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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is characterized by airflow obstruction and loss of
lung tissue mainly consisting of extracellular matrix (ECM). Three of the main ECM components are type I collagen,
the main constituent in the interstitial matrix, type VI collagen, and elastin, the signature protein of the lungs. During
pathological remodeling driven by inflammatory cells and proteases, fragments of these proteins are released into the
bloodstream, where they may serve as biomarkers for disease phenotypes. The aim of this study was to investigate the
lung ECM remodeling in healthy controls and COPD patients in the COPDGene study.

Methods: The COPDGene study recruited 10,300 COPD patients in 21 centers. A subset of 89 patients from one site
(National Jewish Health), including 52 COPD patients, 12 never-smoker controls and 25 smokers without
COPD controls, were studied for serum ECM biomarkers reflecting inflammation-driven type I and VI collagen
breakdown (C1M and C6M, respectively), type VI collagen formation (Pro-C6), as well as elastin breakdown
mediated by neutrophil elastase (EL-NE). Correlation of biomarkers with lung function, the SF-36 quality of life
questionnaire, and other clinical characteristics was also performed.

Results: The circulating concentrations of biomarkers C6M, Pro-C6, and EL-NE were significantly elevated in
COPD patients compared to never-smoking control patients (all p < 0.05). EL-NE was significantly elevated in
emphysema patients compared to smoking controls (p < 0.05) and never-smoking controls (p < 0.005), by more
than 250%. C1M was inversely associated with forced expiratory volume in 1 s (FEV1) (r = −0.344, p = 0.001),
as was EL-NE (r = −0.302, p = 0.004) and Pro-C6 (r = −0.259, p = 0.015). In the patients with COPD, Pro-C6 was
correlated with percent predicted Forced Vital Capacity (FVC) (r = 0.281, p = 0.046) and quality of life using
SF-36. C6M and Pro-C6, were positively correlated with blood eosinophil numbers in COPD patients (r = 0.382,
p = 0.006 and r = 0.351, p = 0.012, respectively).

Conclusions: These data suggest that type VI collagen turnover and elastin degradation by neutrophil elastase are
associated with COPD-induced inflammation (eosinophil-bronchitis) and emphysema. Serological assessment of type
VI collagen and elastin turnover may assist in identification of phenotypes likely to be associated with progression and
amenable to precision medicine for clinical trials.
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Background
The current treatment options for disease modification in
COPD are limited [1, 2]. Lack of progress in drug develop-
ment may be due to a lack of identification of the optimal
patient for the optimal intervention (i.e., precision medi-
cine) [3]. However, the recent approvals of roflumilast for
subsets of COPD patients demonstrate a feasible precision
medicine approach in which patients with severe or very
severe COPD associated with chronic bronchitis and a
history of exacerbations showed a statistically significant
reduction in exacerbations, when given as an add-on to
combined inhaled therapies [1, 4, 5].
Another factor limiting clinical trial feasibility is the

slow progression of COPD, exemplified by the modest
declines observed in pre-bronchodilator Forced Expira-
tory Volume in 1 s (FEV1) of the trials comparing roflu-
milast to placebo [6]. A similarly small decrease was
observed also in the Evaluation of COPD Longitudinally
to Identify Predictive Surrogate Endpoints (ECLIPSE)
observational study. From this study, Vestbo and col-
leagues reported an average annual FEV1 decline of
33 mL/year, and further found that a notable proportion
of patients did not experience a decline in lung function
[7]. Data derived from multiple large clinical trials indi-
cate that the average lung function decline appears to be
higher in an earlier stage (GOLD 2) of COPD, compared
to later stages (GOLD 3 and 4) [8–12]. In direct align-
ment with this, a number of COPD patients may never
have undergone a significant loss of lung function in
terms of FEV1, but may have had a low lung function in
early adulthood, raising the risk of ultimately having
significant airflow limitation despite a normal or only
slightly decline in FEV1 over time [13–16].
Despite significant investments made in identifying

genetic factors which may influence either COPD dis-
ease development or severity, only a minor proportion
of patients carry identifiable genetic anomalies such as
severe alpha-1 antitrypsin (AAT) deficiency, which has
been shown to significantly influence development of
emphysema [15]. Large-scale attempts to identify bio-
markers reflecting COPD subtypes have yielded modest
results [17, 18], in which cytokines and air pollution may
provide some value as predictive markers for progression
[19, 20], albeit new biomarkers are needed [3].
Recently, an increased attention to identification of

phenotypes in COPD has been pursued consequent to
the lack of success in drug development in broader dis-
ease populations with functional modulators [3]. Several
researchers have suggested changing the respiratory phe-
notypes into more targetable and treatable traits [21].
Two potential phenotypes include: emphysema and the
eosinophil-bronchitis, however for their identification
and monitoring simple serological biomarkers are lack-
ing. Currently, the phenotyping is mainly based on a

combination of clinical and morphological features such
as type and severity of symptoms [22, 23]. Results from
the ECLIPSE study suggest that a frequent-exacerbator
phenotype exists, irrespective of disease severity, and
that the best predictor of future exacerbations is a his-
tory of exacerbations [24], albeit others did not replicate
this finding and found smoking to be the only predictor
of acute respiratory episodes [25]. Further complicating
patient reported outcomes, published reports indicate
significant variability of these measures, perhaps due to
failure of the patient to identify exacerbations caused by
diffuse symptomatology or lack of clear association be-
tween symptoms and event from a patient perspective,
ultimately leading to underreporting [24–26]. Imaging
assessments of the lung parenchyma and airways using
computed tomography (CT) are only feasible in a sub-
group of the population preselected for having COPD
diagnosed by spirometry and symptoms [27], limiting
the potential for screening of phenotype identification.
Chronic inflammation in the lungs leads to repeated

cycles of injury and repair of the airway walls [28–30].
Elevated concentrations of inflammatory markers in
blood are also able to predict groups with a higher risk
of future exacerbations [31], but none of these modal-
ities have been approved for standard clinical care for in-
dividual patients. Possibly a new form of inflammatory
and structural biomarkers may provide value, such as
biomarkers of tissue turnover driven by inflammation
[32–34]. A central part of lung function decline is extra-
cellular matrix (ECM) remodeling [35]. During struc-
tural remodeling of the airway walls, an increase in ECM
protein deposition and scar tissue formation results in
narrowing of the lumen and airway obstruction, result-
ing in functional loss [36]. ECM turnover is a delicate
balance between formation and degradation. It is consid-
ered an important element in tissue homeostasis, in which
old proteins are continuously degraded and new proteins
are formed [37]. This equilibrium is out of balance in dis-
eases affecting connective tissue, and in the case of COPD,
may results in an increase in both formation and degrad-
ation of tissue in the peripheral airway wall which may
lead to tissue disruption and fibrosis [32, 38].
Previous research shows that the airway wall compos-

ition is changed in patients suffering from COPD as
compared to healthy individuals, in which an increased
deposition of type I and III collagens, fibronectin, and
laminin have been identified [39, 40], along with the pro-
teoglycans, perlecan decorin, versican and biglycan [41].
Some proteases have been reported to be over-expressed
in tissue affected by COPD, such as elastase [42] and
matrix metalloproteinases (MMP)-1, -2, -7 and -12 [43],
of which most are collagenolytic. Their activity results in
the release of protease-specific fragments of ECM pro-
teins. It is recognized that in emphysema, both elastin
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and collagen degradation in alveoli occurs [40], thus
generating elastin- and collagen fragments which are re-
leased into the systemic circulation. These protease-
derived protein fragments may be used as serological
biomarkers of tissue formation or degradation, reflecting
the type of remodeling activity [33, 44, 45], and therefore
have the potential to be used as diagnostic or prognostic
tools if adequately validated. Examples of biomarkers of
remodeling of structural proteins are MMP-2, -9, and
13-mediated destruction of interstitial type I, III, V, and
VI collagen [46–48] and the basement membrane type
IV collagen [49], which have all been found to be associ-
ated with connective tissue diseases.
The aim of this study was to investigate the degree of

lung ECM remodeling in healthy smokers and non-
smokers and COPD patients from a sub-group of the
COPDGene study, possibly associated with the two
major phenotypes in respiratory diseases, the emphy-
sema and eosinophil-predominant (Bronchitis) pheno-
types. We focused on the signature protein of the lung,
elastin, degraded by neutrophil elastase [50], degradation
of the main component of lung interstitial matrix, type I
collagen, and remodeling of type VI collagen, found at
the interface of the basement membrane and interstitial
matrix [37], which is disrupted during progression of
COPD [35].

Methods
Study population
This study was approved by the Independent Review
Board and all patients gave informed written consent.
The basis of this analysis is a cross-sectional post-hoc in-
vestigation of a subset of the COPDGene study. The
COPDGene study recruited 10,300 COPD patients in 21
centers (see [51]). The major inclusion criteria were
non-Hispanic white or African-American race, age be-
tween 45–80 years and at least 10 years of smoking his-
tory. Major exclusion criteria include a history of other
non-asthma lung diseases, lung cancer, surgical resection
of one or more lung lobe, or COPD exacerbation within
1 month prior to inclusion. All patients underwent a
clinical examination including blood sampling, spirometry
to assess lung function, questionnaires to assess the qual-
ity of life (The Short Form 36 (SF-36) [52]), and CT-scan
upon inclusion in the trial. In one center, a subset of 89

subjects including 52 COPD patients, 12 never-smoker
controls and 25 smokers without COPD by spirometry
(FEV1/FVC ratio > 0.70) were asked to participate and
provide additional blood for studies of ECM.
Clinical definitions were as follows: Emphysema was

defined as a low attenuation area at −950 Hounsfield
Units (%LAA) >5% on chest CT scans, and chronic
bronchitis defined as having current symptoms of
chronic bronchitis in addition to COPD by spirometry.
The Chronic Bronchitis-phenotype was defined in ac-
cordance with the definition by GOLD as the presence
of cough and sputum production for at least 3 months
in each of two consecutive years [53] in addition to
COPD by spirometry. Never-smokers were defined as
patients having smoked less than 100 cigarettes in their
lifetime. Smoker controls had to have a smoking history
of at least 10 pack years.
ECM-related biomarkers of type I collagen degradation

by MMPs (C1M), type VI collagen degradation by
MMPs or formation (C6M, Pro-C6) and elastin degraded
by neutrophil elastase (EL-NE) were measured in serum
samples from the 89 subjects using highly specific
Enzyme-Linked Immunosorbent Assays (ELISAs) for
such fragments. Monoclonal antibodies against specific
protein fragments resulting from proteolytic cleavage by
a specific protease were used in each ELISA; a descrip-
tion of each assay is listed in Table 1.

Statistical analysis
The mean concentrations of the respective biomarkers
was compared between COPD (n = 52) and control pa-
tients smoking (n = 25) and never-smoking (n = 12) as
well as three selected subgroups of the study population;
1: Patients with diagnosed emphysema (n = 30), 2: Pa-
tients with both chronic bronchitis and emphysema
(mixed disease, n = 15), and 3: an “obstructive” pheno-
type with the absence of emphysema and chronic bron-
chitis, yet COPD as assessed by spirometry, defined as
FEV1/FVC < 0.70 (n = 7). Six COPD patients, and 6
smoking controls were current smokers at the time of
this analysis. Mean values between subgroups were com-
pared using one-way ANOVA, and multiple compari-
sons by Tukey’s multiple comparison test, with an alpha
of 0.05. Correlation of biomarkers with lung function,
the SF-36 quality of life patient reported outcome, and

Table 1 Overview of biomarkers measured, description and biological relevance

Biomarker description Biological relevance References

C1M Fragment of type I collagen degraded by MMPs Inflammatory interstitial matrix destruction [46]

C6M Fragment of type VI collagen degraded by MMPs Inflammatory interstitial matrix destruction [70]

Pro-C6 Pro-peptide of type VI collagen Formation of new interstitial matrix [66]

EL-NE Fragment of elastin degraded by neutrophil elastase Inflammatory destruction of interstitial matrix [50]

MMP matrix metalloproteinase
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haematology test results including eosinophil counts
were performed using Spearman’s correlation.

Results
Demographics
The mean age of COPD patients was 69.5 years (inter-
quartile range (IQR): 66–75), while the control patients
had a mean age of 63.6 years (IQR 56–70). Fifty-two and
24% of COPD patients and controls were male, respect-
ively. An overview of important demographic and clinical
characteristics is shown in Tables 2 and 3.

Biomarkers associated with COPD
The circulating concentrations of biomarkers reflecting
type VI collagen turnover (C6M and Pro-C6) and elastin
degradation by neutrophil elastase (EL-NE) were signifi-
cantly elevated in COPD patients compared to never-
smoking controls (all p < 0.05) (Fig. 1). C6M was also
significantly elevated compared to smoking controls (p <
0.05). No significant differences in circulating biomarker
concentrations were identified between smoking- and
never-smoking controls. Differences in C1M between
COPD patients and smoking or non-smoking controls
were statistically significant using a standard one-way
ANOVA (p = 0.044), but not in multiple comparison

testing using Tukey’s (Fig. 1). The mean concentration
of C1M was 71.99 ng/ml in COPD patients compared to
34.78 ng/ml in never-smokers (95% CI of difference:
−1.285 to 75.72 ng/ml).

Biomarkers associated with COPD subgroups
In the group of patients with mixed disease, defined as
having both chronic bronchitis and emphysema, C6M
and Pro-C6 were both found to be statistically signifi-
cantly elevated (p < 0.05) compared to never-smoking
controls (Fig. 2). Pro-C6 was also significantly elevated
among patients with mixed disease compared to smok-
ing controls (p < 0.05).
EL-NE was particularly associated with emphysema

only, as the concentrations of this biomarker was signifi-
cantly elevated in this subgroup compared to smoking
controls (p < 0.05) and never-smoking controls (p <
0.005), but was not found to be significantly elevated in
mixed disease and obstructive, non-emphysematous,
COPD compared to controls (Fig. 2).
C1M was not statistically significantly elevated in either

of the groups, but a trend towards elevated C1M concen-
trations in patients with chronic bronchitis and/or emphy-
sema was noted, whereas the concentration of C1M in the
group of obstructive patients, non-emphysematous pa-
tients without chronic bronchitis, was similar to that of
smoking and never-smoker controls (Fig. 2).

Associations between biomarkers, blood cell counts, and
other clinical characteristics
C6M and Pro-C6 were positively correlated with blood
eosinophil numbers in COPD patients (r = 0.382, p =
0.006 and r = 0.351, p = 0.012, respectively). In the total
study of COPD patients and controls, C1M was in-
versely associated with % of predicted FEV1 (r = −0.344,
p = 0.001), as was EL-NE (r = −0.302, p = 0.004) and Pro-
C6 (r = −0.259, p = 0.015). Notably, these correlations
were not found to be significant in the group of COPD
only (Table 4). In the patients with COPD, Pro-C6 was
significantly positively correlated to % of predicted FVC
(r = 0.281, p = 0.046). C6M was inversely correlated to 6-
min walking distance (r = −0.311, p = 0.028) in COPD
patients. In COPD patients, Pro-C6 was also inversely
correlated to the SF-36 quality of life Physical Compo-
nent Score (PCS) (−0.361, p = 0.009) and Mental Com-
ponent Score (MCS) (−0.308, p = 0.028).

Discussion
This study identifies associations between specific pro-
tein fragments of lung ECM constituents and major clin-
ical manifestations of COPD. The association between
fragments of elastin, as degraded by neutrophil elastase,
and emphysema is particularly interesting as they point
to potential targets of pathological tissue remodeling in

Table 2 Main clinical characteristics of the study population

COPD
n = 52

Controls
n = 37

Total
n = 89

Mean age, years (IQR) 69.5 (66–75) 63.6 (56–70) 66.7 (60.3–74)

Male sex, n (%) 27 (52) 9 (24.3) 35 (39.3)

Current smokers, n (%) 5 (9.6) 12 (32.4) 17 (19.1)

BMI (kg/m2) 29.3 (9.4) 28.6 (9.6) 29.0 (9.4)

GOLD stage, n (%)

1 7 (13.5) N/A N/A

2 16 (30.7) N/A N/A

3 12 (23.1) N/A N/A

4 16 (30.7) N/A N/A

N/A 1 (1.9) N/A N/A

FEV1, liters (SD) 1.47 (0.77) 2.60 (0.77) 1.95 (0.95)

FEV1, % of predicted (SD) 58.4 (74.4) 92.5 (16.4) 83.1 (47.6)

FVC, liters (SD) 2.71 (1.06) 3.25 (0.90) 2.94 (1.02)

FVC, % of predicted (SD) 77.5 (60.0) 89.9 (19.2) 83.1 (48.6)

FEV1/FVC ratio 0.49 (0.13) 0.80 (0.05) 0.62 (0.19)

6 MWD, meters (SD) 340 (134) 455 (110) 391 (137)

SF36 PCS (SD) 36.3 (10.6) 50.8 (8.2) 42.4 (12.0)

SF36 MCS (SD) 53.4 (9.1) 52.6 (11.4) 53.1 (10.1)

Data are presented as mean (SD), unless stated otherwise. IQR Inter-Quartile
Range, BMI Body Mass Index, FEV1 Forced Expiratory Volume in 1 s, FVC Forced
Vital Capacity, 6MWD 6 min Walking Distance, SF 36 PCS Physical Component
Score of the SF-36 quality of life psychometric tool, SF-36 MCS Mental Component
Score of the SF-36 quality of life psychometric tool. Higher score reflects
better health
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certain phenotypes of COPD which have not been de-
scribed before. Moreover, the associations between type VI
collagen turnover and eosinophils, eosinophil-bronchitis,
suggest a biological interaction between matrix turnover
and inflammation, localized in the interface between the
basement membrane and interstitial membrane, a well-
known site for chronic inflammation.
Elastin is a structural protein abundant in lung tissue

where it provides resilience and elasticity to the lungs
[54], and is of particular interest to the emphysema
phenotype, as this is the main protein with predominant
expression in the lung, a so-called signature protein,
which is degraded during lung inflammation and de-
struction [35, 50, 55, 56]. Neutrophils have received in-
creased attention for their role in chronic inflammation
and wound healing, in addition to their role in the pri-
mary inflammatory response [50]. When neutrophils de-
grade the surrounding matrix by neutrophil elastase a
specific fragment of elastin, EL-NE, is generated and re-
leased into the circulation [50]. As a part of the technical
validation of the biomarker for the use of quantification
of EL-NE, the antibody raised to capture this fragment
was found in vitro to be capable of binding only the EL-
NE fragment, with no binding of intact elastin, nor frag-
ments of elastin degraded by MMP or cathepsin G [50]
Consequently, this biomarker may be associated with
the emphysema phenotype.

Smoking induces elevated levels of neutrophils and
macrophages in the lung [57]. During acute lung injury,
the neutrophils produce the serine protease elastase
which is able to degrade the majority of ECM proteins
including the otherwise stable elastin fibres [58, 59],
resulting in the biomarker EL-NE [50]. It is possible that
smoking may increase the concentrations of elastases
and collagenases and decrease the concentrations of
anti-proteinases such as AAT. An important notion of
elastin research is that AAT is the main inhibitor of neu-
trophil elastase, and AAT deficiency leads to the devel-
opment of emphysema in smokers at a relatively young
age [60, 61]. The protease-antiprotease imbalance in em-
physema leads to unopposed elastolysis by neutrophil
elastase [60]. This has been confirmed by comparing CT
investigations of emphysema with assessments of elas-
tase and anti-elastase activity in bronchoalveolar lavage
fluid from COPD patients [62]. The study demonstrated
that the activity of neutrophil elastase correlated to em-
physema whereas the AAT activity correlated inversely
with emphysema [62]. Previous studies have found a sig-
nificantly elevated concentration of elastin degradation-
specific amino acids, desmosine and isodesmosine, in
asymptomatic individuals with known exposure to
second-hand smoke and smokers as compared to non-
smokers [63]. Further, highly increased expression of
elastin has been found in the alveoli of severe COPD

Table 3 Main clinical characteristics of the study population, by phenotype/subgroup

Phenotype/subgroup Chronic bronchitis/emphysema
(n = 15)

Emphysema
(n = 30)

Obstructive
(n = 7)

Smoking control
(n = 25)

Never-smoking control
(n = 12)

Total
n = 89

Mean age, years (IQR) 66.3 (59.5–72.5) 70.5 (67–76.5 71.4 (67–72.5) 64.2 (56–71) 62.3 (54–69.3) 66.7 (60.3–74)

Male sex, n (%) 7 (46.7) 16 (53.3) 4 (57.1) 5 (20) 4 (33.3) 35 (39.3)

Current smokers, n (%) 3 (20) 1 (3.3) 1 (14.3) 12 (48) 0 (0) 17 (19.1)

BMI (kg/m2) 30.1 (8.5) 29.5 (10.5) 27.1 (4.2) 30.4 (10.9) 24.8 (3.6) 29.0 (9.4)

GOLD stage n, %) N/A

1 3 (20.0) 2 (6.7) 2 (28.5) 7 (7.9)

2 2 (13.3) 11 (36.7) 3 (42.9) 16 (18.0)

3 3 (20.0) 7 (23.3) 2 (28.6) 12 (13.5)

4 7 (46.7) 9 (30.0) 0 (0) 16 (18.0)

N/A 0 (0) 1 (3.3) 0 (0) 1 (1.1)

FEV1, liters (SD) 1.29 (0.80) 1.39 (0.61) 2.16 (0.88) 2.51 (0.73) 2.80 (0.80) 1.95 (0.95)

FEV1, % of predicted (SD) 46.9 (29.9) 62.8 (95.4) 65.1 (17.2) 90.2 (17.5) 97.2 (12.4) 83.1 (47.6)

FVC, liters (SD) 2.77 (1.00) 2.54 (0.98) 3.32 (1.27) 3.17 (0.90) 3.42 (0.86) 2.94 (1.02)

FVC, % of predicted (SD) 74.9 (37.2) 79.7 (74.4) 73.9 (18.6) 92.0 (12.4) 85.7 (28.0) 83.1 (48.6)

FEV1/FVC ratio 0.43 (0.14) 0.49 (0.12) 0.65 (0.02) 0.79 (0.06) 0.81 (0.04) 0.62 (0.19)

6 MWD, meters (SD) 298 (162) 317 (162) 415 (139) 421 (104) 527 (85) 391 (137)

SF36 PCS 33.3 (10.2) 36.7 (10.0) 41.0 (11.5) 49.3 (8.9) 54.0 (5.2) 42.4 (12.0)

SF36 MCS 47.6 (9.9) 55.0 (8.1) 58.9 (3.0) 50.9 (12.8) 56.0 (6.6) 53.1 (10.1)

Data are presented as mean (SD), unless stated otherwise. IQR Inter-Quartile Range, BMI Body Mass Index, FEV1 Forced Expiratory Volume in 1 s, FVC Forced Vital
Capacity, 6MWD 6 min Walking Distance, SF-36 PCS Physical Component Score of the SF 36 quality of life psychometric tool, SF 36 MCS Mental Component Score
of the SF 36 quality of life psychometric tool. Higher score reflects better health
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patients [64]. The results of this analysis support the
findings of previous reports, as serological concentra-
tions of fragments of collagen and elastin were higher in
patients with various clinical manifestations of COPD,
and particularly the association between EL-NE is promis-
ing, as it could indicate that this biomarker has a potential
to aid in a non-invasive, inexpensive method of emphy-
sema diagnosis. This hypothesis will need to be validated
in further studies. In addition to elastin, other ECM pro-
teins are important for upholding lung structure and func-
tion. These maintain the interface between the basement
membrane and interstitial matrix of the airways, the epi-
thelium and endothelium interrelationship, and in particu-
lar the interstitial matrix [35]. Figure 3 illustrates the ECM
remodelling occurring in COPD lungs and the resulting
release of small protein fragments (neo-epitopes) into the
systemic circulation. The main protein of the interstitial
matrix is the fibrillar type I collagen, which during inflam-
mation is degraded by MMPs, in part originating from
macrophages and other inflammatory cells, resulting in
the fragment C1M [46]. This fragment is released into the

systemic circulation and may be used as a biomarker of
interstitial matrix destruction. While this report did not
find significantly elevated concentrations of C1M in
COPD, one previous reports did [44], and a recent report
found significant associations of C1M with risk of mortal-
ity in COPD patients [65]. Based on the current results it
is likely that, using a larger sample size, a similar associ-
ation between C1M and COPD could have been found.
Type VI collagen, a protein very different from the fi-

brillar collagen types, is interconnecting proteins and
membranes. Type VI collagen is a unique beaded fila-
ment collagen, with a special structure forming micro-
filament networks, found in the interface between the
basement membrane and the interstitial matrix [46].
Type VI collagen has many binding partners and is part
of the backbone of the matrix [66]. In addition to these
important roles, the pro-peptide of type VI collagen is
now also recognized as a hormone involved in metabolic
dysfunction, named endotrophin [67–69]. Degradation
by MMPs results in the release of C6M [70], and forma-
tion of the same molecule results in release of Pro-C6

Fig. 1 Mean biomarker concentrations of patients with chronic obstructive pulmonary disease and controls. One-way ANOVA test of differences
between patients and controls were made using Tukey’s multiple comparisons test. C1M: Type I collagen degraded by matrix metalloproteinases.
C6M: Type VI collagen degraded by matrix metalloproteinases. Pro-C6: Pro-peptide fragment of type VI collagen. EL-NE: Elastin degraded by
neutrophil elastase
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Fig. 2 Mean biomarker concentrations per sub-group. One-way ANOVA test of differences between COPD phenotypes and controls were made
using Tukey’s multiple comparisons test. The Mixed disease group (“Chronic Bronchitis/Emphysema”, n=15) was defined as emphysema as diagnosed
using CT and chronic bronchitis. The Emphysema group was defined as diagnosed emphysema using CT in the absence of chronic bronchitis (n = 30).
The obstruction group was defined as the absence of both emphysema and chronic bronchitis, yet with the presence of significant respiratory obstruction
diagnosed using spirometry (n = 7). C1M: Type I collagen degraded by matrix metalloproteinases. C6M: Type VI collagen degraded by matrix
metalloproteinases. Pro-C6: Pro-peptide fragment of type VI collagen. EL-NE: Elastin degraded by neutrophil elastase

Table 4 Spearman’s correlations between biomarkers, clinical characteristics and blood cell counts in COPD patients regardless of
subtype (n = 52)

FEV1 % of predicted FVC % of predicted 6MWD SF36 PCS SF36 MCS Eosinophils

C1M

r −0.252 −0.253 −0.271 −0.187 0.037 0.085

p-value 0.08 0.07 0.05 0.19 0.80 0.55

EL-NE

r −0.060 −0.163 −0.274 −0.125 0.137 0.204

p-value 0.65 0.25 0.05 0.09 0.33 0.15

C6M

r −0.091 −0.149 −0.311 −0.242 0.130 0.382

p-value 0.53 0.30 0.028 0.09 0.37 0.006

Pro-C6

r 0.239 0.281 −0.207 −0.361 −0.308 0.351

p-value 0.09 0.046 0.14 0.009 0.028 0.012

Correlations with a p-value ≤ 0.05 are highlighted in bold. FEV1 Forced Expiratory Volume in 1 s, FVC Forced Vital Capacity, 6MWD 6 min Walking Distance, SF 36
PCS Physical Component Score of the SF 36 quality of life psychometric tool, SF-36 MCS Mental Component Score of the SF-36 quality of life psychometric tool.
Higher score in the SF-36 reflects better health
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[66]. The results of the correlations of C6M and Pro-C6
with COPD indicate that high degradation and forma-
tion of type VI collagen may in part be a biochemical
reflection of important clinical features of COPD, in-
cluding poor ability to walk, as assessed by the 6-min
walk test (C6M) and generally poorer quality of life
reflected in lower scores of physical and mental well-
being (Pro-C6). Other reports have previously found
associations of collagen degradation with COPD.
Proline-glycine-proline (PGP), a tripeptide neutrophil
chemoattractant originating from collagen degradation,
was found to be elevated in sputum of patients with
COPD exacerbations, and reduced by azithromycin
treatment [71]. Of special importance with respect to
the current findings, is that both type VI collagen

formation (Pro-C6) and degradation (C6M) were corre-
lated to eosinophil blood count. This is an interesting
finding as in both asthma and COPD, sputum eosino-
philia is associated with response to therapy and has
been used for tailored strategies for normalization of
sputum eosinophils in order to reduce exacerbation fre-
quency and severity [72]. This may reflect a disruption
of the integrity between the interstitial matrix and base-
ment membrane, and inflammation by eosinophils and
neutrophils, resulting in the destruction of type VI colla-
gen and a repair response associated with more type VI
collagen formation. These biological processes deep
within the matrix of the lung, may be associated with
COPD phenotypes, disease progression, and events such
as exacerbations. In direct alignment, the balance

Fig. 3 Remodeling of the lung extracellular matrix. During progression of COPD, the basement membrane (BM) and the interstitial matrix (IM) is
remodeled, resulting in a disruption of the interface between these two extracellular matrix (ECM) compartments. Type VI collagen is situated in
this interface, and consequently fragments of type VI collagen, may be particularly related to disease progression and lung tissue remodeling. In
addition, the chronic inflammatory response may in part be accompanied by persistent neutrophil presence in affected tissues, which normally
would be resolved in the later stages of inflammation resolution. These inflammatory cells produce high amounts of neutrophil elastase capable
of degrading the elastin of the lungs found in the interstitial matrix, which is essential for lung tissue elasticity. Both the type VI collagen and
elastin remodeling, in addition to the remodeling of other ECM components, results in the release of small protein fragments (neo-epitopes) to
the bloodstream. Modified with permission from [65]
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between type VI collagen formation and degradation,
was shown to be significantly changed as measured by
the same protein biomarkers in serum, in COPD pa-
tients with exacerbations [56, 73, 74]. Furthermore, type
VI collagen remodeling as measured by these biomarkers
has been associated with disease progression, defined by
change in FEV1, and mortality in COPD patients from
the ECLIPSE cohort [65]. The role of type VI collagen in
lung pathophysiology still remains to be completely
understood and presented at a molecular level, albeit
these independent observations suggest that type VI col-
lagen is of particular relevance for lung pathobiology.

Limitations
This report has several limitations. The data shown was
analysed in a fairly limited number of subjects, and the
statistical power is further reduced by sub-division of
COPD patients into phenotypes, and healthy subjects
into smokers and non-smokers. The study did not in-
clude a well-defined control group of never-smoking
controls with emphysema, which could have further sup-
ported the findings related to biomarker elevations of
the emphysema phenotype if similar results were found.
A number of observations of elevated biomarkers were

not found to be statistically significant between COPD
patients and non-COPD smoker control subjects in this
analysis. This may in part be explained by the relatively
few smoking controls included in the analysis, as visual
inspection of the data as shown in the figures indicate a
difference which may have the potential to reach statis-
tical significance had the statistical power been higher.
The findings of the present analyses were not validated

in a separate validation cohort for the purpose of this re-
port. However, recent published report with the same
biomarkers in other well-known COPD cohorts support
the findings that C6M and EL-NE are significantly asso-
ciated with lung function in COPD [73, 74], and have
been found to be elevated during exacerbations in a
smaller study [56].
Construct validity of blood-based biomarkers is often

questioned, as definitive evidence that a particular bio-
markers indeed does originate from a certain organ or
disease mechanism is often scarce. As the main clinical
phenotype under study in the COPDGene cohort is lung
disease, it appears reasonable to assume that the origin
is the lungs, although elastin and collagen are both
abundant in other major organs of the body such as the
skin. The role of elastin in the alveoli is described in the
literature, and results indicate that particularly elastin is
a major target in the pathogenesis of emphysema [75],
which supports the finding of emphysema associated
with EL-NE.
Previous research to link these protease-specific ECM-

fragments with the lungs have resulted in a number of

reports which support the hypothesized association. The
biomarkers analysed in this report have, in addition to
in COPD, been found to be significantly elevated in
other respiratory diseases, such as idiopathic pulmon-
ary fibrosis [50, 76, 77] and lung cancer [50], indicating
that these fragments are likely to originate from patho-
logical turnover of lung tissue, yet no definitive proof
currently exists.

Conclusion
These data suggest that type VI collagen turnover and
elastin degradation by neutrophil elastase are associated
with COPD-related inflammation and emphysema. Sero-
logical assessment of type VI collagen and elastin turn-
over may assist in identification of selected phenotypes
likely to be associated with more progression and more
amenable to precision medicine for clinical trials.
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