from previous work [35]) or glycopyrrolate
(1 mg/kg, dose selected from preliminary studies) one
hour before and 30 min after OVA challenge. LAR was
measured in all three studies as described in the previ-
ous section and airway inflammation was assessed in the
study with glucocorticoid intervention.

Investigating the effect of cigarette smoke exposure in a
C57BL/6 model of AHR
A mouse model that we have previously shown to
feature AHR was applied to this body of work [36,
37]. Briefly, male C57bl/6 mice were sensitised on day
0 and 14 with either OVA (10 μg/ mouse, i.p.) with
Alum™ (diluted 1:1 with saline, 100 μl i.p.) or HDM
(0.5 μg/kg in 100 ul, i.p. from Greer, USA – No
Alum™). On days 24, 25, 26 mice were challenged in-
tranasally with vehicle (50 ul saline), OVA (2.5 mg/
kg) or HDM (1.25 μg/kg). Purified HDM extract from
Dermatophagoides pteronyssinus (Der p; lot number
124632; GREER laboratories, USA) with a known con-
tent of Der p1 (12.76 μg/mg dry weight) was used in
these experiments. Endotoxin content – 125 EU/vial
(121 μg HDM /vial).
Mice were exposed to room air or CS for 1 h, twice a

day (4 h apart) on days 21 to 28. This CS exposure
protocol was based on previous development work [33]
using a system previously described [34]. On day 29 lung
function (Penh) was assessed to increasing doses of

inhaled spasmogen (aerosolised 5-HT) using a method
previously described [36]. After the lung function had
returned to pre-spasmogen levels the mice were eutha-
nised with pentobarbitone (200 mg/kg, i.p., Centaur
Services, UK). BAL was carried out by injecting 0.3 ml
of RPMI culture medium (Invitrogen, UK) via a cannula
inserted into the trachea, waiting 30 s and then remov-
ing it. This was repeated twice more and the collected
BALF pooled. Total and type of white cells in the BALF
was determined as previously described [36].
Assessing the effectiveness of steroid asthma therapy

in the CS co-exposed mouse model of AHR.
To determine if CS co-exposure alters the effectiveness

of glucocorticoids, mice received vehicle (0.5% methyl-
cellulose plus 0.2% tween80 in water, 10 ml/kg, orally)
or budesonide (0.3, 1 or 3 mg/kg, orally, doses selected
from previous work [36]) twice per day on days 24–28
(1 h prior to the morning CS exposure and 1 h after the
afternoon CS exposure). Airway cellular burden was
assessed on day 29 as described above. AHR was not
assessed because CS co-exposure attenuated the signal.

Data analysis
Data are expressed as mean ± S.E.M. of n observations.
Statistical significance was determined using either
single or multiple comparisons (specific tests used are
described in the Figure legends), using GraphPad Prism
5 software. A P value < 0.05 was taken as significant and
all treatments were compared with the appropriate con-
trol group.

Results
Effect of cigarette smoke exposure on a rat model of
allergic asthma
Antigen challenge led to a marked increase in respira-
tory distress (increased audible and visual signs) that
correlated with a change in Penh levels in sensitised rats,
as previously shown and described as a LAR [31, 35]
(Fig. 1a). Exposure to CS alone appeared to have no
effect compared to the appropriate control group, but
when rats were co-exposed with the antigen there was
an increase in the magnitude of the LAR (Fig. 1a).
The day after antigen challenge, we observed a signifi-

cant increase in neutrophils, eosinophils and lympho-
cytes in the BALF (Fig. 1b-d). CS alone caused a small
but statistically significant increase in BALF neutrophilia
(Fig. 1b), but did not alter the allergic cellular inflamma-
tion triggered with antigen challenge (Fig. 1b-d).
To determine if the CS plus antigen challenge pheno-

type had an altered sensitivity to gold standard asthma
treatment we profiled a topical glucocorticoid, LABA
and LAMA. Figure 2 shows that antigen challenge in-
creased the BALF levels of eosinophils, neutrophils and
lymphocytes. CS alone increased neutrophil number but
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did not significantly alter the response to antigen (Fig.
2). Topical treatment with the clinically relevant gluco-
corticoid, budesonide, inhibited the cellular inflamma-
tion in both the antigen alone and the antigen plus CS
co-exposed animals (Fig. 2). This would suggest that co-
exposure with CS did not alter the anti-inflammatory
effectiveness of budesonide within this model.
Treatment with topical glucocorticoid, LABA and

LAMA impacted on the LAR observed after antigen chal-
lenge (Fig. 3). CS exposure alone appeared to have no dir-
ect effect on changes in Penh but co-exposure increased
the LAR. The CS co-exposed LAR signal was almost com-
pletely blocked by treatment with olodaterol or gluco-
corticoid and attenuated by glycopyrrolate (Fig. 3). This
would indicate that although co-exposure with CS leads
to an enhanced LAR in this model, this particular asthma
phenotype is still sensitive to topical glucocorticoid and
bronchodilator treatment.

Effect of cigarette smoke exposure on mouse models of
allergic asthma
Exposure to antigen, either OVA or HDM, resulted in
AHR to the inhaled spasmogen (5-HT) (Fig. 4a and b).
Intriguingly, whilst exposure to CS alone did not appear

to alter responses to 5-HT, in both model systems CS co-
exposure attenuated the AHR. Antigen challenge caused a
significant increase in BAL eosinophils, neutrophils and
lymphocytes (Fig. 4c, d and e). CS alone significantly in-
creased neutrophil number in the BAL but did not alter
the level of eosinophils and lymphocytes in BAL after
HDM challenge. An additive effect was observed for the
neutrophilic inflammation after combined HDM and CS
challenge (Fig. 4).
As CS co-exposure attenuated AHR in both model

systems, we could not determine the impact of stand-
ard asthma therapies on this end point. Therefore we
profiled the anti-inflammatory effects of a glucocortic-
oid (budesonide, administered p.o.) on the cellular
inflammation only. As can be seen in Fig. 5, antigen
challenge increased BAL cellular inflammation, and
this signal was inhibited by treatment with budeso-
nide. Co-exposure to CS did not appear to impact on
the effectiveness of budesonide treatment on antigen
induced increase in eosinophil and lymphocyte num-
bers (Fig. 5). Neutrophil numbers after CS challenge
alone, or in combination with antigen challenge, was
not altered by budesonide treatment as previously re-
ported [38].

Fig. 1 Effect of CS co-exposure on a rat model of allergic asthma. Sensitised male Brown Norway rats were challenged with an aerosol of saline
or OVA for 30 min. Rats were co-exposed to room air or CS (twice a day) for eight days. Changes in lung function (Penh) were assessed from 1 h
after the end of challenge for 5 h. BALF was collected the following day and the numbers of white cells assessed. Data are represented as mean
± S.E.M. for n = 8 animals in each group. a: LAR, b: neutrophil number, c: Eosinophil number and d: lymphocyte number. The statistical signifi-
cance of the response to antigen and/or CS was determined using a Mann-Whitney U test and denoted with # (P < 0.05)
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Discussion
Airborne pollutants such as CS (direct and passive) are
known to increase asthma symptoms, severity, frequency
of attacks and disease exacerbations and to adversely im-
pact the effectiveness of standard treatment such as
inhaled corticosteroid (ICS) in asthmatics. Despite this,
the levels of smoking in asthmatic patients are still high;
with some estimates suggesting that smoking asthmatics
in developed countries represent approximately one
quarter of all sufferers. Thus it is important to try and
understand the mechanism by which pollution impacts
on asthma pathogenesis and treatment. To investigate
this effect we determined how CS altered the asthma
phenotype in rodent models of allergic asthma. Our
studies showed that CS co-exposure increased the mag-
nitude of the LAR, but actually inhibited the AHR sig-
nal. CS co-exposure did not appear to impact on cellular
burden (above and beyond an additive effect) or treat-
ment effectiveness. This is the first pre-clinical study to
comprehensively examine the impact of CS co-exposure
on the asthmatic phenotype, and the data demonstrates
that these models have many parallels with clinical ob-
servations suggesting their usefulness for future
investigations.
Antigen challenge triggered cellular recruitment in

sensitised animals as previously reported [35, 39].

Similarly exposure to CS caused the expected increase in
airway neutrophilia [40]. Co-exposure of the allergic
asthma models with CS appeared not to alter the cellular
profile above and beyond an additive effect (i.e. neutro-
phil number). Similar increases in neutrophil numbers
have been reported in asthmatics that smoke [41, 42]
and it is believed that this cell type plays an important
role in the pathophysiology of asthma and is linked to
the “asthma COPD overlap syndrome”. Furthermore,
Meghji et al. have recently shown similar eosinophilia
data in human asthmatics demonstrating that smoking
status does not alter the levels following antigen chal-
lenge [43]. Interestingly there are some reports that
eosinophil numbers are reduced in asthmatics that
smoke [14, 44]. This observation could depend on a
number of factors including the level of smoke expos-
ure/pack years, asthmatic status and time of sampling.
The published preclinical data from studies examining
the effect of CS co-exposure is varied, with some report-
ing reductions and others augmentation in cellular
inflammation (the main focus is often eosinophil num-
bers) [45–59]. These disparate findings appear to be
largely due to variations in CS co-exposure protocols.
Treatment with a clinically relevant corticosteroid,

budesonide, inhibited the allergen induced cellular in-
flammation in the model systems as expected [35, 36],

Fig. 2 Effect of glucocorticoid treatment on a CS co-exposure rat model of allergic asthma. Sensitised male Brown Norway rats were challenged
with an aerosol of saline or OVA for 30 min. Rats were co-exposed to room air or CS for eight days and dosed with vehicle (1 ml/kg, intratracheal)
or budesonide (3 mg/kg, i.t) one hour prior to and 30 min after antigen challenge. BALF was collected the following day and the numbers of white
cells assessed. Data are represented as mean ± S.E.M. for n = 8 animals in each group. a: Eosinophil number, b: neutrophil number and c: lympho-
cyte number. The statistical significance of the response to antigen and/or CS was determined using Mann-Whitney and denoted with # (P < 0.05).
The significance of the impact of budesonide was determined using Mann-Whitney and denoted with * (P < 0.05)
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whilst it failed to impact on the CS induced neutrophilia
as previously shown [38, 60, 61]. In our studies, co-
exposure with CS did not appear to impact the effective-
ness of budesonide treatment, a similar result was pub-
lished by Song et al. [59]. Surprisingly few clinical
studies have described the effects of steroid treatment
on airway inflammation in smoking asthmatics; the stud-
ies tend to report lung function or asthma control as the
primary endpoint. In addition, if pulmonary cellular in-
flammation is described, it is typically only eosinophilia
that is reported, therefore there is little direct evidence
on the effects of steroids on other inflammatory cells in
smoking asthmatics. ICS have been shown to reduce
sputum eosinophils in asthmatics, but not in smoking
asthmatics in short term and long term studies [62], but
others have shown that ICS do improve sputum eosino-
phils and ECP in smokers and non-smokers alike [29].
Therefore, the effect of smoking on the anti-
inflammatory effects of steroids in asthmatics is
currently controversial.

A striking observation is the apparent blockade of
AHR in the model systems, whether it was driven by an
allergic response to OVA or HDM. A similar finding was
recently reported in asthmatic smokers that were ex-
posed to a range of antigens and challenged with inhaled
MCh [43]. As stated by the authors, it is not clear what
the clinical significance is of this observation. One could
speculate that as it is well known that smoking does
increase clinical symptoms, the measurement of airway
reactivity could be clinically irrelevant. Another group
has reported that smoke challenge increases AHR in
asthmatics but these experiments were performed using
a sub-population of asthmatics that have previously re-
ported to be sensitive to CS [22, 23]. Furthermore, the
change was observed in only 30% of this sub-population
and a similar number were affected in non-asthmatics.
Other pre-clinical studies have reported similar findings
with CS co-exposure inhibiting the AHR [54, 55]. Cur-
rently the mechanism by which CS causes this effect is
not known. Melgert et al. (2004) suggested it was

Fig. 3 Effect of gold standard asthma treatments on a CS co-exposure rat model of allergic asthma. Sensitised male Brown Norway rats were challenged with
an aerosol of saline or OVA for 30 min. Rats were co-exposed to room air or CS for eight days and dosed with vehicle (1 ml/kg, intratracheal, i.t.), budesonide
(3 mg/kg, i.t), Olodaterol (1 mg/kg, i.t.) or glycopyrrolate (1 mg/kg, i.t.) one hour prior to and 30 min after antigen challenge. Changes in lung function were
assessed from 1 h after the end of challenge for 5 h. Data are represented as mean ± S.E.M. for n = 8 animals in each group. a: Glucocortoid, b: LABA and
c: LAMA
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Fig. 5 Effect of glucocorticoid treatment on CS co-exposure mouse models of allergic asthma. Sensitised male mice were challenged with intra-
nasal saline (50 ul) or antigen (OVA or HDM) once a day for 3 days. Mice were co-exposed to room air or CS for eight days. BALF was then col-
lected and the numbers of white cells assessed. Mice were dosed with vehicle (10 ml/kg, orally, p.o.) or budesonide (3 mg/kg, p.o.) one hour
prior to the morning CS challenges and one hour after afternoon CS challenges. Data are represented as mean ± S.E.M. for n = 8 animals in each
group. a: Eosinophil number, b: Neutrophil number and c: lymphocyte number. The statistical significance of the response to antigen and/or CS
was determined using a Mann-Whitney U test and denoted with * (P < 0.05). The significance of the impact of budesonide was determined using
one way ANOVA followed by a Bonferoni’s correction post-test # (P < 0.05)

Fig. 4 Effect of CS co-exposure on mouse models of allergic asthma. Sensitised male mice were challenged with intranasal saline (50 ul) or anti-
gen (OVA or HDM) once a day for 3 days. Mice were co-exposed to room air or CS for eight days. Changes in airway reactivity (AR) to inhaled 5-
HT were assessed 3 days after the final antigen challenge. BALF was then collected and the numbers of white cells assessed. Data are represented
as mean ± S.E.M. for n = 8 animals in each group. a: AR after OVA challenge, b: AR after HDM c: Eosinophil number, d: Neutrophil number and e:
lymphocyte number. The statistical significance of the response to antigen and/or CS was determined using a Mann-Whitney U test and denoted
with # (P < 0.05)
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through the reduction of cellular inflammation in their
model, but this seems unlikely as in our model systems
since cellular inflammation was not decreased. There
has been some speculation as to whether CS could be
directly or indirectly evoking bronchodilation. Indeed
CS is known to contain carbon monoxide which has
been reported to reduce mouse AHR [63]; furthermore,
CS can induce the release of bronchodilation substances
such as PGE2 and nitric oxide [64]. In addition, CS con-
tains nicotine, which conceivably could alter AHR. We
believe, however, that these mechanisms are unlikely as
normal airway reactivity to inhaled spasmogen was not
altered by CS exposure, and the model systems pre-
sented with a strong LAR signal. Both these end points
should be altered if CS was causing bronchodilation.
Other possible mechanisms by which CS co-exposure
reduces the AHR signal could be through the reduction
of the mediators driving the AHR and the many cyto-
kines suggested to be involved such as IL-5, IL-13 and
IL-17 [65–71] or the production of mediators reported
to inhibit AHR like TGFb [72, 73]. Indeed it has been re-
ported that CS co-exposure increases levels of TGFb
[74]. Unfortunately measurement of these end points is
not possible in our studies as they were designed to
focus on cellular inflammation and AHR, and not cyto-
kine levels (the optimum time for cytokine measure-
ments is much earlier) [75]. Another possible
mechanism by which CS alters AHR could be due to an
impact on airway smooth muscle (ASM), either the in-
creased ability to contract [76] or the remodelling
changes reported such as increased ASM thickness via
antigen induced increase in proliferation/migration asso-
ciated with the AHR phenotype [77]. Of the published
studies, some have suggested CS increases proliferation,
some have suggested inhibition and others to modulate
the contractile response, thus this mechanism is still a
possibility but needs to be further investigated [78–86].
Finally, CS could be causing remodelling in the airway
which subsequently impacts on AHR. Indeed it has been
reported that CS increases airway remodelling in pre-
clinical asthma models [48, 52, 87].
Despite the loss of the AHR phenotype in the models

following CS exposure, the LAR remains a clear feature;
a similar observation was made in smoking human asth-
matics [43]. Indeed, our data suggests that CS co-
exposure actually enhances this cardinal feature of
asthma. It is therefore tempting to speculate that it is
this symptom of asthma that is central to the detrimen-
tal impact CS has on asthmatics.
As far as we know, we are the first to examine the ef-

fect of CS co-exposure on the LAR in a preclinical
model. It is currently not clear how CS is exacerbating
the LAR signal. One could speculate that as previous
data has strongly implicated the TRPA1 - sensory nerve

– parasympathetic axis in the LAR [31] that CS is some-
how modulating elements of this pathway. Indeed it is
well known that CS contains elements like acrolein
which can activate TRPA1 [88, 89]. Further, TRPA1 is
the molecular target for by-products of oxidative stress
including Reactive Oxygen Species (ROS) and other
electrophilic compounds, including hypochlorite and
hydrogen peroxide which are linked to CS exposure
[90–94]. As CS alone did not cause a “LAR” like re-
sponse, it would seem that CS induced exacerbation of
the response is not simply due to an increase of TRPA1
activator(s). One possible reason for the synergy between
CS and antigen challenge could be that CS is increasing
the sensitivity of airway sensory nerves to TRPA1 activa-
tors. Indeed we, and others, have observed that CS ex-
posure can increase sensory nerve responses to TRPV1
ligands [95], furthermore we have unpublished data that
suggests that TRPA1 responses are also increased. It is
interesting to note that whilst we do not yet know the
mechanism by which CS exacerbates LAR, current ther-
apies such as ICS and LABA can combat this symptom
of asthma. Furthermore, the inhibition of LAR in this
model with glycopyrrolate confirms previous finding
using another LAMA, tiotropium [31, 96].

Conclusion
The aim our investigation was to determine the effect of
CS co-exposure on the phenotype and treatment sensitivity
of rodent models of allergic asthma. In order to investigate
this, rodent models of allergic asthma were co-exposed to
CS and endpoints of the Late Asthmatic Response (LAR),
Airway Hyper-Responsivity (AHR) and airway cellular bur-
den were assessed. The impact of ICS, LAMA and LABA
were also observed within these models.
In summary, we found that the magnitude of LAR

within the allergen sensitised models increased with co-
exposure to CS and is concordant with our initial hy-
pothesis. Divergent with our hypothesis; ICS, LAMA
and LABA attenuated the LAR across both CS exposed
and non-exposed groups. Interestingly the AHR was at-
tenuated with exposure to CS. This was accompanied by
an increase in neutrophilic inflammation, and although
ICS was successful in attenuating overall cellular inflam-
mation, the enhanced neutrophil populations observed
remained undiminished.
We suggest that the data from these studies have

parallels with clinical findings and that these model
systems may be useful tools in helping to understand
how exposure to airborne pollutants such as CS can
alter the asthmatic phenotype. We propose that these
model systems will be extremely useful in future re-
search and will provide the opportunity to identify
novel targets for asthma.
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