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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death and
there is a huge unmet clinical need to identify disease biomarkers in peripheral blood. Compared to gene level
differential expression approaches to identify gene signatures, network analyses provide a biologically intuitive
approach which leverages the co-expression patterns in the transcriptome to identify modules of co-expressed
genes.

Methods: A weighted gene co-expression network analysis (WGCNA) was applied to peripheral blood
transcriptome from 238 COPD subjects to discover co-expressed gene modules. We then determined the
relationship between these modules and forced expiratory volume in 1 s (FEV1). In a second, independent
cohort of 381 subjects, we determined the preservation of these modules and their relationship with FEV1. For
those modules that were significantly related to FEV1, we determined the biological processes as well as the
blood cell-specific gene expression that were over-represented using additional external datasets.

Results: Using WGCNA, we identified 17 modules of co-expressed genes in the discovery cohort. Three of these
modules were significantly correlated with FEV1 (FDR < 0.1). In the replication cohort, these modules were highly
preserved and their FEV1 associations were reproducible (P < 0.05). Two of the three modules were negatively
related to FEV1 and were enriched in IL8 and IL10 pathways and correlated with neutrophil-specific gene expression.
The positively related module, on the other hand, was enriched in DNA transcription and translation and was strongly
correlated to CD4+, CD8+ T cell-specific gene expression.

Conclusions: Network based approaches are promising tools to identify potential biomarkers for COPD.

Trial registration: The ECLIPSE study was funded by GlaxoSmithKline, under ClinicalTrials.gov identifier NCT00292552
and GSK No. SCO104960
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Background
Chronic obstructive pulmonary disease (COPD) is cur-
rently the third leading cause of death [1]. The disease is
under genetic and environmental control with cigarette
smoking being the major modifiable risk factor in the
Western world [2]. COPD is characterized by chronic irre-
versible airflow limitation that is often accompanied by
systemic inflammation [3, 4]. The two main morphologic
phenotypes of COPD are small airway obstruction and
emphysematous destruction and enlargement of airspaces.
While the molecular mechanisms underlying the two pro-
cesses may be different, COPD is diagnosed and assessed
using lung function parameters; the most commonly used
are the forced expiratory volume in 1 s (FEV1) and its ratio
with the forced vital capacity (FEV1/FVC).
There is a huge unmet clinical need to identify clinically

useful biomarkers for COPD [5]. To this end, blood bio-
markers would be highly desirable since blood is very
accessible. However, the main limitation of blood as a
source for biomarker discovery is that its signals may not
reflect the disease process in lungs, which are the predom-
inant site of disease in COPD. Recently, a number of
studies have evaluated the relationship of gene expression
profiles in peripheral blood with COPD endpoints and
have demonstrated some signal [6, 7]. One major limita-
tion of using gene expression data for biomarker discovery
is the requirement for statistical stringency in determining

significant expression changes. However, biologically,
this traditional approach lacks intuition since genes are
expressed (and function) in clusters or networks rather
than as independent entities.
To address this limitation, in this study, we used

weighted gene co-expression network (WGCNA) [8] to
identify “modules” of co-expressed genes in peripheral
blood of former smokers with COPD. We then used
these modules to discover novel molecular pathways
that are related to FEV1.

Methods
Overall study design
The overall study design is shown in Fig. 1. First, in the
discovery cohort, using the WGCNA approach, we identi-
fied modules of strongly co-expressed genes. We then de-
termined the association between these discovered gene
expression modules and FEV1% predicted in the discovery
cohort. Next, we determined the reproducibility of these
relationships in an independent replication cohort. In both
the discovery and replication cohorts, all analyses were
performed with and without adjustment for cell counts in
the peripheral circulation. We also determined whether
the discovered co-expression patterns in the discovery co-
hort were preserved in the replication cohort. Finally, we
used external cell-specific gene expression studies to de-
termine whether the discovered gene expression modules

Peripheral blood gene expression
n=238

Construct gene co-expression modules

Module-level associations with FEV1

Test modules for preservation in the replication cohort

Association of discovery modules with FEV1 in the  
replication cohort

Test FEV1- associated modules for enrichment in cell-
specific gene expression

Discovery

Replication

Peripheral blood gene expression
n= 381

Fig. 1 Overall study design
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were enriched (i.e. over-represented) for specific cell types
in the peripheral circulation (e.g. neutrophils, eosinophils,
lymphocytes, monocytes, etc.).

Study subjects
The discovery and replication populations were subsets
of the ECLIPSE (Evaluation of COPD Longitudinally
to Identify Predictive Surrogate Endpoints) study [9].
ECLIPSE was a 3 year non-interventional, multicentre,
longitudinal prospective study of COPD progression.
ECLIPSE included 2164 COPD patients aged 40–
75 years (smoking history ≥10 pack-years with a post-
bronchodilator FEV1/FVC < 0.70 and FEV1 < 80% pre-
dicted) and 337 smokers and 245 non-smokers who
were control subjects (FEV1/FVC > 0.70 and FEV1 > 90%
predicted). Blood was collected in PAXgene RNA tubes
and frozen at −80 °C. The gene expression sub-study of
ECLIPSE was originally designed to determine gene sig-
natures of exacerbation in peripheral blood of patients
with COPD [10]. The discovery cohort consisted of 238
former smokers with COPD. The replication cohort in-
cluded 381 subjects (54.3% former and 38.6% current
smokers) who were not part of the discovery set. The
parent ECLIPSE study was approved by the relevant
ethics review boards at each of the participating cen-
tres. Study participants provided written informed con-
sent, and participants’ information was de-identified.
The ECLIPSE study was funded by GlaxoSmithKline,
under ClinicalTrials.gov identifier NCT00292552 and
GSK No. SCO104960. This gene expression sub-study
was funded by Genome British Columbia and was ap-
proved by the Providence Health Care Research Ethics
Board (REB) of the University of British Columbia
(UBC) (H11-00786).

Microarray data processing
PAXgene Blood miRNA kit from PreAnalytix (Cat.
#763134) was used to extract the total RNA which was
then hybridized to the Affymetrix Human Gene 1.1 ST
array. Affymetrix GeneTitan MC Scanner (Affymetrix
Inc.) was used to scan the array plates. The oligo Biocon-
ductor [11] and RMA Express [12] packages were used
to perform quality control on the microarray data. Back-
ground correction, normalization and summarization of
the data and filtering out non-informative probe sets
was undertaken using the Factor Analysis for Robust
Microarray Summarization (FARMS Bioconductor pack-
age) [13]. The gene expression data are available on the
NCBI Gene Expression Omnibus (GEO) under http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71220.

Weighted gene co-expression network analysis (WGCNA)
The WGCNA R package [8] was used to cluster
groups of strongly co-expressed genes into co-expression

networks. We followed the WGCNA tutorials at
(http://www.genetics.ucla.edu/labs/horvath/Coexpression
Network/Rpackages/WGCNA/Tutorials/index.html). A
weighted gene co-expression network reconstruction al-
gorithm was used to create co-expression networks
among the unique 18,892 genes [14]. The workflow of
WGCNA began by creating a matrix of Pearson correla-
tions between genes, and transforming these into an ad-
jacency matrix through soft thresholding by raising it to a
power β. In this study β =7 was selected so that the
resulting adjacency matrix approximated a scale-free top-
ology criterion. The adjacency matrix was transformed
into a topological overlap matrix (TOM) [15]. Modules
were defined as groups of highly interconnected genes.
To identify modules of highly co-expressed genes, we
used average linkage hierarchical clustering to group
genes based on the topological overlap of their connect-
ivity, followed by a dynamic tree-cut algorithm to cluster
dendrogram branches into gene modules [16]. Each of
the resulting modules was assigned a color. For each
gene, we calculated a Module Membership (MM) whose
values ranged between 0 and 1 by correlating the gene’s
expression profile with the module eigengene determined
by the first principal component of the gene expression
profiles in that module. A gene that has a MM ap-
proaching 1 is considered to be highly connected to other
genes in that module. In this study “hub” genes, which
are considered to be central to the module, were defined
based on the sum of ranks of their MM and gene signifi-
cance for association with FEV1.

Module preservation
To test for module preservation in the replication sam-
ple, we used the Zsummary statistics method of the
WGCNA package [17]. The Zsummary is an integrated
statistics of two preservation measures: a density pres-
ervation statistic which determines whether a module
genes remain highly connected in the replication net-
work, and the connectivity based preservation statistic
which determines whether the connectivity pattern be-
tween genes in the discovery network is similar to that
in the replication network [17]. A permutation test is
used to assess the significance of the preservation sta-
tistics and Zsummary for the “gold” module, which is a
random sample representing the entire network. Based
on the thresholds determined by Langfelder et al. [17],
modules with a Zsummary score >10 demonstrate strong
preservation.

Differential gene and module expression analysis
In the discovery dataset, linear regression was used to
identify genes, whose expression was significantly related
to FEV1 % predicted, after adjustments for age, sex and
pack-years of smoking. The same approach was used to
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identify modules obtained from WGCNA that were dif-
ferentially expressed with regards to FEV1% predicted. In
a sensitivity analysis, both the gene and module-level as-
sociations were adjusted for cell counts in peripheral
blood. For this analysis the first three principal compo-
nents from the five cell types (neutrophils %, lympho-
cytes %, monocytes %, eosinophils % and basophils %)
accounted for 99.7% of variation in the cell percentages
and were used as covariates in the linear regression
model. The Benjamini-Hochberg method was applied to
correct for multiple testing [18].

Replication of module FEV1 associations
For modules identified in the discovery cohort, we com-
puted their eigenene values in the replication cohort and
then tested them for associations with FEV1 in this inde-
pendent set of subjects using linear regression. Similar
to the discovery cohort the analysis was adjusted for age,
sex and pack-years with additional adjustment for smok-
ing status given that the cohort consisted of former and
current smokers. A parallel analysis with additional ad-
justment for cell count was also performed.

Enrichment in cell specific gene expression
The three modules associated with FEV1 were tested
for enrichment in cell specific gene expression data
from three independent studies. These include: 1) the
study by Allantaz et al. [19] where they performed
miRNA and mRNA expression profiling in a panel of
nine human immune cell subsets (neutrophils, eosino-
phils, monocytes, B cells, NK cells, CD4 T cells, CD8 T
cells, myeloid dendritic cells (mDCs) and plasmacytoid
dendritic cells (pDCs), to identify cell-type specific ex-
pression (GSE28490 and GSE28491) in a discovery and
a validation cohort, 2) the study by Naranbhai et al.
[20] measured gene expression and mapped expression
quantitative trait loci (eQTL) in peripheral blood
CD16+ neutrophils from 101 healthy European adults
(E-MTAB-3536) and 3) the study by Fairfax et al. [21]
measured gene expression in B cells and monocytes
(E-MTAB-945).
Affymetrix arrays were normalized using RMA and

Illumina arrays were normalized using quantile
normalization. Non-overlapping genes across the three
studies were removed. Spearman Rank correlations were
performed to determine the extent of correlation be-
tween genes in significant modules and the cell specific
expression values. Furthermore, permutation was per-
formed by shuffling the expression data for 10,000 itera-
tions and checking the number of times that the rho is
greater or equal to the value obtained for each module.
In addition to P values, the enrichment was ranked using
rho values and agreement between studies considered in
the assignment of the most likely cell type.

Ingenuity pathway analysis
QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN
Redwood City, www.qiagen.com/ingenuity) was used to
analyze the gene sets for enriched canonical pathways.

Statistical analysis software
All analyses were performed with R version 3.2.1 and
Bioconductor packages [22]. Data processing was per-
formed using Biovia Pipeline Pilot.

Results
The discovery study included 238 former smokers with
COPD, while the replication cohort included 323 COPD
patients and 58 controls. The demographics of study
participants are shown in Table 1.

Gene level associations with FEV1
At the gene level, the strongest association with FEV1

was observed for BTN2A1 (Butyrophilin subfamily 2
member A1), which was negatively correlated with FEV1

(FDR = 0.094). It was the only gene that had an FDR <
0.1. The top 10 genes associated with FEV1 are shown in
Additional file 1: Table S1.

Module identifications and associations with FEV1

Applying WGCNA to the 18,892 genes expressed in
blood cells led to the identification of 17 modules of
various sizes ranging from 117 in the “grey60” module
to 5783 genes in the “turquoise” module. A total of 3659
genes could not be mapped to any module; these genes
were grouped into the “grey” module and were not con-
sidered further in the differential expression analyses.
Three modules showed strong associations with FEV1

after adjustments for age, sex and pack-years of smoking.
The most significantly correlated module was the “yel-
low” module containing 918 genes. It had a negative re-
lationship with FEV1 (FDR = 0.004). The second
strongest associated module with FEV1 (FDR = 0.007)
was the “green” module which contained 553 genes and
was also negatively correlated with FEV1. Finally the
“brown” module which contained1569 genes was posi-
tively correlated to FEV1 (FDR = 0.03). The relationship
between all the modules and FEV1 are shown in Table 2.
Genes in the yellow, green and brown modules

showed strong enrichment for certain biological pro-
cesses, suggesting that these modules have distinct bio-
logical function (Table 3). The green module, for
instance, was enriched in interleukin (IL)-10, the trigger-
ing receptor expressed on myeloid cells 1 (TREM1), the
Fc Receptor-mediated phagocytosis in macrophage and
monocyte and the peroxisome proliferator-activated re-
ceptors (PPAR) signalling pathways. The yellow module
was enriched in IL-8 signalling, the production of nitric
oxide and reactive oxygen species in macrophages, and
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the caveolar-mediated endocytosis and relaxin signalling
pathways. The brown module was enriched in processes
related to DNA transcription and translation.

Mapping “hub” genes
The identification of modules allowed mapping of hub
genes, which are central to their respective modules. To

identify hub genes, we used a combination of gene
significance (P value) for its association with FEV1 and
the gene’s module membership (MM). MM is a measure
of how well that gene is connected to the entire module
and is reflective of a gene’s centrality. Using this ap-
proach, the top hub genes for the green module were
dedicator of cytokinesis 5 (DOCK5) and DENN domain
containing 3 (DENND3) genes. For the yellow module,
the top two hub genes were RAB3D, member RAS
oncogene family (RAB3D) and GRB2 (Growth factor
receptor-bound protein 2) associated binding protein 2
(GAB2). For the brown module, the top hub genes were
DCAF16 and EIF2AK3. The networks of GAB2, DOCK5
and DCAF16 are shown in Fig. 1.

Impact of adjustment of complete cell count (CBC) and
differential to the gene and module level associations
with FEV1
Because peripheral blood contains a mixture of inflam-
matory cells, we evaluated the impact of complete cell
count (CBC) and differential on gene expression at the
gene as well as module level. The correlation of eigen-
genes with CBC in peripheral blood of the same subjects
is shown in Additional file 1: Table S2 for the discovery
and replication cohorts.
The yellow and green modules, which were negatively

associated with FEV1 were positively correlated with
neutrophils (P < 0.001) and negatively correlated to
lymphocytes (P < 0.001) in peripheral blood. The brown
module, which showed positive association with FEV1,
was negatively correlated with neutrophils (P < 0.001)

Table 2 Module associations with FEV1 in the discovery cohort

Module Estimate SE p-value FDR Module size

Yellow −59.924 16.106 2.49E-04 4.49E-03 918

Green −54.373 15.998 7.96E-04 7.17E-03 553

Brown 45.964 16.373 5.42E-03 3.25E-02 1569

Greenyellow −38.935 16.077 1.62E-02 5.97E-02 369

Blue 38.616 16.000 1.66E-02 5.97E-02 2399

Magenta −34.945 16.104 3.10E-02 9.31E-02 455

Red 30.352 16.007 5.92E-02 1.52E-01 510

Pink 21.163 16.248 1.94E-01 4.37E-01 471

Turquoise −19.410 16.096 2.29E-01 4.58E-01 5783

Grey60 −16.590 16.461 3.15E-01 5.66E-01 117

Midnightblue 9.907 16.225 5.42E-01 7.14E-01 152

Black 9.638 16.210 5.53E-01 7.14E-01 493

Tan −9.510 16.190 5.58E-01 7.14E-01 330

Purple −8.022 16.543 6.28E-01 7.14E-01 442

Lightcyan −7.684 16.168 6.35E-01 7.14E-01 123

Salmon −4.268 16.136 7.92E-01 8.03E-01 316

Cyan 4.047 16.209 8.03E-01 8.03E-01 233

SE standard error, FDR false discovery rate

Table 1 Subjects demographics

Variable Discovery Replication P-value*

N 238 COPD 323 COPD 58 controls

Age 64.2 ± 6.2 63.9 ± 6.1 59.6 ± 6.5 <0.001

Male 64.3% 67.8% 62.1% 0.556

BMI 28.1 ± 6 26.5 ± 5.8 28.6 ± 4.3 0.001

Smoker <0.001

Former 96.6% 54.5% 53.4%

Current 3.4% 45.5% 0%

Never 0% 0% 46.6%

Pack years 46 ± 26.9 48.2 ± 26.4 26.9 ± 14.1 <0.001

FEV1% predicted 49.5 ± 16.2 49.7 ± 15.9 109.7 ± 15.8 <0.001

FEV1/FVC 0.46 ± 0.13 0.45 ± 0.11 0.79 ± 0.06 <0.001

GOLD –

2 43.7% 39.6% –

3 44.1% 49.2% –

4 12.2% 11.1% –

Exacerbations in prior year 1.6 ± 1.8 0.4 ± 0.5 – <0.001

*P-value is from F test for continuous variables and chi-square test for categorical variables
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and positively correlated to lymphocytes (P < 0.001).
These relationships were replicated in the replication
cohort.
To evaluate the impact of peripheral blood cell count

on gene level association, the analysis was repeated by
including CBC and differential of peripheral blood in the
statistical model we had used previously. Results are
shown in Additional file 1: Table S3. The smallest FDR

value after cell count adjustment was 0.64 indicating that
cell count adjustment had a significant effect on periph-
eral blood gene expression signatures for FEV1. There
was a modest correlation (r = 0.56, P < 2.2x10−16) of
P values from the cell count and the non-cell count
adjusted associations.
We performed a similar analysis by adding CBC and

differential as covariates in the module level analysis
(Additional file 1: Table S4). This led to the inflation of
p values and a loss of statistical significance in the rela-
tionships between modules and FEV1: the yellow and
green modules, for instance, ranked third and seventh
with P values of 0.158 and 0.282, respectively and an
FDR = 0.653 in the CBC adjusted analysis.

The relationship between modules and inflammatory cells
in peripheral blood
To determine which specific cell types were influencing
gene expression in each of the modules, we evaluated 3
external databases that had captured cell specific gene
expression in peripheral blood. The results are shown in
Table 4. The green and yellow modules, which were both
negatively associated with FEV1, were enriched in neu-
trophils, while the brown module, which showed positive
association with FEV1, was enriched in CD4+ T cells,
CD8+ T cells and CD56+ NK cells.

Modules’ preservation and reproducibility of FEV1
associations
The WGCNA modules were tested for preservation in a
replication cohort of 381 current and former smokers
with COPD. The resulting preservation Zsummary was >10,
which was higher than the randomly assigned “gold”
module, suggesting that all modules (except grey) were
strongly preserved in the replication cohort (Fig. 2).

Table 3 Biological processes enrichment for the three FEV1
associated modules

Canonical Pathways p-value

Green Module

IL-10 Signaling 4.47E-08

TREM1 Signaling 1.14E-06

PPAR/RXR Activation 3.96E-06

Fc Receptor-mediated Phagocytosis in
Macrophages and Monocytes

9.75E-06

PPAR Signaling 9.75E-06

Yellow Module

IL-8 Signaling 5.90E-09

Production of Nitric Oxide and Reactive
Oxygen Species in Macrophages

8.84E-07

Caveolar-mediated Endocytosis Signaling 2.29E-05

Role of Tissue Factor in Cancer 2.95E-05

Relaxin Signaling 3.26E-05

Brown Module

tRNA Charging 2.06E-10

Purine Nucleotides De Novo Biosynthesis II 5.12E-04

Cleavage and Polyadenylation of Pre-mRNA 8.27E-04

Nur77 Signaling in T Lymphocytes 1.61E-03

Leucine Degradation I 2.17E-03

Table 4 Cell type enrichement for the three FEV1 associated modules

Reference dataset Cell type Module rho* Permutation best rho

Allantaz et al. (Discovery) Neutrophil Green 0.747 0.216

Allantaz et al. (Validation) Neutrophil Green 0.715 0.193

Naranbhai et al. Neutrophil Green 0.656 0.186

Allantaz et al. (Discovery) Neutrophils Yellow 0.773 0.147

Allantaz et al. (Validation) Neutrophils Yellow 0.729 0.145

Naranbhai et al. Neutrophils Yellow 0.697 0.143

Allantaz et al. (Discovery) CD4+ T cells Brown 0.618 0.121

Allantaz et al. (Discovery) CD8+ T cells Brown 0.589 0.127

Allantaz et al. (Validation) CD8+ T cells Brown 0.571 0.118

Allantaz et al. (Discovery) CD56+ NK cells Brown 0.568 0.122

Allantaz et al. (Validation) CD4+ T cells Brown 0.567 0.109

Allantaz et al. (Validation) NK cells Brown 0.536 0.142

Allantaz et al. (Discovery) CD14+ monocytes Brown 0.531 0.129

*donates P < 1×10−308 for all the reported Spearman’s rho values. Permutation best rho: the highest rho value obtained during permutation
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To determine whether the module associations were re-
producible, eigengenes were computed in the replication
cohort for modules from the discovery cohort. The new
eigengenes were then tested for association with FEV1 in
the replication cohort (Additional file 1: Table S5). Inter-
estingly, the top three modules associated with FEV1 in
the discovery cohort, brown, yellow and green, were also
the top three modules associated with FEV1 in the replica-
tion cohort with P = 0.024, P = 0.035, and P = 0.036 for
brown, green and yellow, respectively (Figs. 3 and 4). Simi-
lar to results from the discovery cohort, adjustments for
cell count in the replication cohort led to the inflation of
p-values for these modules (Additional file 1: Table S6).

Discussion
COPD is an inflammatory lung disease, which has a sig-
nificant systemic component that contributes to its overall
morbidity and mortality. Because inflammation is thought
to play a central role in the pathogenesis of COPD, there
has been a tremendous surge of interest in studying

circulating immune and inflammatory cells as potential
biomarkers for the disease. There is a pressing need to
identify genomic signatures of disease severity and activity
that can guide therapeutic decisions and address the
growing burden of COPD worldwide. In this study, we
used modules of co-expressed genes in a highly accessible
tissue, peripheral blood, to identify genomic signatures of
COPD severity using FEV1 as the readout.
The main findings of the present study were that: 1)

At the gene level, only one gene was associated with
FEV1 (FDR < 0.1); 2) the 18,892 genes expressed in per-
ipheral blood mapped to 17 modules of co-expressed
genes; 3) three of the modules were associated with
FEV1, 4) in a second and larger cohort of current and
former smokers with COPD and controls, all of the
modules were preserved at the co-expression level, 5)
the three modules in the discovery cohort that were statis-
tically associated with FEV1 showed the strongest associa-
tions with FEV1 in the replication cohort (P < 0.05), 6) the
two modules, which were negatively related to FEV1, were

Fig. 2 Networks of GAB2, DOCK5 and DCAF16. The figure shows the networks for GAB2, DOCK5 and DCAF16 in the yellow, green and Brown
modules, respectively. The genes shown are top 50 significant genes that had a FDR adjusted P value <0.05 for association with FEV1. The size of
the circle is proportional to the P value on the –log10 scale (larger = smaller P value). The thickness of the edge is proportional to the topological
overlap measure (TOM) identified in WGCNA
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Fig. 3 Preservation Zsummary of modules from discovery cohort in the replication cohort. The Y axis shows the modules vs. their corresponding
Zsummary statistics on the X axis. All modules (except the grey modules) showed a strong preservation based on the threshold prescribed in Langfelder
et al. [17] of a Zsummary score >10. Furthermore, the “gold” module consists of 1000 randomly selected genes that represent a sample of the whole
genome, constructed for module preservation analysis. The grey module consists of genes that were not assigned to any module in the network

Fig. 4 Scatter plot of module associations with FEV1 in discovery and replication cohorts. The Y axis shows the P values (−log10 scale) for FEV1
associations in the replication cohort while the X axis shows the association P values in the discovery cohort
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enriched in IL10 and IL8 pathways and were strongly
correlated to neutrophil cell-specific expression, while
the positively related module was enriched in DNA
transcription pathways and strongly correlated to T cell
specific expression.
Previous studies investigating differential expression

in COPD have mainly tested genes and probesets indi-
vidually; however, in vivo, genes are co-expressed in
networks. By leveraging co-expression patterns, net-
works of closely co-expressed genes can be identified,
often revealing novel functional pathways. The resulting
network modules can then be tested for differential ex-
pression with FEV1. Another major advantage of net-
work analyses is that this approach can significantly
decrease false negatives (Type II error) by markedly
reducing the number of features that are tested. In the
present study the three modules reproducibly associ-
ated with FEV1 were enriched in biological pathways
suggesting that co-expressed genes share biological
functions within a particular module.
In each of the co-expressed networks, driver or “hub”

genes can be identified, which can additionally inform
the biology of these modules as they relate to FEV1. The
top hub gene for the yellow module was DOCK5 which
is a member of the DOCK family of guanine-nucleotide
exchange factors that activate Rho-family GTPases by
exchanging bound GDP for free guanosine triphosphate
(GTP) [23]. DOCK5 has been shown to interact with the
regulatory and catalytic subunits of protein phosphatase
2, encoded by PPP2R1A/B/C [24]. In mice, protein phos-
phatase 2A has been shown to regulate innate immune
and proteolytic responses to cigarette smoke exposure in
the lung [25]. The top hub gene for the green module
was GAB2 which was negatively correlated to FEV1.
GAB2 is a member of the growth factor receptor-bound
protein 2 (GRB2) associated binding protein (GAB) gene
family, which acts as an adapter molecule in signal trans-
duction of cytokine and growth factor receptors, and T
and B cell antigen receptors [26]. GAB2 is the principal
activator of phosphatidylinositol-3 kinase in response
to activation of the high affinity IgE receptor [27]. In a
previous study, the expression of GAB2 in sputum was
significantly increased in patients with severe emphy-
sema compared to those who had minimal emphysema
[28]. In the brown module, DDB1 and CUL4 associated
factor 16 (DCAF16) and eukaryotic translation initi-
ation factor 2 alpha kinase 3 (EIF2AK3) were the top
two FEV1 hub genes. Little is known about DCAF16,
and EIF2AK3 encodes a protein, which functions as an
endoplasmic reticulum stress sensor [29].
Although the present study is one of the largest to

date that have evaluated peripheral gene expression sig-
nature in COPD [6], at the gene level, only one gene;
butyrophilin subfamily 2 member A1 (BTN2A1) was

significantly associated with FEV1. Butyrophilin has been
shown to regulate immune function [30]. In contrast to
gene-by-gene comparison approach, the use of network
based modules identified a larger number of genes
within the three significant modules which were related
to FEV1 highlighting the value of network approaches in
identifying gene signatures. Previous work on exacerba-
tions in COPD demonstrated similar findings [31].
It is notable that adjustments for cell count had a large

impact on the relationship between gene expression sig-
natures and FEV1. This is not surprising given that per-
ipheral whole blood is a heterogeneous tissue composed
of many different immune cell subsets. Moreover, its cel-
lular composition varies in response to physiological or
pathological processes. These processes often involve
cell differentiation and/or transit of specific cell types
between blood and tissues, resulting in important shifts
in the cellular makeup of samples under different con-
ditions affecting blood-derived gene expression data.
Disentangling causal from reactive relationships is chal-
lenging in observational studies. Although it is common
practice to statistically adjust for peripheral blood cell
composition by including CBC and differential cell
counts as covariates, regression methods do not fully
take into account cell-specific gene expression and thus
may obfuscate important cell-specific signatures. To ex-
plore this possibility, in the present study, in addition
to the standard regression analysis, we interrogated
cell-specific gene expression in three external studies
that contained cell-specific gene expression data that
were generated by using cell isolation methods. Using
this approach, we found that the two modules which
were negatively associated with FEV1, contained strong
neutrophil-specific gene expression, suggesting that in-
creased number and/or activation of peripheral neutro-
phils is associated with airway obstruction. The role of
neutrophils in the pathogenesis of COPD is well estab-
lished [32, 33]. The module that was positively related
to FEV1, on the other hand, contained gene expression
signals that were T and B cell specific. Previous studies
have highlighted the role of the adaptive immune re-
sponse in COPD [34–37].
The current study has a number of limitations. First,

gene expression signatures in peripheral blood may not
reflect disease process in lungs of COPD patients. How-
ever, peripheral blood is more accessible than lung tissue
and may provide information on biological processes
such as immune responses that may be relevant in
COPD. Second, FEV1 may not fully capture disease ac-
tivity in COPD and could reflect different pathological
processes (emphysema or airway disease). Finally, the
cell count adjustment had a large effect on the relation-
ship between modules and FEV1. Given that changes in
cell abundance can be causally related to changes in
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FEV1 and disease status [38, 39] and given the strong
correlations with cell specific expression in external
datasets, the regression methods used for adjustment
may have been overly conservative. Most published stud-
ies to date on peripheral blood in COPD do not adjust
for cell count [6, 31, 40]. Future studies are warranted
that incorporate differences in cell counts and/or meas-
urement of cell specific expression changes.

Conclusions
In conclusion, we identified gene co-expression modules
in peripheral blood of patients with COPD that are
highly reproducible. Three modules showed strong associ-
ations with FEV1 and were sensitive to cell count. In a
larger replication cohort, the module-based co-expression
patterns were preserved and associated with FEV1 in the
same direction. Network based analyses represent a novel
approach to discover biomarkers for COPD and warrant
further attention in future studies.
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