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Abstract

Background: An impairment of CO diffusing capacity has been shown in diabetic patients without lung disease.
We analyzed how diffusing capacity in patients with COPD is affected by the concurrent diagnosis of diabetes.

Methods: Data from the initial visit of the German COPD cohort COSYCONET were used for analysis. 2575
patients with complete lung function data were included, among them 358 defined as diabetics with a
reported physician diagnosis of diabetes and/or specific medication. Pairwise comparisons between groups
and multivariate regression models were used to identify variables predicting the CO transfer factor
(TLCO%pred) and the transfer coefficient (KCO%pred).

Results: COPD patients with diabetes differed from those without diabetes regarding lung function, anthropometric,
clinical and laboratory parameters. Moreover, gender was an important covariate. After correction for lung function,
gender and body mass index (BMI), TLCO%pred did not significantly differ between patients with and without
diabetes. The results for the transfer coefficient KCO were similar, demonstrating an important role of the confounding
factors RV%pred, TLC%pred, ITGV%pred, FEV1%pred, FEV1/FVC, age, packyears, creatinine and BMI. There was not even
a tendency towards lower values in diabetes.

Conclusion: The analysis of data from a COPD cohort showed no significant differences of CO transport parameters
between COPD patients with and without diabetes, if BMI, gender and the reduction in lung volumes were taken into
account. This result is in contrast to observations in lung-healthy subjects with diabetes and raises the question which
factors, among them potential anti-inflammatory effects of anti-diabetes medication are responsible for this finding.
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Background
Patients with chronic obstructive pulmonary disease
(COPD) show a high number of comorbidities. One of
the frequent comorbidities is diabetes mellitus, which is
of particular relevance through its association with
cardiovascular diseases. There is evidence that lung
emphysema, a frequent phenotype in COPD, is initiated
by changes of the alveolar-capillary system [1]. On the

other hand, diabetes is known to induce micro— and
macroangiopathy [2], with microangiopathy causing
nephropathy, retinopathy or neuropathy, and macroan-
giopathy contributing to the development of myocardial
infarction, stroke and gangrene [3]. Impaired capillary
function may have a negative impact on alveolar gas
exchange. This raises the question whether the vascular
alterations associated with diabetes interact with those
of COPD.
A clinically established measure of pulmonary capillary

function is the diffusing capacity for carbon monoxide
(CO) which is closely linked to the degree of lung
emphysema as quantified by CT scans [4]. On the other
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hand, patients with diabetes without known lung disease
also may show a decreased CO diffusing capacity [5, 6],
and impairment of pulmonary function in type I diabetes
patients treated with insulin was linked to the quality of
metabolic control [7]. The combined effects of COPD
and diabetes on the CO diffusing capacity are unclear.
In patients with COPD and diabetes only studies on
spirometry are available [8], whereas the CO transfer
factor has been measured only in diabetic patients with-
out COPD. These considerations suggest a link between
diabetes, emphysema and reduced diffusing capacity, but
diabetes has also been associated with predominant
airway obstruction [9] which would imply a higher but
not lower CO diffusing capacity relative to obstruction.
Based on the assumption that vascular alterations

arising from diabetes could modify the reduction of CO
diffusing capacity typically found in COPD, we analyzed
the data of the German COPD and Systemic Conse-
quences- Comorbidities Network (COSYCONET). This is
a multi-center cohort study investigating the relationship
of COPD with comorbidities. It includes 2741 patients of
age ≥ 40 years with diagnosis of COPD, among them 376
patients with the reported comorbidity of diabetes. The
hypothesis underlying our analysis was that the changes of
CO diffusing capacity associated with diabetes and COPD
add to each other reflecting the additional impairment of
the capillary status due to diabetes. For this purpose we
evaluated lung function, clinical and anthropometric data
as well as biomarkers including HbA1c by multivariate
regression analyses that took into account the factors
influencing CO diffusing capacity, in terms of total lung
transfer factor (TLCO) and volume-related transfer
coefficient (KCO).

Methods
Patients
This study analyzed data of the initial visit of the German
COPD cohort COSYCONET. The cohort was recruited
through the outpatient and inpatient sector, patients’ orga-
nizations and media campaigns. Patients with previous
lung transplantation, lung volume reduction surgery or
lung malignancies were not eligible, as well as patients
with moderate or severe exacerbations within four weeks
prior to the visit. In the time period between September
2010 and December 2013 patients were examined in 31
study centers. The characteristics of the cohort have been
described elsewhere [10, 11].

Assessments
The patients’ clinical and functional state was assessed
by a wide spectrum of tests, with focus on pulmonary
function and cardiovascular comorbidities. The assess-
ments included a detailed history regarding concomitant
diseases and regularly taken medication as well as the

evaluation of biomarkers in blood and were guided by
SOPs following established guidelines [10]. Spirometric
parameters comprised forced expiratory volume in one
second (FEV1), forced vital capacity (FVC) and their
ratio (FEV1/FVC); bodyplethysmographic parameters
included intrathoracic gas volume (ITGV) and total lung
capacity (TLC). The diffusing capacity for carbon mon-
oxide (CO) was determined using the single-breath
technique. This measurement yielded the transfer fac-
tor for CO (TLCO) and the transfer coefficient (KCO)
as the ratio of TLCO and alveolar volume (VA). Predicted
values for spirometry were taken from the Global Lung
Function Initiative (GLI) data [12], those for bodyplethys-
mography from Koch et al. [13], except for ITGV [14], and
those for TLCO and KCO from van der Lee et al. [15].

Diagnosis of COPD and diabetes
The diagnosis of COPD was based on lung function
impairment according to GOLD criteria [16]. In addition
to GOLD 1–4, patients of the former category GOLD 0
were included, i.e. patients with normal lung function
according to the GOLD criteria but with symptoms of
chronic bronchitis and a smoking history [10]. Only
patients with valid lung function data were included
(n = 2,575) among whom 349 reported diabetes as
diagnosed by a physician. Patients were grouped into
four categories depending on the matching between
the patients’ report and either disease-specific or non-
specific but disease-compatible medication: there were
268 patients with reported diabetes and diabetes-specific
medication (A), 9 patients with diabetes-specific medica-
tion in the absence of a reported diagnosis (B). 24 patients
took medication that was compatible with but not specific
for diabetes (C), and 57 took no diabetes-related medica-
tion at all (D) [17]. In the present analysis we defined
diabetes by self-reported physician-based diagnosis
irrespective of medication, or the intake of diabetes-
specific medication in the absence of a reported diagnosis
(n = 358; extended definition: A + B + C +D). For control
purposes the results were compared with those obtained
in patients defined by the presence of diabetes-specific
medication only (n = 277; restrictive definition: A + B).

Statistical analysis
For data description mean values and standard devia-
tions (SD) were used. The groups with and without
diabetes were compared in a first step by unpaired t-test,
categorical data were analyzed by the chi-square-test. As
some variables showed deviations from normal distribu-
tion according to the Kolmogorov-Smirnov-test, we
additionally used the Mann–Whitney-U-test as a non-
parametric method to check the results. In a second step
multivariate linear regression analyses were performed,
or analysis of covariance (ANCOVA), with TLCO or
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KCO in %predicted taken as dependent measures and
the binary categories diabetes and gender as independ-
ent factors, in addition to covariates. The following
covariates were considered and eventually removed from
the models in a stepwise backward elimination fashion:
FEV1%pred, FEV1/FVC, sRaw (specific airway resistance),
TLC%pred, BMI, packyears, hemoglobin (Hb) and HbA1c.
The level of statistical significance was set at p = 0.05 and
the statistical analyses were performed by SPSS Statistics 23
(IBM Corp., Armonk, NY, USA).

Results
Comparison of diabetes and non-diabetes group
Clinical and anthropometric characteristics are given in
Table 1, diabetes being defined either by the extended or
the restrictive definition (see methods).
When comparing the mean values between patients

with and without diabetes, gender, age, BMI, waist
circumference, packyears, hemoglobin, HbA1c, creatin-
ine, TLC%pred, RV%pred, ITGV%pred, TLCO%pred,
KCO%pred and the distribution of GOLD stages, both
1–4 and A-D, turned out to be significantly different
(p ≤ 0.01 each). The results for the restrictive definition

of diabetes were similar, but the distribution of GOLD
stages 1–4 did not significantly differ, in contrast to
GOLD A-D (p = 0.017). Moreover the non-parametric
testing yielded the same distribution of significance
across variables as the parametric testing.
In patients with diabetes, the prevalence of reported co-

morbidities was significantly higher for arterial hyperten-
sion, myocardial infarction, coronary heart disease, cardiac
arrhythmia, dyslipidemia, peripheral neuropathy, gastro-
intestinal disorders, hyperuricemia (p < 0.001 each) and
osteoporosis (p = 0.047). The proportion of patients with
asthma did not significantly differ between both groups.

Gender and diabetes
As the gender distribution differed between diabetic and
non-diabetic patients, we stratified the parameters given in
Table 1 according to gender; the results are given in Table 2.
When comparing male and female patients irrespective

of diabetes, most parameters were significantly different
from each other (p < 0.05), in particular those of CO
diffusing capacity and FEV1%pred. The comparison within
non-diabetic patients revealed a similar pattern of differ-
ences between males and females, including KCO%pred

Table 1 Baseline characteristics of the subgroups with and without diabetes

Parameter Non-diabetes
patients

Diabetes patients
(extended def.)

p-values
(extended def.)

Diabetes patients
(restrictive def.)

p-values
(restrictive def.)

Gender (m/f) 1270/947(57/43%) 262/96 (73/27%) p < 0.001* 208/69 (76/24%) p < 0.001*

Age (y) 64.7 (±8.7) 67.0 (±7.6) p < 0.001* 67.1 (±7.5) p < 0.001*

BMI (kg/m2) 26.4 (±5.05) 30.5 (±5.8) p < 0.001* 30.69 (±5.1) p < 0.001*

Waist circumf. (cm) 97.7 (±15.1) 110.0 (±14.7) p < 0.001* 111.1 (±14.3) p < 0.001*

Packyears 46.8 (±34.8) 55.3 (±40.9) p < 0.001* 55.4 (±40.5) p < 0.001*

Hb (mg/dl) 14.66 (±1.38) 14.43 (±1.39) p = 0.003* 14.46 (±1.32) p = 0.032*

HbA1c (%) 5.76 (±0.47) 6.91 (±1.0) p < 0.001* 7.03(±1.13) p < 0.001*

Creatinine (mg/dl) 0.88 (±0.25) 0.96 (±0.29) p < 0.001* 0.95 (±0.27) p < 0.001*

FEV1%pred 59.7 (±22.2) 59.8 (±21.2) p = 0.906 59.6 (±20.0) p = 0.973

FEV1/FVC 54.8 (±13.6) 55.3 (±13.2) p = 0.431 54.5 (±13.0) p = 0.687

FVC%pred 78.6 (±19.1) 79.1 (±19.1) p = 0.638 78.0 (±18.7) p = 0.223

TLC%pred 112.9 (±30.4) 107.2 (±27.6) p < 0.001* 106.3(±27.3) p < 0.001*

RV%pred 150.1 (±47.2) 143.4 (±45.2) p = 0.012* 142.4 (±43.5) p ≤ 0.011*

ITGV%pred 146.6 (±36,8) 135.1 (±36.0) p < 0.001* 134.5 (±35.3) p < 0.001*

TLCO%pred 52.8 (±21.0) 57.1 (±19.6) p < 0.001* 57.0 (±19.2) p = 0.001*

KCO%pred 66.1 (±23.8) 75.6 (±23.4) p < 0.001* 76.3 (±23.6) p < 0.001*

GOLD 0/1/2/3/4 269/242/868/679/159
(12/11/39/31/7%)

68/33/133/103/21
(19/9/37/29/6%)

p = 0.010* 51/26/107/78/15
(18/9/39/28/5%)

p = 0.066

GOLD A/B/C/D 239/1198/32/735
(11/54/2/33%)

37/170/12/138
(10/48/3/39%)

p = 0.008* 32/130/10/104
(12/47/4/38%)

p = 0.017*

The table shows mean values and standard deviations or absolute numbers, in case of gender and COPD classes additionally percentages (deviations of total from
100% are due to rounding). Column 3 shows the results of comparisons between the diabetes group (extended definition) and the complementary group of
non-diabetes patients. Column 5 shows the corresponding results of comparisons between diabetes group (restrictive definition) and the corresponding group of
non-diabetes patients. The comparisions between groups were performed by unpaired t-tests, either for equal or unequal variances depending on the data, or by
chi-square-tests in the case of categorical variables
Significant (p < 0.05) differences are marked with (*)
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and FEV1%pred. Patients with diabetes showed a
lower number of gender-related significant differences,
including FEV1%pred but not TLCO%pred. The distribu-
tion of GOLD stages also differed between males and fe-
males, and this was true for the total group of patients (p
< 0.001), as well as non-diabetes (p < 0.001) and diabetes
patients (p = 0.030). With non-parametric testing the dis-
tribution of significances across variables remained the
same except for KCO%pred in diabetes patients,
which became non-significant.
Moreover Table 2 presents the results of comparisons

between diabetic and non-diabetic patients for males and
females separately. In males, age, BMI, waist circumference,
hemoglobin, HbA1c and creatinine significantly differed
between both groups, as well as RV%pred, ITGV%pred,
TLCO%pred and KCO%pred (p < 0.05 each). In females,
age, BMI, waist circumference, packyears, hemoglobin,
HbA1c and creatinine differed between the two groups, as
well as ITGV%pred, KCO%pred and TLCO%pred (p < 0.05
each). Non-parametric testing showed only for male
patients a difference from parametric testing regarding
creatinine which became non-significant.

Diffusing capacity versus functional/clinical parameters
For KCO%pred as dependent variable, multivariate linear
regression analyses using as independent variables the

parameters listed in Table 1 plus diabetes and backward
selection, yielded gender, age, BMI, packyears, FEV1%pred,
FEV1/FVC, TLC%pred, RV%pred, ITGV%pred (p ≤ 0.001
each) and creatinine (p = 0.033) as significant predictors
(Table 3). A similar analysis for TLCO%pred yielded gen-
der, BMI, packyears, FEV1%pred, RV%pred, ITGV%pred
and HbA1c (p ≤ 0.004 each) and creatinine (p = 0.035)
(data not shown). In both analyses, diabetes was no
significant predictor, neither as extended nor as restrictive
definition. The relationship between KCO%pred,
FEV1%pred and diabetes is illustrated in Fig. 1 using
adjusted values. It demonstrates the overlap between the
two groups and the fact that there is no tendency towards
lower values in diabetes patients after adjustment. When
using the GOLD A-D categorization in addition to FEV1

and diabetes as predictors of KCO%pred, the GOLD
categories turned out to be not significantly associated
with KCO%pred. The same was true for TLCO%pred.

Lung function parameters
CO transfer factor and coefficient differed between
diabetes and non-diabetes groups, if considered without
adjustment for other variables (Tables 1 and 2). The
adjustment via multivariate regression analysis showed
the difference in KCO%pred to be explained by a num-
ber of confounders, among them parameters of airway

Table 2 Comparison of subgroups stratified according to diabetes and gender

Parameter Male patients(all) Male/non-diabetes Male/diabetes
extended def.

Female
patients(all)

Female/non-diabetes Female/diabetes
extended def.

Age (y) 65.8 ± 8.5 65.5 ± 8.6 67.1 ± 7.6° 63.8 ± 8.7* 63.5 ± 8.7* 66.6 ± 7.4°

BMI (kg/m2) 27.4 ± 4.9 26.9 ± 4.6 30.1 ± 5.5° 26.2 ± 5.8* 25.7 ± 5.5* 31.6 ± 6.5*°

Waist circumf. (cm) 104.6 ± 13.6 103.2 ± 13.0 111.4 ± 14.2° 91.6 ± 15.2* 90.2 ± 14. 4* 105.8 ± 15.4*°

Packyears 54.0 ± 38.8 52.1 ± 38.0 57.2 ± 42.4 40.2 ± 28.7* 39.8 ± 28.6* 48.8 ± 34.7°

Hb (mg/dl) 15.02 ± 1.38 15.09 ± 1.38 14.66 ± 1.33° 14.06 ± 1.16* 14.09 ± 1.13* 13.79 ± 1.36*°

HbA1c (%) 5.98 ± 0.76 5.78 ± 0.48 6.94 ± 1.09° 5.82 ± 0.64* 5.72 ± 0.45* 6.85 ± 1.15°

Creatinine (mg/dl) 0.97 ± 0.24 0.96 ± 0.23 1.00 ± 0.30° 0.78 ± 0.23* 0.77 ± 0.23* 0.84 ± 0.21*°

FEV1%pred 58.0 ± 21.7 58.0 ± 21.9 58.1 ± 20.3 62.2 ± 22.3* 61.9 ± 22.3* 64.6 ± 22.5*

FEV1/FVC 54.5 ± 13.5 54.5 ± 13.5 54.8 ± 13.2 55.1 ± 13.7 55.0 ± 13.7 56.9 ± 13.2

FVC%pred 79.0 ± 18.8 79.0 ± 18.9 79.4 ± 18.7 78.0 ± 19.4 78.0 ± 19.3 78.3 ± 20.3

TLC%pred 100.0 ± 24.2 100.0 ± 24.4 100.0 ± 23.4 129.9 ± 29.1* 130.1 ± 29.1* 127.6 ± 28.6*

RV%pred 149.5 ± 48.1 150.7 ± 48.8 142.2 ± 42.0° 144.4 ± 52.9 149.5 ± 45.0 144.0 ± 47.9

ITGV%pred 141.4 ± 36.2 142.9 ± 36.2 134.0 ± 34.9° 150.3 ± 37.4* 151.5 ± 36.6* 138.0 ± 40.2°

TLCO%pred 55.2 ± 21.0 54.6 ± 21.4 58.0 ± 19.0° 50.6 ± 20.4* 50.3 ± 20.2* 54.6 ± 21.1°

KCO%pred 70.6 ± 24.3 69.4 ± 24.5 77.1 ± 22.7° 62.5 ± 22.6* 61.6 ± 22.2* 71.1 ± 25.0*°

GOLD 0/1/2/3/4 166/159/597/484/126 126/137/494/403/110 40/22/103/81/16 171/116/404/298/54* 143/105/374/276/49* 28/11/30/22/5*°

The table shows mean values and standard deviations or absolute numbers. Column 2 and 5 show the results of comparisons between females and males
irrespective of diabetes, significant (p < 0.05) differences are marked with (*). Column 3 and 6 show the results of comparisons between females and males
without diabetes, significant differences are marked with (*). Column 4 and 7 show the results of comparisons between male and female diabetes patients,
significant differences are marked with (*). Column 3 and 4 shows the results of the comparison between male non-diabetes and male diabetes patients,
significant (p < 0.05) differences are marked with (°). Column 6 and 7 show the comparison between female non-diabetes and female diabetes patients,
significant differences are marked with (°). The comparisons between groups were performed by unpaired t-tests, either for equal or unequal variances
depending on the data, or by chi-square-tests in the case of categorical variables

Kahnert et al. Respiratory Research  (2017) 18:14 Page 4 of 9



obstruction and lung hyperinflation. In order to reveal
how much had to be attributed to these parameters, we
repeated the regression analyses using only lung function
parameters as independent variables. FEV1%pred, FEV1/
FVC, TLC%pred, RV%pred, ITGV%pred, as well as gender
and diabetes turned out to be significant predictors of
KCO%pred (p ≤ 0.008 each). Analysis of covariance
(ANCOVA) showed that there was no significant inter-
action term between gender and diabetes. In case of
TLCO%pred, regression analysis revealed that FEV1%pred,
RV%pred, ITGV%pred and gender were significant predic-
tors (p < 0.001 each) while diabetes was borderline non-

significant (p = 0.056). When using the restrictive defin-
ition of diabetes, the results were qualitatively similar.
To reveal to which extent the other parameters were

important in the adjustment of KCO%pred, we added
each of these to lung function as predictors in the multi-
variate regression analysis. It turned out that BMI but
not age, packyears or creatinine eliminated (p = 0.079)
the significant difference between diabetes and non-
diabetes that was seen with lung function parameters
only. In a similar manner, for TLCO%pred the introduc-
tion of BMI eliminated (p = 0.918) the borderline effect
of diabetes. Thus BMI appeared to be a decisive factor

Fig. 1 Relationship between KCO%pred and FEV1%pred. The regression lines refer to KCO%pred adjusted for FEV1%pred, TLC%pred, ITGV%pred,
RV%pred, FEV1/FVC, packyears, age, gender, BMI, HbA1c (%) and creatinine. There was no significant difference between diabetic and non-
diabetic patients (extended definition)

Table 3 Multivariate regression analysis with KCO%pred as dependent variable

Modell Non-standardized
coefficients

Standardized
coefficients

T p-value

Regression coefficient B Standard error Beta

Constant 47.707 6.378 7.480 .000

Gender (m = 1.f = 2) −5.810 1.160 -.121 −5.008 .000

Age (y) .342 .056 .123 6.150 .000

BMI (kg/m2) 1.034 .092 .237 11.256 .000

Packyears -.059 .012 -.091 −4.894 .000

FEV1%pred .282 .025 .257 11.140 .000

FEV1/FVC -.113 .034 -.066 −3.346 .001

TLC%pred -.070 .018 -.089 −3.883 .000

RV%pred .112 .022 .221 5.127 .000

ITGV%pred -.253 .028 -.393 −9.121 .000

Creatinine (mg/dl) −4.253 1.991 -.044 −2.136 .033
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for the differences in CO diffusing capacity between
diabetes and non-diabetes.

Discussion
The analysis of data from a large COPD cohort showed
that there was no significant difference of CO transport
parameters, especially TLCO%pred and KCO%pred,
between patients with COPD and diabetes compared to
non-diabetes COPD patients, provided that lung vol-
umes, BMI and gender were taken into account as con-
founders. In particular, diabetes was associated with a
reduction in lung volume and an increase in BMI. CO
diffusing capacity was not deteriorated by the presence
of diabetes. Instead, after adjustment for other parame-
ters there was still a tendency towards better KCO
values in diabetes. This finding differs from observations
in diabetes patients without COPD who showed a
slightly impaired CO diffusing capacity.
Our study population comprised all patients with

complete lung function data and severity GOLD ≥0 from
the COSYCONET cohort [18]. This cohort is particularly
suited for investigating the relationship between comor-
bidities and functional status [10]. The information on
medication allowed the definition of diabetes in terms of
self-reported physician-based diagnosis and/or diabetes-
specific medication; patients had been asked to bring all
their medication to the study center [10]. The extended
definition was based on self-reported diagnosis and/or
the presence of specific medication, the restrictive defin-
ition on the presence of diabetes-specific medication
only and was used for sensitivity analyses [17].
CO diffusing capacity is established in the evaluation

COPD and lung emphysema [5, 19]. In diabetes patients
with or without poor glycemic control or microangio-
pathic complications, but without lung disease, studies
revealed a reduction of CO diffusing capacity and a
restrictive pattern of spirometric parameters [6, 18, 20],
but no correlation with the duration of diabetes [20].
The potential role of obesity was addressed by compar-
ing diabetes with obese non-diabetes patients [21];
TLCO was reduced in diabetes. In addition, diabetic
neuropathy, macrovascular complications, impaired
renal function and insulin treatment were linked to low
TLCO [21]. A meta-analysis summarized the association
between diabetes and a restrictive lung function pattern
in terms of FEV1, FVC and CO diffusing capacity, irre-
spective of BMI, smoking, diabetes duration and HbA1c
levels in lung-healthy subjects [22]. There are very few
studies in patients with COPD and diabetes. Among
diabetes patients with and without COPD only those
from an “unclassified” sub-group according to standard
GOLD categories showed a reduction of FEV1%pred and
FVC%pred [8]. Surprisingly, CO diffusing capacity has
not been studied in patients with COPD and diabetes.

The presence of diabetes in COPD was associated with
impairments of CO diffusing capacity beyond those
attributable to COPD. On average, diabetes patients
were older (Table 1) and more often males compared to
non-diabetes patients (75% in diabetes, 58% in the total
cohort). Diabetic patients showed higher BMI, waist
circumference, serum HbA1c and creatinine, and lower
hemoglobin levels. They reported more packyears and
cardiovascular comorbidities. The unadjusted mean
values of lung function including CO diffusing capacity,
differed between diabetic and non-diabetic patients. To
account for the effect of gender, we stratified but many
of the differences between diabetes and non-diabetes
remained significant (Table 2). Obviously, gender was
not responsible for the differences between the two
groups, particularly regarding KCO%pred.
To identify confounders we performed multivariate

regression analyses. Both KCO (Table 3) and TLCO
depended on other lung function variables, laboratory
parameters and gender, without significant effect of
diabetes. We then reduced the set of predictors to lung
function and gender, to reveal whether lung function
was the major confounder. There was again a significant
dependence on diabetes regarding KCO%pred but not
TLCO%pred. Accounting for age, packyears or creatin-
ine did not eliminate the difference of KCO%pred
between non-diabetes and diabetes. When BMI and
gender were chosen as predictors, the effect of diabetes
became non-significant (p = 0.086); the use of BMI, lung
function and gender as predictors completely abolished
the effect of diabetes. Therefore, besides FEV1%pred, the
major factor explaining the difference of KCO%pred
between non-diabetes and diabetes appeared to be BMI.
This is reflected in the large regression coefficients of
BMI and FEV1%pred in Table 3. Waist circumference
did not yield as conclusive results as BMI; it was elimi-
nated in most regression analyses, particularly in compe-
tition with BMI. To address the question whether the
degree of glycemic control affected the result, we
repeated the multivariate regression analyses using
insulin-monotherapy (n = 65) or the presence of HbA1c
values ≥8% (n = 46) as additional predictors. None of
them emerged as significant regarding KCO and TLCO
(data not shown). Patients of the restrictive definition
showed higher levels of HbA1c and presumably had
poorer glycemic control. However, the results regarding
CO diffusing capacity essentially did not depend on the
definition chosen.
These observations suggest that microangiopathic

alterations caused by diabetes did not manifest as add-
itional pulmonary vascular changes detectable through
impaired CO diffusing capacity in COPD. The finding
that the unadjusted transfer coefficient KCO was higher
(by nearly 10%) in diabetes may be due to the reduction
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in lung volume and increase in BMI. Accordingly, the
values of TLCO, a parameter which takes into account
lung volume, were more similar, TLCO%pred being
larger by only about 5% in diabetes. These findings sug-
gest that in diabetes patients with COPD a reduction in
lung volume and a higher BMI were responsible for the
relatively increased values of unadjusted KCO%pred.
A recent radiological study reported diabetes as a risk

factor for obstructive airway disease but not emphysema
[9]. This observation is in accordance with our findings
insofar as reductions in CO diffusing capacity are more
common in emphysema than obstructive airway disease
per se. In view of the microvascular defects associated
with diabetes [23], it seems counterintuitive to link
diabetes to airway obstruction rather than to an intrin-
sically vascular disease such as emphysema. From this
point of view it seems remarkable that in our study the
diabetes patients, at least on average, did not even show
a tendency towards an impairment of CO diffusing
capacity parameters, despite the fact that they reported a
higher number of packyears and comorbidities, includ-
ing cardiovascular diseases. This could be relevant as e.g.
heart failure has a negative impact on CO diffusing
capacity [24]. It might well be that the changes in
pulmonary capillary bed associated with lung emphy-
sema are dominant over microvascular impairments
associated with diabetes.
Noteworthy, systemic anti-inflammatory effects of

anti-diabetic medication are increasingly considered
[25], such as metformin [26, 27], glucagon-like peptide-1
analogs [28], sulfonylureas [29], thiazolidinedione, DPP-
4 inhibitors [30] and insulin [31]; all of them are inhibi-
tors of NF-κB which plays a central role in COPD-
associated inflammation [32]. In non-diabetic patients
metformin did not ameliorate acute exacerbations [33],
but exerted positive effects on symptoms, health status,
inspiratory muscle function, lung hyperinflation and gas
trapping in a prospective open-label study of moderate
to severe COPD patients with diabetes and BMI > 25 kg/
m2 [34]. Possibly the beneficial effects of anti-diabetic
drugs on the lung occur only in the presence of definite
inflammatory lung disease such as COPD.
In our study, most diabetes patients took medications

of the type mentioned (n = 147 metformin monotherapy,
n = 65 insulin monotherapy; n = 202 metformin com-
bined with other oral specific medication, n = 31 plus
insulin, n = 12 glinides, n = 23 DPP4I, n = 50 sulfonyl-
ureas, n = 7 incretin mimetics (non-exclusive groups)).
Accordingly, it was not possible to define a sufficiently
large control group of diabetes patients without such
medication. Based on our data we cannot explain the
reported impairment of CO diffusing capacity in non-
COPD diabetes patients. Such a reduction might be
derived from both a slight reduction of lung volume as

an “external” factor and alterations of the pulmonary
vascular bed as an “internal” factor reflecting morpho-
logical alterations in which inflammation plays a role.
Both hyper- and hypoglycemic states have been reported
to be associated with pro-inflammatory effect [35, 36]
which theoretically could affect the lung. On the other
hand it does not seem implausible in COPD patients the
inflammatory part involved in the reduction of CO
diffusing capacity is dominant over the diabetes part and
more effectively targeted by the anti-inflammatory
effects of the diabetes medication.

Limitations of the study
We could statistically adjust for a number of factors but
mostly without interaction terms which would have
required an even greater sample size. In addition the
analysis was influenced by the unequal distribution of
males and females across the two groups. This was rele-
vant as even in the group without diabetes the parame-
ters of CO diffusing capacity were gender-dependent.
Information on the type and duration of diabetes was
not available. The extended definition represented
patients with lower HbA1c levels and probably better
glycemic control compared to patients obeying the
restrictive definition. A further grouping into patients
with very poor glycemic control, e.g. HbA1c values ≥8%
or insulin-monotherapy, did not yield conclusive results,
probably due to the small sample sizes associated with
these requirements. The statistical analyses indicated
that the diabetes definition was not critical for the major
finding, therefore the identification of diabetes patients
was probably not a limiting factor in the study. A
further limitation is that a detailed analysis of comor-
bidities was not possible due to the relatively small
numbers that remained, particularly for their combina-
tions, in the diabetes group. Moreover these comorbidi-
ties could not be verified by specific medication to the
same extent as diabetes.

Conclusion
The analysis of data from a large COPD cohort showed
that the transfer factor TLCO in terms of %predicted
did not significantly differ between patients with and
without diabetes, if other differences, especially those of
lung function and body weight, were taken into account.
The findings for the volume-related transfer coefficient
KCO were similar but demonstrated the role of con-
founding factors such as lung volume and BMI with
even greater clarity. Former investigations in diabetes
patients without lung disease showed an impairment of
CO diffusing capacity. Therefore, intuitively one might
expect an additional reduction of diffusing capacity in
COPD patients with diabetes and therefore be inclined
to attribute a low value at least partially to diabetes. As a
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clinical implication, our study indicates that a reduction
of diffusing capacity must be fully attributed to the lung
disease and not to diabetes. This contrasts with other co-
morbidities, such as anemia which directly affects diffusing
capacity. The question which factors may be responsible
for our observations, remains open: either microvascular
alterations caused by diabetes are not relevant in a lung
disease such as COPD, or the common anti-diabetic drugs
exert a beneficial, anti-inflammatory effect.
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