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Integrative genomics identifies new genes
associated with severe COPD and
emphysema
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Abstract

Background: Genome-wide association studies have identified several genetic risk loci for severe chronic
obstructive pulmonary disease (COPD) and emphysema. However, these studies do not fully explain disease
heritability and in most cases, fail to implicate specific genes. Integrative methods that combine gene expression
data with GWAS can provide more power in discovering disease-associated genes and give mechanistic insight into
regulated genes.

Methods: We applied a recently described method that imputes gene expression using reference transcriptome
data to genome-wide association studies for two phenotypes (severe COPD and quantitative emphysema) and
blood and lung tissue gene expression datasets. We further tested the potential causality of individual genes using
multi-variant colocalization.

Results: We identified seven genes significantly associated with severe COPD, and five genes significantly
associated with quantitative emphysema in whole blood or lung. We validated results in independent
transcriptome databases and confirmed colocalization signals for PSMA4, EGLN2, WNT3, DCBLD1, and LILRA3. Three
of these genes were not located within previously reported GWAS loci for either phenotype. We also identified
genetically driven pathways, including those related to immune regulation.

Conclusions: An integrative analysis of GWAS and gene expression identified novel associations with severe COPD
and quantitative emphysema, and also suggested disease-associated genes in known COPD susceptibility loci.

Trial registration: NCT00608764, Registry: ClinicalTrials.gov, Date of Enrollment of First Participant: November 2007,
Date Registered: January 28, 2008 (retrospectively registered); NCT00292552, Registry: ClinicalTrials.gov, Date of
Enrollment of First Participant: December 2005, Date Registered: February 14, 2006 (retrospectively registered).
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Background
Chronic obstructive pulmonary disease (COPD) is char-
acterized by irreversible airflow obstruction and is
strongly influenced by genetic factors [1, 2]. Genome-
wide association studies of COPD and related traits (e.g.,
emphysema) have revealed multiple genetic loci associ-
ated with disease risk [3–5]. Most loci identified by
genome-wide association studies (GWAS) are regulatory,
and do not directly alter the amino acid sequence.
Gene expression is arguably the most impactful and

well-studied effect of regulatory genetic variation.
GWAS loci are enriched for expression quantitative trait
loci (eQTL), rendering it a potential link between genetic
variant and biology of disease [6, 7]. The efforts of large
cohort studies and consortia such as the Genotype-
Tissue Expression Project have discovered thousands of
genetic variants associated with gene expression in mul-
tiple tissues. While most GWAS studies do not con-
comitantly measure gene expression, the strong
relationship of genetic variation to gene expression al-
lows one to use gene expression reference datasets to
predict gene expression given a set of genotypes, and
subsequently identify gene expression differences for a
given phenotype. This approach has been implemented
in software called S-PrediXcan and TWAS [8–10]. Ag-
gregating information from variant level to infer gene-
level associations increases the power to discover more
genes at loci not previously implicated by GWAS and
gives mechanistic insight regarding genes being regu-
lated via disease-associated genetic variants [7, 11].
Despite the convention of naming a discovered locus

for the nearest gene (e.g., HHIP), further study is needed
to identify the specific gene(s) and variant(s) responsible
for disease risk [9, 11, 12]. In identified COPD suscepti-
bility loci, most loci contain multiple genes, and variants
in these genes are correlated (in linkage disequilibrium).
More than one gene in a locus may also play a role in
disease pathogenesis, as seen in other complex diseases
[13, 14]. With recently developed methods and a grow-
ing amount of gene expression data made publicly avail-
able, integrating GWAS with known functional
annotations of each variant (e.g., associated with gene
expression) could highlight novel and biologically rele-
vant genes for further evaluation.
We hypothesized that application of these integrative

methods to specific phenotypes of COPD (severe disease
and quantitative emphysema) would facilitate discovery of
new gene-disease associations and elucidate the mechan-
ism of gene in existing susceptibility loci. Specifically, we
sought to identify genes and pathways genetically up- or
down-regulated by phenotype-associated variants in
tissue-specific reference datasets using S-PrediXcan and
TWAS [3, 5], and to assess the potential causality of indi-
vidual genes using multi-variant colocalization.1

Methods
Genome-wide association studies and meta-analysis
We used genome-wide association summary statistics
for two phenotypes based on the same four cohorts.
Demographic characteristics of individuals included in
analyses of these two phenotypes are summarized in Ta-
bles 1 and 2. The four cohorts included individuals en-
rolled in Genetic Epidemiology of COPD (COPDGene,
NCT00608764), Evaluation of COPD Longitudinally to
Identify Predictive Surrogate Endpoints (ECLIPSE,
SCO104960, NCT00292552), National Emphysema
Treatment Trial (NETT) and Normative Aging Study
(NAS), and GenKOLS (Genetics of COPD, Norway).
Meta-analyses of these two phenotypes were published
previously [3, 5]. Severe COPD was defined by post-
spirometric measures of forced expiratory volume in 1st
second (FEV1) lower than 50% of predicted value and
the ratio of FEV1 to forced vital capacity (FEV1/FVC)
less than 0.7, excluding individuals with known severe
alpha-1 antitrypsin deficiency. For quantitative emphy-
sema, we produced the histogram of segmented CT
chest images and used the percentage low attenuation
area at − 950 Hounsfield units (HU) threshold (%LAA-
950), and the HU at the 15th percentile of the density
histogram (Perc15) for the quantification of emphysema.
A summary of our approach is shown in Fig. 1.

Integration of GWAS and gene expression
To integrate our GWAS and gene expression results, we
used S-PrediXcan [10]. We included two relevant refer-
ence transcriptome databases in our analysis, whole
blood from Depression Genes and Networks (DGN-
Blood) and lung tissue from Genotype-Tissue Expression
consortium (GTEx-Lung). Details on prediction models
and datasets used were provided in Additional file 1:
Supplementary Methods. The ability of genetic variants
to predict the expression of individual genes varies; only
genes with significant prediction models were included
in the analysis (11,529 genes for DGN-Blood and 6425
genes for GTEx-Lung). We accounted for multiple hy-
pothesis testing using Bonferroni correction to deter-
mine statistical significance of gene-disease associations,
resulting in p-value of 4.34 × 10− 6 and 7.78 × 10− 6 for
DGN-Blood and GTEx-Lung, respectively.

Validation in other reference transcriptome databases
To determine whether our imputed gene expression was
consistent in other datasets, we tested significant genes
from DGN-Blood and GTEx-Lung in two independent
reference transcriptome databases, GTEx for whole
blood (GTEx-Blood) and the Lung-eQTL Consortium
for lung tissue using S-PrediXcan and TWAS/FUSION
(Additional file 1: Supplementary Methods). We consid-
ered an expression result to be validated if the direction

Sakornsakolpat et al. Respiratory Research  (2018) 19:46 Page 2 of 13



Ta
b
le

1
D
em

og
ra
ph

ic
ch
ar
ac
te
ris
tic
s
of

in
di
vi
du

al
s
in

th
e
an
al
ys
is
of

se
ve
re

C
O
PD

C
O
PD

G
en

e-
N
H
W

C
O
PD

G
en

e-
A
A

EC
LI
PS
E

N
ET
T/
N
A
S

N
or
w
ay

G
en

KO
LS

C
as
es

C
on

tr
ol

Su
bj
ec
ts

C
as
es

C
on

tr
ol

Su
bj
ec
ts

C
as
es

C
on

tr
ol

Su
bj
ec
ts

C
as
es

C
on

tr
ol

Su
bj
ec
ts

C
as
es

C
on

tr
ol

Su
bj
ec
ts

N
13
90

25
34

35
2

17
49

99
9

17
8

37
3

43
5

38
3

80
8

A
ge

,y
ea
rs
(S
D
)

65
.2
(7
.8
)

59
.5
(8
.7
)

60
.6
(8
.1
)

52
.8
(6
.0
)

63
.5
(7
.0
)

57
.5
(9
.4
)

67
.5
(5
.8
)

69
.8
(7
.5
)

66
.7
(9
.7
)

55
.6
(9
.7
)

Sm
ok
in
g
pa
ck
-y
ea
rs
(S
D
)

58
.7
(2
8.
4)

37
.8
(2
0.
3)

43
.9
(2
3.
4)

36
.4
(2
0.
1)

50
.7
(2
6.
3)

32
.1
(2
4.
8)

66
.4
(3
0.
7)

40
.7
(2
7.
9)

33
.0
(1
9.
9)

19
.7
(1
3.
6)

FE
V 1
,%

pr
ed

ic
te
d
(S
D
)

34
.0
(9
.9
)

96
.8
(1
1.
0)

34
.8
(1
0.
4)

98
.4
(1
2.
2)

36
.5
(8
.6
)

10
7.
8
(1
3.
6)

28
.1
(7
.4
)

10
0.
0
(1
3.
2)

34
.4
(1
0.
3)

94
.9
(9
.2
)

FE
V 1
/F
VC

(S
D
)

0.
39
0
(0
.1
03
)

0.
77
9
(0
.0
50
)

0.
43
0
(0
.1
05
)

0.
80
0
(0
.0
52
)

0.
38
7
(0
.0
95
)

0.
79
0
(0
.0
53
)

0.
32
4
(0
.0
64
)

0.
79
3
(0
.0
52
7)

0.
41
2
(0
.1
08
)

0.
79
1
(0
.0
43
)

M
en

,n
(%
)

80
3
(5
8)

12
50

(4
9)

20
4
(5
8)

10
17

(5
8)

69
8
(7
0)

10
3
(5
8)

23
8
(6
4.
0)

43
5
(1
00
)

23
5
(6
1)

40
5
(5
0)

D
ef
in
iti
on

of
ab

br
ev
ia
tio

ns
:C

O
PD

ch
ro
ni
c
ob

st
ru
ct
iv
e
pu

lm
on

ar
y
di
se
as
e,

CO
PD

G
en
e
G
en

et
ic
Ep

id
em

io
lo
gy

of
C
O
PD

,E
CL
IP
SE

Ev
al
ua

tio
n
of

C
O
PD

Lo
ng

itu
di
na

lly
to

Id
en

tif
y
Pr
ed

ic
tiv

e
Su

rr
og

at
e
En

dp
oi
nt
s,
G
en
KO

LS
G
en

et
ic
s
of

C
O
PD

,N
or
w
ay
,N

ET
T
N
at
io
na

lE
m
ph

ys
em

a
Tr
ea
tm

en
t
Tr
ia
l,
N
A
S
N
or
m
at
iv
e
A
gi
ng

St
ud

y

Sakornsakolpat et al. Respiratory Research  (2018) 19:46 Page 3 of 13



Ta
b
le

2
D
em

og
ra
ph

ic
ch
ar
ac
te
ris
tic
s
of

in
di
vi
du

al
s
in

th
e
an
al
ys
is
of

qu
an
tit
at
iv
e
em

ph
ys
em

a

C
O
PD

G
en

e-
N
H
W

C
O
PD

G
en

e-
A
A

EC
LI
PS
E

N
ET
T

N
or
w
ay

G
en

KO
LS

C
as
es

N
on

ca
se
s

C
as
es

N
on

ca
se
s

C
as
es

C
on

tr
ol

Su
bj
ec
ts

C
as
es

C
as
es

C
on

tr
ol

Su
bj
ec
ts

N
32
43

30
62

90
1

21
32

13
93

14
5

33
2

41
7

40
6

A
ge

,y
ea
rs
(S
D
)

64
.4
(8
.3
)

59
.7
(8
.6
)

58
.6
(8
.1
)

53
(6
.0
)

63
.4
(7
.0
)

57
.3
(9
.4
)

67
.4
(5
.9
)

64
.2
(9
.3
)

55
.6
(9
.4
)

Sm
ok
in
g
pa
ck
-y
ea
rs
(S
D
)

54
.4
(2
7.
5)

39
.7
(2
1.
5)

42
(2
3.
1)

36
.6
(2
0.
5)

49
.8
(2
6.
7)

31
.8
(2
6.
6)

65
.8
(3
0.
8)

31
(1
8.
2)

19
.8
(1
4.
1)

M
en

,n
(%
)

18
32

(5
6.
5)

14
62

(4
7.
7)

49
7
(5
5.
2)

12
09

(5
6.
7)

91
1
(6
5.
4)

85
(5
8.
6)

21
2
(6
3.
9)

26
3
(6
3.
1)

21
6
(5
3.
2)

C
ur
re
nt

Sm
ok
er
s,
n
(%
)

11
99

(3
7)

12
63

(4
1.
2)

59
5
(6
6)

18
38

(8
6.
2)

48
0
(3
4.
5)

58
(4
0.
0)

0
(0
)

21
0
(5
0.
4)

16
4
(4
0.
4)

FE
V 1
,%

pr
ed

ic
te
d
(S
D
)

57
.4
(2
3.
0)

91
.3
(1
4.
8)

59
.5
(2
2)

92
.2
(1
6.
5)

47
.4
(1
5.
5)

10
8.
6
(1
3.
4)

28
.2
(7
.3
)

52
.5
(1
6.
9)

94
.9
(9
.2
)

FE
V 1
/F
VC

(S
D
)

0.
51
7
(0
.1
36
)

0.
77
9
(0
.0
50
)

0.
55
0
(0
.1
20
)

0.
80
0
(0
.0
52
)

0.
44
2
(0
.1
15
)

0.
79
2
(0
.0
55
)

0.
31
7
(0
.0
61
)

0.
52
3
(0
.1
25
)

0.
79
1
(0
.0
42
)

LA
A
-9
50
,%

(ra
ng

e)
7.
5
(0
–6
1.
9)

1.
2
(0
–2
6.
9)

4.
6
(0
–6
1.
2)

0.
7
(0
–3
5.
8)

16
.3
(0
.1
–5
8.
7)

2.
3
(0
.1
–1
4.
2)

15
(0
.3
–4
9.
9)

7
(0
–5
3.
2)

0.
5
(0
–3
4.
4)

Pe
rc
15
,H

U
(S
D
)

−
93
8.
1
(2
6.
8)

−
90
9.
9
(2
2.
8)

−
92
6.
5
(3
2)

−
89
3.
4
(2
8.
1)

−
95
0.
9
(2
5.
9)

−
90
6.
2
(2
5.
9)

−
94
9.
7
(1
7.
8)

−
93
2.
8
(3
0.
2)

−
89
1.
6
(2
6.
3)

C
as
es

ar
e
G
O
LD

gr
ad

e
1
or

m
or
e
se
ve
re

(a
s
in

N
ET
T)

ca
se
s;
co
nt
ro
ls
ub

je
ct
s
ar
e
sm

ok
er
s
w
ho

ha
ve

no
rm

al
sp
iro

m
et
ry

(G
O
LD

gr
ad

e
0)
;n

on
ca
se
s
in
cl
ud

e
G
O
LD

gr
ad

e
0
an

d
PR

IS
m

(p
re
se
rv
ed

ra
tio

,i
m
pa

ire
d

sp
iro

m
et
ry
)
su
bj
ec
ts

D
ef
in
iti
on

of
ab

br
ev
ia
tio

ns
:L
A
A
-9
50

lo
w

at
te
nu

at
io
n
ar
ea

us
in
g
a
th
re
sh
ol
d
of

−
95

0
H
U
,C

O
PD

ch
ro
ni
c
ob

st
ru
ct
iv
e
pu

lm
on

ar
y
di
se
as
e,

CO
PD

G
en
e
G
en

et
ic
Ep

id
em

io
lo
gy

of
C
O
PD

,E
CL
IP
SE

Ev
al
ua

tio
n
of

C
O
PD

Lo
ng

itu
di
na

lly
to

Id
en

tif
y
Pr
ed

ic
tiv

e
Su

rr
og

at
e
En

dp
oi
nt
s,
G
en
KO

LS
G
en

et
ic
s
of

C
O
PD

,N
or
w
ay
,G

O
LD

G
lo
ba

lI
ni
tia

tiv
e
fo
r
C
hr
on

ic
O
bs
tr
uc
tiv

e
Lu

ng
D
is
ea
se
,H

U
H
ou

ns
fie

ld
un

its
,N

ET
T
N
at
io
na

lE
m
ph

ys
em

a
Tr
ea
tm

en
t

Tr
ia
l,
Pe
rc
15

H
U
at

th
e
15

th
pe

rc
en

til
e
of

th
e
de

ns
ity

hi
st
og

ra
m

Sakornsakolpat et al. Respiratory Research  (2018) 19:46 Page 4 of 13



of effect was consistent and the Bonferroni-corrected P-
value < 0.05.

Colocalization analysis using eCAVIAR
Colocalization analysis estimates a posterior probability
that a given variant or set of variants is causal for both
the phenotype of interest (e.g., COPD) and expression
level of a given gene. We used eCAVIAR (eQTL and
GWAS Causal Variant Identification in Associated Re-
gions), as it allows for multiple causal variants [15]. De-
tails on parameters and procedures used in the analysis
were present in Additional file 1: Supplementary
Methods. Genes identified in whole blood were tested
for colocalization using eQTL from GTEx-Blood while
using GTEx-Lung and Lung-eQTL Consortium for lung
tissue. The probability of a variant to be causal for a
given gene in both datasets was determined by the colo-
calization posterior probability (CLPP) that approxi-
mates the posterior probability of a variant to be causal
in GWAS and posterior probability of a variant to be
causal in eQTL [15]. We also obtained functional anno-
tations of colocalized variants in lung relevant cell types
(Additional file 1: Supplementary Methods).

Results
Severe COPD
We first examined the association between severe COPD
and imputed gene expression. Significant associations
based on gene-based Bonferroni corrections for DGN-
Blood and GTEx-Lung are shown in Table 3 and Fig. 2.
In the whole blood reference dataset from DGN, we

identified five significant genes: FAM13A in 4q22

Table 3 Result of association analysis between imputed gene expression and severe COPD and emphysema (%LAA-950 and Perc15)
with validation

Genetic
Loci

Phenotype Gene Tissue Discovery
Z score

Discovery
P value

Validation
Z score

Validation
P value

4q22 Severe COPD FAM13A Blood −5.46 4.80E-08 NA NA

4q22 Severe COPD GPRIN3 Lung 4.95 7.40E-07 0.94 3.40E-01

5q11 Perc15 ITGA1 Lung −4.89 1.00E-06 NA NA

6p21 %LAA-950 ATF6B Lung −4.48 7.30E-06 −1.33 1.80E-01

6q22 %LAA-950 DCBLD1 Lung 4.53 5.80E-06 3.81 1.40E-04

15q25 Severe COPD HYKK Blood −8.33 8.20E-17 NA NA

15q25 Severe COPD PSMA4 Blood 7.62 2.50E-14 7.57 3.80E-14

15q25 %LAA-950 HYKK Blood −5.64 1.70E-08 NA NA

15q25 %LAA-950 PSMA4 Blood 4.92 8.50E-07 5.1 3.40E-07

17q21 Severe COPD WNT3 Lung 4.85 1.20E-06 4.6 4.30E-06

19q13 Severe COPD EGLN2 Blood 4.89 1.00E-06 4.35 1.30E-05

19q13 Severe COPD RAB4B Blood −4.78 1.70E-06 −3.82 1.30E-04

19q13a %LAA-950 LILRA3 Blood −4.62 3.80E-06 −4.13 3.60E-05

Lung = Genotype Tissue Expression (GTEx) consortium lung, Blood = Depression Genes and Networks (DGN) blood, NA = prediction model not available in the
validation dataset (see Discussion)
aThe two loci at 19q13 are separated by 13 MB (see text)

Fig. 1 Summary of analyses. First, we discovered transcriptome-
disease associations (predicted gene expression-disease) using reference
data from DGN-Blood and GTEx-Lung. Then, we validated these
associations using another set of reference data (GTEx-Blood and
Lung-eQTL Consortium). Finally, we confirmed the transcriptome-
disease associations using colocalization analysis. COPD = chronic
obstructive pulmonary disease; DGN = Depression Gene Network;
GTEx = Genotype-Tissue Expression project; Perc15 HU at 15th
percentile of the density histogram; severe COPD is defined as
FEV1 < 50% predicted and FEV1/FVC < 0.7

Sakornsakolpat et al. Respiratory Research  (2018) 19:46 Page 5 of 13



(P = 4.81 × 10− 8), HYKK and PSMA4 in 15q25 (P =
8.16 × 10− 17 and 2.47 × 10− 14, respectively), and
EGLN2 and RAB4B in the 19q13 locus (P = 1.03 × 10− 6

and 1.72 × 10− 6, respectively). All of these genes are lo-
cated in COPD susceptibility loci previously reported
in the literature [4, 16]. In lung tissue, we identified
two genome-wide significant genes, GPRIN3 in the
4q22 locus (P = 7.43 × 10− 7) and WNT3 in the 17q21
locus (P = 1.24 × 10− 6); the latter locus was not iden-
tified in the single variant GWAS of severe COPD
(Fig. 3).

Emphysema
In whole blood and lung tissue, we identified five genes
significantly associated with %LAA-950 and one gene
with Perc15 (Table 3; Fig. 2). We found two significant
associations of genes at loci previously associated with
%LAA-950, PSMA4 in 15q25 and ATF6B in 6p21, the
latter which is located near AGER. The top genome-
wide significant variant at this latter locus – which lies

within the HLA (Human Leukocyte Antigen) region –
is a nonsynonymous variant in AGER; however, AGER
was not significant in either blood or lung (P = 0.81
and 0.18, respectively). LILRA3, DCBLD1, and ITGA1
are at loci not previously associated with COPD or
emphysema.

Validation in other reference transcriptome databases
To provide further evidence for differentially expressed
genes associated with severe COPD and emphysema, we
repeated our analysis using additional reference tran-
scriptome databases with the same GWAS data. In
blood, we validated PSMA4, EGLN2, and RAB4B for severe
COPD (P = 3.79 × 10− 14, 1.34 × 10− 5, and 1.33 × 10− 4, re-
spectively), and PSMA4 and LILRA3 for %LAA-950 (P =
3.37 × 10− 7 and 3.62 × 10− 5, respectively) by using GTEx-
Blood as a validation for genes identified through whole
blood transcriptome analysis (Table 3). We also validated
WNT3 for severe COPD (P = 4.27 × 10− 6) and DCBLD1
for %LAA-950 (P = 1.41 × 10− 4) for genes identified from

Fig. 2 Manhattan plots of associations of imputed gene expression and phenotypes (severe COPD in the upper panel; %LAA-950 and Perc15 in
the lower panel). Color indicates phenotypes and shape indicates tissue (see figure legend)

Sakornsakolpat et al. Respiratory Research  (2018) 19:46 Page 6 of 13



GTEx-Lung using a lung transcriptome database from
Lung-eQTL Consortium (Table 3). We also noted that for
several genes, a prediction model was not available, likely
due to lower power and sample size in the validation

dataset for whole blood [9]. Although the association of
FAM13A was initially identified using blood dataset, its
association was significant using Lung-eQTL Consoritium
(Z score = 4.52, P = 6.3 × 10− 6).

Fig. 3 Regional association plots within 50 kb of WNT3. GWAS of severe COPD and lung eQTL are shown in the upper panel. Chromatin states
and epigenomic marks of normal human lung fibroblasts are shown in the lower panel (see Additional file 1: Supplementary Methods)
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Colocalization analysis of validated genes
Gene expression differences identified using S-
PrediXcan may be causally associated with the pheno-
type of interest, but also can be due to linkage disequi-
librium (LD) [15]. To determine whether there was
evidence of shared causality, we performed colocaliza-
tion analysis, using a method that allows for multiple
causal variants. Of the seven associations, six occupied
at least one shared variant (Table 4): PSMA4, EGLN2,
and WNT3 (Fig. 3) for severe COPD; PSMA4, LILRA3
(Additional file 1: Figure S1), and DCBLD1 (Additional
file 1: Figure S2) for %LAA-950. For associations identi-
fied in lung, we additionally confirmed the colocalization
signals using the Lung-eQTL consortium dataset
(Additional file 1: Table S1). We then sought to leverage
functional annotation of shared variants especially for
those with high colocalization probability. Some coloca-
lized variants associated with PSMA4, LILRA3, DCBLD1,
and WNT3 located in annotated regulatory regions (e.g.,
rs35061187 is in active transcription start site (TSS) in
lung fibroblasts) or predicted to affect transcription fac-
tor binding (Additional file 1: Table S1 and S2).

Genetically regulated differential expression of genes in
known susceptibility loci
Of the above significantly differentially regulated genes,
four are in known susceptibility loci (4q22 and 15q25
with severe COPD, and 6p21 and 15q25 with %LAA-
950). We also sought to investigate whether additional
known susceptibility loci for severe COPD and quantita-
tive emphysema affect the genetically regulated expres-
sion of nearby genes. We investigated nominal
association results (P < 0.05) in other nine susceptibility
loci in either discovery or validation datasets. Using this
criterion, we found 5 additional suggestive associations,
namely TGFB2 (1q41), HHIP (4q31), and RIN3
(14q32.12) with severe COPD, and HHIP (4q31) with
%LAA-950 and Perc15 (Additional file 1: Table S3).
However, we did not find any suggestive signals in 11q22
(MMP12) with severe COPD, 14q32.13 (SERPINA10)

with %LAA-950, and 8p22 (DLC1) with %LAA-950 and
Perc15.

Pathway enrichment analysis
In contrast to genetic gene set enrichment methods that
rely only on the location of the SNP to infer affected
genes [17], we used the results of our predicted gene ex-
pression to identify pathways by using the top 1% of dif-
ferentially expressed genes (Table 5, Additional file 1:
Supplementary Methods). We identified enrichment of
the T cell receptor signaling pathway (corrected P =
6.6 × 10− 3); this pathway included PSMA4 along with
genes in the HLA complex. We also found significant
enrichment for proteasome core complex genes (cor-
rected P = 2.82 × 10− 2) which included PSMF1, PSMB4,
and PSMB9. An additional pathway of interest was cell-
matrix adhesion of collagen binding (corrected P =
2.74 × 10− 3) (Table 5). We also found enrichment of the
asthma pathway using the KEGG database (corrected
P = 4.80 × 10− 3), containing MS4A2 and genes in HLA.

Discussion
Genome-wide association studies have arguably become
the mainstay of identifying genetic risk factors for com-
plex disease. However, these studies cannot identify
which gene(s) in the region is responsible for the associ-
ation, and testing all variants individually and independ-
ently is likely suboptimal. Here, we used an integrative
method that combines the genetic component of gene
expression with genetic association analysis in severe
COPD and quantitative emphysema to predict differen-
tially expressed genes. Importantly, this method focuses
on the association of genetic component of gene expres-
sion, not gene expression as a whole, as is typical in
most gene expression studies. We also provided add-
itional support of our results by examining results in a
second gene expression dataset, and performing coloca-
lization analysis that attempts to identify whether associ-
ation signals for gene expression and a phenotype of
interest appear to be driven by the same causal vari-
ant(s). We implicated genes that are genetically

Table 4 Colocalized variants in validated genes and association statistics in corresponding GWAS and eQTL datasets

Locus Phenotype Gene Tissue Top colocalized variant Variant CLPP GWAS
P value

eQTL
P value

6q22 %LAA-950 DCBLD1 Lung rs34882116 0.13 2.87E-05 1.28E-11

15q25 Severe COPD PSMA4 Blood rs56077333 0.21 1.57E-18 4.16E-06

15q25 %LAA-950 PSMA4 Blood rs56077333 0.14 2.64E-09 4.16E-06

17q21 Severe COPD WNT3 Lung rs199520 0.21 1.75E-06 1.30E-12

19q13 Severe COPD EGLN2 Blood rs35755165 0.12 9.91E-09 1.87E-06

19q13 %LAA-950 LILRA3 Blood rs380267 0.28 3.32E-05 4.54E-47

CLPP = Colocalization posterior probability, the probability that a particular variant is causal in both GWAS and eQTL. A CLPP of 0.01 or greater previously
demonstrated high accuracy and precision (see Additional file 1: Supplementary Methods), [15]. Only top colocalized variants, a variant with highest CLPP for each
gene/tissue, are shown

Sakornsakolpat et al. Respiratory Research  (2018) 19:46 Page 8 of 13



regulated in known COPD-susceptibility loci, such as
FAM13A, and also found genes in regions that were not
previously reported: WNT3 for severe COPD, and
DCBLD1 and LILRA3 for quantitative emphysema.
We found a novel association of WNT3 in lung tissue

with severe COPD in two gene expression datasets. Al-
though variants surrounding this gene in the 17q21
locus were not genome-wide significant in our COPD
analysis GWAS (Fig. 3), the top signal (rs9912530) is in
strong LD with variants previously reported in GWAS of
FEV1 [18, 19], interstitial lung disease [20], and idio-
pathic pulmonary fibrosis [21] (r2 with these previously
described variants, 0.55–0.72). WNT3 (Wnt family
member 3) encodes Wnt3, a critical component of the
Wnt-beta-catenin-TCF signaling pathway [22] and a re-
quired signal for the apical ectodermal ridge in limb pat-
terning [23]. Deficient WNT3 is associated with tetra-
amelia syndrome, a Mendelian disease characterized by
an absence of all limbs. The top signal is also in strong
LD with variants associated with various complex
diseases such as Parkinson’s disease and celiac disease
(r2 0.72–0.79) [24, 25]. Previous expression studies of
small airway epithelium found that this gene, along with
its Wnt signaling companions, was down-regulated in
smokers compared with nonsmokers [26]. Of interest,
FAM13A, a well-supported COPD susceptibility gene,
has been involved in the Beta-catenin/Wnt signaling
pathway by protein degradation [27]. While there is sub-
stantial interest in Wnt signaling in lung disease [28],
the contribution of WNT3 to the pathogenesis of COPD
requires further investigation. To address whether these
findings were specific for severe COPD, we repeated the
analysis including moderate disease (GOLD 2). All of

our genes were at least nominally significant, though
overall the significance of our findings was attenuated
(Additional file 1: Table S4).
For emphysema, we identified novel associations of

LILRA3 and DCBLD1 using whole blood and lung tissue,
respectively, and validated these findings in additional
gene expression datasets. LILRA3 (leukocyte immuno-
globulin like receptor A3) is a gene encoding a soluble
receptor for class I major histocompatibility complex
(MHC) antigens expressed in monocytes and B cells, which
is located in the 19q13 locus. Our top hit from GWAS in
this locus, was not genome-wide significant (rs384116 with
P = 1.88 × 10− 5; Additional file 1: Figure S1), and 13-Mb
away from the previously reported locus [16] that contains
EGLN2 and RAB4B (rs7937; r2 0.002). It is in modest LD
with variants suggestively associated with FEV1/FVC [18]
(r2 0.44), in strong LD with variants genome-wide signifi-
cantly associated with HDL-C level [29] and prostate can-
cer [30] (r2 0.92–0.99). Blood may be the most relevant
tissue for this gene, as it is preferentially expressed [31]
with a high estimate of heritability of gene expression in
whole blood [32]. However, it may also have an effect in
other tissues, given its broad eQTL effects identified by
multi-tissue eQTL analysis [33]. This was supported by the
suggestive signals of this gene using lung tissue in S-
PrediXcan analysis (P = 7.71 × 10− 5 in GTEx-Lung and
1.38 × 10− 4 in the Lung-eQTL Consortium with the same
direction of effect). Nonetheless, its functional role in
COPD has not been described previously. Our other novel
association identified in lung tissue, DCBLD1 (discoidin,
CUB and LCCL domain containing 1), located in the 6q22
locus, is an integral component of cell membranes and
binds to oligosaccharides [34]. GWAS signals in this locus

Table 5 Selected results of pathway enrichment analysis based on predicted differential gene expression

Phenotype Tissue Functional category P value for enrichment* Overlapping genes

Severe COPD Lung collagen binding involved in
cell-matrix adhesion

2.70E-03 ITGA10, ITGA2, ITGA1

Severe COPD Lung proteasome core complex 2.80E-02 PSMF1, PSMB4, PSMB9

Severe COPD Lung translation factor activity, RNA
binding

3.70E-02 TCEB3, EEFSEC, TUFM, EIF3C, EIF3CL

%LAA-950 Whole Blood MHC class II protein complex 5.20E-05 HLA-DQB1, HLA-DRB1, HLA-DQA1, HLA-DQB2,
HLA-DQA2

%LAA-950 Whole Blood PD-1 signaling 6.30E-04 HLA-DQB1, HLA-DRB1, HLA-DQA1, HLA-DQB2,
HLA-DQA2

%LAA-950 Whole Blood Downstream TCR signaling 8.00E-04 PSMA4, NFKBIA, BCL10, HLA-DQB1, HLA-DRB1,
HLA-DQA1, HLA-DQB2, HLA-DQA2

%LAA-950 Whole Blood Asthma 4.80E-03 MS4A2, HLA-DQB1, HLA-DRB1, HLA-DQA1,
HLA-DQA2

%LAA-950 Whole Blood T cell receptor signaling
pathway

6.60E-03 PSMA4, NFKBIA, BCL10, HLA-DRB1, HLA-DQA1,
PVRIG, HLA-DQB2, HLA-DQA2

Perc15 Lung negative regulation of ERBB
signaling pathway

4.50E-02 NRG1, ITGA1, UBA52

*P values were corrected for multiple testing using g:SCS method (see Additional file 1: Supplementary Methods)
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are also sub-genome wide significant (Additional file 1:
Figure S2). Our top GWAS variant at this locus was
in LD with variants associated with lung cancer [35]
(r2 0.54).
In addition to novel associations, our study also pro-

vides insight into disease-associated genes in known
COPD susceptibility loci. We identified six genes
(FAM13A, GPRIN3, HYKK, PSMA4, EGLN2, and
RAB4B) in three known COPD-susceptibility loci for
which their genetic component of gene expression in
blood or in lung tissue is associated with severe COPD.
Five of these six genes are not the most proximal to the
top associated SNP, a phenomenon previously observed
in other genetic association studies [36, 37]. These find-
ings underscore the complexity of genetic regulation in
tissues and also identify multiple potential effector genes
in the same locus. For example, in 15q25, PSMA4, and
not CHRNA3 (the nearest gene to the top GWAS hit)
was highlighted in S-PrediXcan and colocalization ana-
lysis. Although a role for IREB2 has been clearly demon-
strated [38], our study suggested that other genes in the
locus, particularly PSMA4 – a gene encoded for subunit
of proteasome complex that acts in the proteolytic path-
way [39], may also be of biologic importance.
At the 4q22 locus, an association for FAM13A identified

using DGN-Blood was not validated in the GTEx-blood
dataset. However, a significant but directionally opposite as-
sociation was identified in the Lung-eQTL consortium
dataset. To further explore this phenomenon, we examined
individual SNP eQTL data from the Framingham Heart
Study (FHS) blood, and the lung tissue from the Lung
eQTL consortium (Additional file 1: Supplementary
Methods). We confirmed that SNPs have opposite di-
rections of effect in lung and blood (Additional file 1:
Figure S3 and S4). This finding is consistent with prior
reports describing significant and opposite tissue specific
effects of eQTLs [33, 40, 41]. The interpretation of this
phenomenon is not clear, but may be a result of pleio-
tropic effects of FAM13A [42, 43]. Of note, a recent ana-
lysis of emphysema-related gene expression in blood and
lung tissue [44] found that the expression of genes in two
tissues are often opposite; together, our findings highlight
the tissue-specific genetic regulation of genes in COPD
susceptibility loci. At the 19q13 locus, while both EGLN2
and RAB4B were successfully validated, only GWAS and
eQTL signals for EGLN2 colocalized. This genetic locus
was associated with COPD [16] and smoking behavior
[45]. Although the causal gene(s) in this region is unclear,
methylation and expression studies support the role of
EGLN2 in this region [46]. EGLN2 (egl-9 family hypoxia
inducible factor 2) encodes an enzyme that regulate the
degradation of alpha subunit of hypoxia inducible factor
(HIF) [47]. Gene and protein expression of HIF-1α is re-
duced in lung tissue samples from COPD patients [48].

Although ATF6B (activating transcription factor 6
beta) and ITGA1 (integrin subunit alpha 1) were not
successfully validated, we cannot rule out the possibility
of false negatives due to differences between the tran-
scriptome datasets used for validation, and they are po-
tentially interesting candidates for COPD. ATF6B was
implicated in the unfolded protein response (UPR) path-
way during endoplasmic reticulum (ER) stress following
cigarette smoke, and may contribute to lung inflamma-
tion in patients with COPD [49], while integrins were
found to be involved in COPD through the mitogen-
activated protein kinase (MAPK) pathway [50, 51]. This
region also harbors variants associated with FEV1/FVC
[52]. Decreased expression of ITGA1 was observed in
the small airways of patients with low FEV1 [53].
Our analysis assesses only the genetic component of

gene expression. We also investigated whether these genes
were differentially expressed in COPD patients, in 464
blood samples from the COPDGene study [54], and 151
lung tissue samples [55] (Additional file 1: Supplementary
Methods and Table S5-S8). These genes were not differen-
tially expressed, with the exception of LILRA3, which was
nominally significant with %LAA-950 (P = 0.03). Given
that the genetic component of gene expression was repli-
cated, we believe that the genetic findings are robust, and
speculate that these null findings could be due to non-
genetic (i.e. environmental) perturbations that may occur
downstream, or as a result of the genetic effects. In fact, in
several cases measurements of mRNA or protein are actu-
ally opposite those predicted by genetic risk. For example,
SERPINA1 risk alleles result in decreased levels and in-
creased risk for COPD, yet average, alpha-1 levels in
patients with COPD are actually elevated. Similarly,
genetic variants in AGER and DSP affect transcript or
protein levels opposite than what is measured in dis-
ease [4, 56, 57]. The mechanisms underlying our gen-
etic findings, as well as AGER and DSP, that result in
null or opposite direction effects requires further ex-
perimental investigation.
In addition to examination of individual loci, we ap-

plied pathway enrichment analysis to nominally signifi-
cant differentially expressed genes in severe COPD and
quantitative emphysema both in whole blood and lung
tissue. This analysis identified enrichment of the T cell
receptor signaling pathway in emphysema. This finding
is consistent with reports that found antigen-specific T
cell differentiation in lungs of patients with severe
emphysema [58]. Our analysis using gProfileR does not
assess of direction of effect, and the relative up- or
down-regulation of specific genes in this pathway makes
determination of direction difficult. To attempt to infer
direction, we used Gene Set Enrichment Analysis
(GSEA; [59]). In these results, the TCR signaling path-
way and downstream TCR response were up-regulated,
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though these results were not statistically significant
(Additional file 1: Table S9). Further study will be
needed to determine the combined effects of COPD
genetic susceptibility variants on T cell function and
whether these explain some immune dysfunction seen in
COPD [60, 61]. The finding of the enrichment of genes
in the proteasome core complex further suggested a role
of proteasome in COPD as described previously. Some-
what surprisingly, we observed enrichment of the
asthma pathway in KEGG using genes identified in
quantitative emphysema. This finding complements the
description of substantial genetic correlation of COPD
and asthma [4], and the presence of quantitative emphy-
sema (or lung hyperinflation) in asthmatic patients [62].
Our study did not identify associations of genetically

regulated differential expression of genes at some previ-
ously reported GWAS loci. Moreover, some of our iden-
tified associations in our discovery dataset were not
successfully validated in a second transcriptome dataset.
These findings indicate some of the limitations of our
approach. First, as S-PrediXcan uses cis genetic variants
as predictors for gene expression, variants that have
lesser or no effect on transcript abundance or act in
trans would not be detected by this approach [63]. Sec-
ond, although most genetic variants implicated by
GWAS are likely regulatory, only a minority of genetic
loci are explained by existing eQTLs [64]. This may be
due to lack of data in the appropriate tissue, cell type, or
biologic conditions; or the heterogeneity of gene expres-
sion studies of bulk tissue. We may overcome these is-
sues as more gene expression datasets and newer
techniques such as single-cell gene expression profiling
[65] become widely available. Moreover, issues such as
cell type composition, sample collection methods, dis-
ease status, and differences in analytic methods also
made the overlapping analysis challenging. Third, the
number of genes available for an analysis depends on the
power and sample size of the expression data used in
constructing a gene expression prediction model [8, 9].
Given the noisy and condition-specific nature of gene
expression datasets, variants with small effects on gene
expression may be undetectable at the sample sizes
available. Additionally, the difference in sample size
among transcriptome databases decreases our power to
validate or discover more genes.
However, despite technical and population differ-

ences, most cis-eQTLs appear to be consistent be-
tween studies [66]. Therefore, despite in some cases a
modest value of overall coefficient of correlation be-
tween predicted and measured gene expression, asso-
ciations of the genetic component of gene expression
as inferred by imputed gene expression have been
successfully in identifying disease-associated genes
that complement existing methods.

Conclusions
In conclusion, we found that genetic determinants of
gene expression were associated with severe COPD and
quantitative emphysema phenotypes, identifying genes at
known loci, and identifying novel COPD-associated
genes. These findings were obtained by integrating
GWAS results with gene expression data, performing
colocalization analysis, and validating key results in inde-
pendent gene expression datasets. These findings may
provide mechanistic insights into the genetics of COPD.

Endnotes
1A preliminary abstract of this study was previously

published: Sakornsakolpat P, Morrow JD, Castaldi PJ,
Hersh CP, Silverman EK, Manichaikul A, et al. Integrative
Analysis of Genomics and Transcriptomics Identifies
Association of PSMA4 with Emphysema. American Journal
of Respiratory and Critical Care Medicine 2017;195:A7614.
Available from: http://www.atsjournals.org.
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