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Abstract

Background: Epithelial-mesenchymal transition is currently recognized as an important mechanism for the
increased number of myofibroblasts in cancer and fibrotic diseases. We have already reported that epithelial-
mesenchymal transition is involved in airway remodeling induced by eosinophils. Procaterol is a selective and full
β2 adrenergic agonist that is used as a rescue of asthmatic attack inhaler form and orally as a controller. In this
study, we evaluated whether procaterol can suppress epithelial-mesenchymal transition of airway epithelial cells
induced by eosinophils.

Methods: Epithelial-mesenchymal transition was assessed using a co-culture system of human bronchial epithelial
cells and primary human eosinophils or an eosinophilic leukemia cell line.

Results: Procaterol significantly inhibited co-culture associated morphological changes of bronchial epithelial cells,
decreased the expression of vimentin, and increased the expression of E-cadherin compared to control. Butoxamine, a
specific β2-adrenergic antagonist, significantly blocked changes induced by procaterol. In addition, procaterol inhibited
the expression of adhesion molecules induced during the interaction between eosinophils and bronchial epithelial
cells, suggesting the involvement of adhesion molecules in the process of epithelial-mesenchymal transition. Forskolin,
a cyclic adenosine monophosphate-promoting agent, exhibits similar inhibitory activity of procaterol.

Conclusions: Overall, these observations support the beneficial effect of procaterol on airway remodeling frequently
associated with chronic obstructive pulmonary diseases.
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Background
Obstructive pulmonary diseases such as bronchial asthma
and chronic obstructive pulmonary disease are chronic in-
flammation of the airways that are frequently associated
with lung structural changes, termed airway remodeling
[1, 2]. The pathogenesis of airway remodeling has not
been fully elucidated. It may be a consequence of airway
inflammation [3, 4]. β2 adrenergic agonists are not only

the first line drug for relief of acute asthma symptoms but
a long-term controller in combination with inhaled corti-
costeroids. Procaterol is a selective and full β2 adrenergic
agonist that is used as a rescue of asthmatic attack in
inhaler form and orally as a controller [5]. Studies
in vitro have shown that β2 selective-agonists exert anti-
inflammatory activity. β2 selective-agonists increase cyclic
AMP levels, which inhibit mast cell and eosinophil de-
granulation, apoptosis and cytokine production [6–9].
Procaterol can also reduce the expression of adhesion
molecules [6, 10]. A previous study has shown that sys-
temic administration of tulobuterol, a β2-selective agonist,
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decreases eosinophil adhesion to endothelial cells resulting
in reduction of eosinophil inflammation [11]. β2 adrener-
gic agonists are also very effective bronchodilators in
COPD and they are part of the therapeutic strategy for the
management of COPD patients [12, 13]. Short acting or
long acting β2 agonists are administered in clinical practice
through inhaler devices whose delivery efficiency has
substantially improved by the use of computational
models [13–17].
Epithelial to mesenchymal transition (EMT) leads to

increased number of myofibroblasts in cancer and fibrotic
diseases [18]. Eosinophils can cause airway remodeling by
promoting EMT [19]. Recently, we and others have re-
ported that direct contact of eosinophils with bronchial
epithelial cells increases the expression of TGF-β1 leading
to induction of EMT [20]. In the present study, we hy-
pothesized that procaterol can suppress EMT of airway
epithelial cells induced by eosinophils.

Methods
Reagent
L-glutamine, penicillin/streptomycin, donkey anti-mouse
IgG-Alexa Fluor 488, Chicken anti-rabbit IgG-Alexa
Fluor 594, Laemmli sample buffer and Trizol Reagent
were purchased from Invitrogen (Carlsbad, CA). Dulbec-
co’s modified Eagle’s medium (DMEM), RPMI-1640 and
bovine serum albumin (BSA) were from Sigma (St Louis,
MO), and fetal bovine serum (FBS) from Thermo scien-
tific. Rabbit anti α-SMA, anti-CD16 and anti-CD14 bound
micromagnetic beads were purchased from Miltenyi Bio-
tec (Auburn, CA), mouse anti-human E-cadherin antibody
from BD Biosciences (Mississauga, ON, Canada), and
anti-TGF-β1 monoclonal antibody (mAb) (1D11) from
R&D Systems (Minneapolis, MN). Sepasol-RNA I super G
(Nacalai tesque), anti-mouse antibodies against CD11b
(integrin αM), CD49d (integrin α4), CD29 (integrin β1),
CD18 (integrin β1), CD54 (ICAM-1), and CD106
(VCAM-1) were from BioLegend.

Cell lines
BEAS-2B, an adenovirus 12-SV40 virus hybrid (Ad12SV40)
transformed human epithelial cells, was obtained from the
Riken Cell Bank (Tsukuba, Japan), and cultured in DMEM
supplemented with 10% (v/v) heat-inactivated FBS, 0.03%
(w/v) L-glutamine, 100 IU/ml penicillin and 100 μg/ml
streptomycin. EoL-1 cells were obtained from the Riken
Cell Bank, maintained in suspension culture at 37 °C and
5%CO2 in humidified atmosphere using RPMI-1640
medium supplemented with 10%(v/v) heat-inactivated FBS,
0.03%(w/v) L-glutamine, 100 IU/ml penicillin and 100 μg/
ml streptomycin. For differentiation, EoL-1 cells were di-
luted to 5 × 105 cells/ml and 0.5 mM sodium n-butyrate
(BA) was added. EoL-1 cells were incubated with 0.5 mM
BA for 5 days.

Preparation of human eosinophils
Eosinophils from healthy human volunteers (age 30 to
45 years old with no present history of any disease) were
purified by negative selection using anti-CD16 and anti-
CD14 bound micromagnetic beads as previously described
[19]. The purity of eosinophils was more than 97% as mea-
sured by the Randoph’s phloxine-methylene blue stain [21].

Co-culture experiment and morphological analysis
BEAS-2B cells were cultured in 6- or 12-well plates until
60–70% cell confluence, then serum-starved for 24 h.
Eosinophils were pre-treated with procaterol (provided
by Otsuka Pharmacy) at 10−9 M for 1 h. Human eosino-
phils (1 × 106 cells for 12-well plate, 2 × 106 cells for 6-well
plate) were added to the culture RPMI medium and incu-
bated for further 24 h. After co-culture, human eosinophils
were removed from adherent BEAS-2B cells by gentle pip-
etting. BEAS-2B cells were stained by Diff-Quick technique
and photographed for analyzing morphological changes.
For immunofluorescence, cells were fixed with 4% parafor-
maldehyde for 10 min at room temperature and stained
with mouse anti-E-cadherin mAb and anti α-SMA Ab
(rabbit polyclonal) followed by the secondary antibodies
(donkey anti-mouse IgG conjugated with AF488 and chi-
ken anti-rabbit IgG conjugated with AF594. Deparaffinized
tissue sections were subjected to hydrated autoclaving for
antigen retrieval. After washing with Tris-buffered saline,
slides were exposed to mouse anti–human E-cadherin anti-
body (1:200) overnight at 4 °C and subsequently incubated
with donkey anti-mouse IgG-Alexa Fluor 488 (1:200) for
4 h at room temperature after washing. Staining of α-SMA
was done using rabbit anti–human α-SMA antibody
(1:200) and then chicken anti-rabbit IgG-Alexa Fluor 594
(1:200). After washing, the sections were counterstained
with 4,6-diamidino-2-phenylindole (DAPI) and mounted
using a fluorescence mounting medium.
In separate experiments, human eosinophils (2 × 105

cells) were prepared and treated with 10−7 M procaterol
or 10−5 M forskolin (Nacalai Tesque, Kyoto, Japan) for
30 min at 37 °C. A group of eosinophils was then co-
cultured with serum-starved semi-confluent BEAS-2B
cells (2.5 × 105 cells/well, 12-well plate) for 24 h and the
cell surface expression of integrins on eosinophils was
evaluated by flow cytometry. Control eosinophils were
cultured alone for 24 h. Another group of eosinophils
was co-cultured with BEAS-2B cells for 48 h and the cell
supernatants and adherent cells (BEAS-2B cells) were
collected for analysis of cytokine expression by RT-PCR
and immunoassays.

Reverse transcriptase polymerase chain reaction (RT-PCR)
After co-culture of BEAS-2B cells and eosinophils for
24 h, eosinophils were removed as described above.
Total RNA was extracted from BEAS-2B cells by the
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guanidine isothiocyanate procedure using Trizol Reagent.
RNA was reverse-transcribed using oligo-dT primers and
then the DNA was amplified by PCR. The sequences of
the primers are as follows: for human vimentin, forward
5′-GAGAACTTTGCCGTTGAAGC-3′ and reverse 5′-
GCTTCCTGTAGGTGGTGGCAATC-3′; for human
E-cadherin forward: 5′-GTATCTTCCCCGCCCTGCC
AATCC-3′ and reverse 5′-CCTGGCCGATAGAATGA
GACCCTG-3′; for human GAPDH, forward 5′-GTG
AAGGTCGGACTCAACGGA-3′ and reverse 5′-GGT
GAAGACGCCAGTGGACTG-3′. PCR was carried for
35 cycles (E-cadherin), 27 cycles (Vimentin), 25 cycles
(GAPDH), denaturation at 94 °C for 30s, annealing at
65 °C for E-cadherin and GAPDH, and 59 °C for
vimentin for 30s, and elongation at 72 °C for 1 min: at
the end of these cycles, a further extension was carried

out at 72 °C for 5 min. The PCR products were sepa-
rated on a 2% agarose gel containing 0.01% ethidium
bromide. The RNA concentration and purity were deter-
mined by UV absorption at 260:280 using an Ultrrospec
1100 pro UV/Vis spectrophotometer (Amersham Biosci-
ences, NJ). The amount of mRNA was normalized against
the GAPDH mRNA.

Immunoassays
The immunoassay kit for measuring transforming
growth factor (TGF)-β1 (R&D, McKinley Place, MN)
and granulocyte-macrophage colony-stimulating factor
(GM-CSF) were purchased from BD Biosciences Pharmin-
gen (San Jose, CA); and each parameter was measured fol-
lowing the manufacturer’s instructions.

Fig. 1 EMT induced by EoL-1 is inhibited by procaterol. a Control and BEAS-2B cells co-cultured with EoL-1 in the presence or absence of procaterol
(original magnifications, ×400). b Gene expression of E-cadherin and vimentin in BEAS-2B cells co-cultured with EoL-1 in the presence (10−9 M ~ 10−6 M)
or absence of procaterol as evaluated by RT-PCR. c Granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF-β1)
levels in the supernatant after co-culture in the presence (10−9 M ~ 10−6 M) or absence of procaterol. Bars indicate mean ± SEM. Scale bars indicate
100 μm. The data are the representative of a single experiment performed in triplicates. Two independent experiments were performed. *p < 0.0001 vs
procaterol 0 group; **p < 0.001 and ¶p < 0.05 vs EoL-1(+)/procaterol (−) group. Statistics by analysis of variance with Dunnett’s test
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Statistical analysis
All data were expressed as the mean ± standard error of
the mean (S.E.M.). The statistical difference between two
variables was calculated by the Mann–Whitney U test,
and that between three or more variables by one-way
analysis of variance with Dunnett’s test. We used the
software package GraphPad Prism 6 (GraphPad Soft-
ware, San Diego, CA) for all statistical analyses. P < 0.05
was considered as statistically significant.

Results
Procaterol inhibits EMT induced by human EoL-1 cells
BEAS-2B cells were co-cultured with EoL-1 in the pres-
ence or absence of procaterol. BEAS-2B cells cultured in
medium alone conserved the typical epithelial cobble-
stone pattern, but BEAS-2B cells co-cultured with EoL-1
presented fibroblast-like morphology consistent with EMT
(Fig. 1a). Procaterol inhibited these morphological changes.
RT-PCR analysis showed that procaterol significantly
inhibited the decrease in the expression of the epithelial
marker E-cadherin and the increase in the expression
of the mesenchymal marker vimentin in BEAS-2B cells
co-cultured with EoL-1 in a concentration-dependent
manner (Fig. 1b). Pre-treatment with procaterol signifi-
cantly and dose-dependently inhibited the increase of
TGF-β1 and GM-CSF in the culture supernatant sampled

during co-culture of BEAS-2B cells with human EoL-1
cells (Fig. 1c).
Subsequent investigations were performed using pro-

caterol at concentration of 10−7 M because the optimal
effective concentration of procaterol in human is between
10−8 M~ 10−7 M.

Procaterol inhibits EMT induced by primary human
eosinophils
BEAS-2B cells were co-cultured with primary human
eosinophils in the presence or absence of procaterol.
BEAS-2B cells co-cultured with human eosinophils ex-
hibited fibroblast-like morphology consistent with EMT,
but this was inhibited when human eosinophils were
pre-treated with procaterol. BEAS-2B cells cultured in
medium alone conserved the typical epithelial cobble-
stone pattern, but BEAS-2B cells co-cultured with hu-
man eosinophils showed spindle forms; culture in the
presence of procaterol inhibited these morphological
changes (Fig. 2a). RT-PCR analysis showed that proca-
terol significantly inhibited the decrease in the expres-
sion of E-cadherin and the increased expression of
vimentin in BEAS-2B cells co-cultured with human eo-
sinophils (Fig. 2b). Pre-treatment with procaterol signifi-
cantly inhibited the increase of TGF-β1 and GM-CSF in
the supernatant obtained during co-culture of BEAS-2B
cells with human eosinophils (Fig. 2c).

Fig. 2 EMT induced by primary human eosinophils is inhibited by procaterol. a Control and BEAS-2B cells co-cultured with primary human eosinophils
in the presence or absence of procaterol (original magnifications, ×400). b Gene expression of E-cadherin and vimentin as assessed by
RT-PCR. c Granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF-β1) levels in the supernatant. d Representative
immunofluorescence staining of E-cadherin (green) and α-SMA (red) in BEAS-2B cell with saline or eosinophils or eosinophils pre-treated with procaterol. e
Quantification by densitometry. Bars indicate mean ± SEM. Scale bars indicate 100 μm. The data are the representative of a single experiment performed in
triplicates. Two independent experiments were performed. *p< 0.001 vs procaterol (−) group; **p< 0.001 and ¶p< 0.05 vs eosinophils (+)/procaterol (−)
group. Statistics by analysis of variance with Dunnett’s test
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Immunofluorescence staining of E-cadherin (green)
and α-SMA (red) in BEAS-2B cell was also performed.
Procaterol significantly inhibited the decrease in the ex-
pression of E-cadherin and the increase in the expression
of α-SMA in BEAS-2B cells co-cultured with human
eosinophils (Fig. 2d, e).

Butoxamine, a specific β2-adrenergic antagonist, inhibits
the effect of procaterol
BEAS-2B cells pretreated with butoxamine before add-
ing procaterol, and co-cultured with human eosinophils
showed fibroblast-like morphology (Fig. 3a). RT-PCR
analysis showed that butoxamine significantly inhibited

the expression of E-cadherin and vimentin in BEAS-2B
cells co-cultured with human eosinophils (Fig. 3b). Pre-
treatment with butoxamine significantly blocked changes
induced by procaterol on secretion of TGF-β1 and GM-
CSF in the cell supernatant during co-culture of BEAS-2B
cells with human eosinophils (Fig. 3c).

Procaterol inhibits the expression of adhesion molecules
We have already reported the need of eosinophil contact
to induce EMT of bronchial epithelial cells, thus we
analyzed the expression of adhesion molecules on eo-
sinophils by flow cytometry. The expression of the ad-
hesion molecules ICAM-1 and VCAM-1 on BEAS-2B

Fig. 3 A specific β2 adrenergic receptor inhibitor blocks the effect of procaterol. a Control and BEAS-2B cells co-cultured with human eosinophils in the
presence or absence of procaterol and butoxamine (original magnifications, ×400). b Gene expression of E-cadherin and vimentin as evaluated by
RT-PCR. c Granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF-β1) levels in the supernatant. Bars
indicate mean ± SEM. Scale bars indicate 100 μm. The data are the representative of a single experiment performed in triplicates. Three independent
experiments were performed. *p < 0.005 vs butoxamine (−)/procaterol (−) group; **p < 0.005 vs butoxamine (−)/procaterol (+) group. Statistics by
analysis of variance with Dunnett’s test
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cells co-cultured with EoL-1 cells were enhanced in
the absence of procaterol but it was inhibited when
EoL-1 cells were pretreated with procaterol before co-
culturing with BEAS-2B cells (Fig. 4a, b).
The expressions of α4(CD49d), β1(CD29), αM(CD11b)

and β2(CD18) integrin subunits were also evaluated during

co-culture in the presence or absence of procaterol. The ex-
pression of CD49d, CD29, CD11b and CD18 were strongly
enhanced when BEAS-2B cells were co-cultured with
eosinophils pretreated without procaterol, but they were
significantly inhibited when eosinophils were pretreated
with procaterol (Fig. 5a, b).

Fig. 4 Procaterol inhibits the expression of adhesion molecules from BEAS-2B cells co-cultured with EoL-1 cells. a The expression of ICAM-1 and
VCAM-1 on BEAS-2B cells co-cultured with EoL-1 cells in the presence or absence of procaterol as analyzed by flow-cytometry. b Quantification
by MFI. Bars indicate mean ± SEM. The data are the representa tive of a single experiment performed in triplicates. Two independent experiments
were performed.*p < 0.001 vs EoL-1 (−)/procaterol (−) group; **p < 0.05 vs EoL-1 (+)/procaterol (−) group. Statistics by analysis of variance with
Dunnett’s test
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Suppression of EMT by antibodies against integrin and/or
anti-adhesion molecules
The role of adhesion molecules in EMT during co-
culture was evaluated. The characteristic morphological
changes of EMT in BEAS-2B cells co-cultured with eo-
sinophils were abolished in the presence of anti-integrin
antibodies (anti-CD18 Ab and/or anti-CD29 Ab) (Fig. 6a).
Anti-integrin antibodies also significantly inhibited the

decreased expression of E-cadherin, and the increased ex-
pression of vimentin (Fig. 6b).
EMT of BEAS-2B cells was inhibited in the presence

of anti-ICAM-1 antibody (anti-CD54 Ab) (Fig. 7a). Anti-
ICAM-1 antibody significantly inhibited the inhibitory
effect of procaterol on the expression of TGF-β1 and
GM-CSF during co-culture of BEAS-2B cells with hu-
man eosinophils (Fig. 7b). The decreased expression of

Fig. 5 Procaterol inhibits the expression of adhesion molecules on human eosinophils co-cultured with BEAS-2B cells. a The expression of αM
(CD11b), β2 (CD18), α4 (CD49d), β1 (CD29) integrin subunits on eosinophils as analyzed by flow cytometry after co-culture with BEAS-2B cells and
eosinophils in the presence or absence of procaterol. b Quantification by MFI. Bars indicate mean ± SEM. The data are the representative of a single
experiment performed in triplicates. Two independent experiments were performed. *p < 0.05 vs BEAS-2B (−)/procaterol (−) group; **p < 0.05 vs
BEAS-2B (+)/procaterol (−) group. Statistics by analysis of variance with Dunnett’s test

Fig. 6 EMT induced by eosinophils is suppressed by anti-integrin antibodies. a BEAS-2B cells co-cultured with human eosinophils in the presence
of anti-integrin antibodies (anti-CD18 Ab and/or anti-CD29 Ab). b Gene expression of E-cadherin and vimentin in BEAS-2B cells co-cultured with
human eosinophils in the presence or absence of anti-integrin antibodies (anti-CD18 Ab and/or anti-CD29 Ab). Bars indicate mean ± SEM. Scale
bars indicate 100 μm. The data are the representative of a single experiment performed in triplicates. Two independent experiments were
performed. *p < 0.01 vs eosinophils (−)/anti-CD29 (−)/anti-CD18 group; **p < 0.05 vs eosinophils (+)/anti-CD29 (−)/anti-CD18 group. Statistics
by analysis of variance with Dunnett’s test
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E-cadherin, and the increased expression of vimentin
(Fig. 7c) were also significantly inhibited by anti-ICAM-
1 antibody (Fig. 7c).

Forskolin exerts similar effects of procaterol
To demonstrate that increased intracellular levels of cyc-
lic adenosine monophosphate (cAMP) is critical for the
inhibitory activity of procaterol, we evaluated whether
similar effects can be observed with forskolin, a well-
recognized activator of adenylyl cyclase. As expected the
surface expression of integrins (CD11b, CD18, CD49d,
CD29) on eosinophils co-cultured with BEAS-2B cells
was significantly inhibited by forskolin compared to con-
trol cells (Fig. 8a, b). In addition, the mRNA expression
of E-cadherin was significantly increased while that of
vimentin was significantly decreased in BEAS-2B cells
co-cultured with eosinophils treated with forskolin com-
pared to control cells (Fig. 8c). The concentrations of
TGF-β1 and GM-CSF were also significantly suppressed
in the co-culture supernatant in the presence of forskolin
compared to control (Fig. 8d). EMT was also inhibited in

epithelial cells co-cultured in the presence of eosinophils
pre-treated with procaterol or forskolin (Fig. 8e).

Discussion
The results of this study provides the first evidence that
procaterol, a selective and full β2-agonist, suppresses
EMT of bronchial epithelial cells induced by eosinophils.

Adhesion molecules and airway remodeling
EMT of airway epithelial cells plays an important role in
airway remodeling associated chronic bronchial asthma
[22–26]. Mesenchymal cells during EMT migrate to the
subepithelial connective tissue where they produce
extracellular matrix proteins and contribute to airway
wall fibrosis [27]. We previously reported that direct
contact of eosinophils with the BEAS-2B cells increases
the expression of TGF-β1 and induces EMT [20]. Hansel
et al. reported that adhesion molecules on eosinophils play
crucial roles in bronchial asthma [28]. We found that
neither increase in the level of supernatant TGF-β1 nor
induction of EMT occurs when the cells are cultured

Fig. 7 EMT is suppressed by anti-integrin antibody and/or anti-adhesion molecule antibody. a BEAS-2B cells co-cultured with human eosinophils
in the presence of anti-integrin antibodies and/or anti-ICAM-1 antibodies (anti-CD18 Ab and/or anti-CD54 Ab). b Granulocyte-macrophage
colony-stimulating factor (GM-CSF) and transforming growth factor (TGF-β1) levels in the supernatant. Bars indicate mean ± SEM. c Scale bars
indicate 100 μm. The data are the representative of a single experiment performed in triplicates. Two independent experiments were performed.
Gene expression of E-cadherin, and vimentin in BEAS-2B cells co-cultured with eosinophils. *p < 0.01 vs eosinophils (−)/anti-CD54 (−)/anti-CD18 group;
**p < 0.05 vs eosinophils (+)/anti-CD54 (−)/anti-CD18 group. Statistics by analysis of variance with Dunnett’s test
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using a trans-well system suggesting the need of cell
contact. Adhesion molecules play a critical role in cell-to-
cell interaction [20]. Here, we showed that co-culture of
epithelial cells and eosinophils up-regulates the expression
of integrins on eosinophils and ICAM-1 and VCAM-1 on
epithelial cells, and that inhibition of integrin-mediated
cell-contact inhibits EMT of epithelial cells. Integrin-
mediated signaling in eosinophils appears to induce the
production of TGF-β1 leading to EMT of epithelial cells.
In the present study, we found that procaterol inhibits the
expression of adhesion molecules from eosinophils and
that EMT is suppressed in the presence of anti-adhesion
molecule antibodies during co-culture of bronchial epithe-
lial cells with primary eosinophils. Inhibition of the ex-
pression of adhesion molecules appears to be associated
with increased intracellular cyclic AMP activation [6]. In
support of this, we found that the effect of forskolin, a
cAMP-promoting agent, is similar to that of procaterol. A
previous study has shown that suppression of RhoA acti-
vation by increased intracellular levels of cAMP inhibits

integrin-dependent adhesion of leukocytes [29]. Therefore,
it is conceivable that elevation of intracellular levels of
cAMP is the mechanism by which procaterol decreases
activation of eosinophils leading to downregulated expres-
sion of integrin molecules and TGF-β1 in eosinophils
making them less capable of inducing EMT. All together,
these observations suggest that procaterol suppresses
eosinophil-induced EMT by blocking the expression of
adhesion molecules on eosinophils. It is worth noting
that, in addition to eosinophils, other cells including
macrophages and neutrophils are also capable of inducing
EMT [30, 31].

Bronchoconstriction and TGF-β1 expression
β2 adrenergic agonists are the first line drug for relief of
acute asthma symptoms and a long-term controller in
combination with inhaled corticosteroids [2]. They are
the key bronchodilators used in the reversal of acute
bronchospasm of bronchial asthma and for the treatment
of COPD [1, 2]. These agonists may also have important

Fig. 8 Forskolin and procaterol have similar effects. a, b Human eosinophils were pre-treated with procaterol or forskolin for 30 min and then
co-cultured with serum-starved BEAS-2B for 24 h before analyzing integrin expression by flow cytometry. c BEAS-2B cells were collected to
evaluate the mRNA expression of E-cadherin and vimentin. d Co-culture supernatants were collected to evaluate the levels of transforming
growth factor (TGF-β1) and granulocyte-macrophage colony-stimulating factor (GM-CSF). e EMT of BEAS-2B cells were evaluated in each treatment
group. Bars indicate mean ± SEM. Scale bars indicate 100 μm. The data are the representative of a single experiment performed in triplicates. *p < 0.05
vs control groups; **p < 0.05 vs eosinophils co-cultured with BEAS-2B in the absence of both procaterol and forskolin. Statistics by analysis of variance
with Dunnett’s test
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anti-inflammatory effects on eosinophils in airway chronic
diseases [7]. Grainge et al. showed that bronchoconstric-
tion without additional inflammation induced airway re-
modeling in patients with asthma [32]. They found that
bronchoconstriction induced by either allergen or metha-
choline increases TGF-β1 production from the airway epi-
thelium. This previous study also provided evidence that
repeated bronchoconstriction increases the thickness of
the sub-epithelial collagen layer, which is an early indicator
of airway collagen deposition and epithelial mesenchymal
signaling [32]. In the present study, TGF-β1 secretion was
suppressed by procaterol. Thus prevention of airway con-
traction by using β2 agonists may lead to amelioration of
airway remodeling.

Study limitations
The purity of eosinophils was not 100%, and thus EMT
could have been caused by hematopoietic cells rather
than eosinophils. However, in a previous study we demon-
strated that eosinophils isolated using the same method,
but not contaminating cells, promote EMT in the model
used here [19]. The fact that EMT induced by a eosinophil
cell line (Eol-1) was inhibited by procaterol also supports
the role of human eosinophils in our present model of
EMT. The lack of an in vivo study is another limitation;
but we already reported that eosinophils play an important
role in airway remodeling in vivo and that procaterol at a
clinical dose reduces eosinophil inflammation [19]. There-
fore, it is likely that suppression of eosinophils-induced
EMT by procaterol is a relevant mechanism even in vivo.

Conclusions
In summary, this study showed that procaterol, β2 ad-
renergic agonists, suppresses eosinophils-induced EMT
of airway epithelial cells, and this finding may explain
the mechanism by which β2 adrenergic agonists amelior-
ate airway remodeling in chronic obstructive pulmonary
diseases including bronchial asthma.
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