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Abstract
Background: Recognition of repeat unmethylated CpG motifs from bacterial DNA through Toll-like
receptor (TLR-9) has been shown to induce interleukin (IL)-8 expression in immune cells. We sought to
investigate the role of CpG oligodeoxynucleotides (ODN) on a human bronchial epithelial cells.

Methods: RT-PCR and Western blot analysis were used to determine expression of TLR-9 in human
bronchial epithelial cells (16HBE14o-). Cells were treated with CpG ODN in the presence or absence of
IL-1β and IL-8 protein was determined using ELISA. In some cases cells were pretreated with chloroquine,
an inhibitor of TLR-9 signaling, or SB202190, an inhibitor of the mitogen activated protein kinase p38, prior
to treatment with IL-1β and CpG. TLR9 siRNA was used to silence TLR9 prior to treatment with IL-1β
and CpG. IκBα and p38 were assessed by Western blot, and EMSA's were performed to determine NF-
κB activation. To investigate IL-8 mRNA stability, cells were treated with IL-1β in the absence or presence
of CpG for 2 h and actinomycin D was added to induce transcriptional arrest. Cells were harvested at 15
min intervals and Northern blot analysis was performed.

Results: TLR-9 is expressed in 16HBE14o- cells. CpG synergistically increased IL-1β-induced IL-8 protein
abundance, however treatment with CpG alone had no effect. CpC (a control ODN) had no effect on IL-
1β-induced IL-8 levels. In addition, CpG synergistically upregulated TNFα-induced IL-8 expression.
Silencing TLR9 using siRNA or pretreatment of cells with chloroquine had little effect on IL-1β-induced
IL-8 levels, but abolished CpG-induced synergy. CpG ODN had no effect on NF-κB translocation or DNA
binding in 16HBE14o- cells. Treatment with CpG increased phosphorylation of p38 and pretreatment with
the p38 inhibitor SB202190 attenuated the synergistic increase in IL-8 protein levels. Analysis of the half-
life of IL-8 mRNA revealed that IL-8 mRNA had a longer half-life following the co-treatment of CpG and
IL-1β compared to treatment with IL-1β alone.

Conclusion: Together, these data demonstrate that CpG modulates IL-8 synthesis in the presence of a
pro-inflammatory mediator utilizing TLR9 and post-transcriptional mechanisms involving the activation of
p38 and stabilization of IL-8 mRNA.
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Background
Cells of the immune system respond to bacterial cell com-
ponents. These components termed pathogen associated
molecular patterns (PAMPs) include lipopolysaccharide
(LPS), peptidoglycan, lipotechoic acid, flagellin, bacterial
lipoprotein, and DNA. Bacterial DNA has stimulatory
sequences with a central cytosine-guanine (CG) core.
Genomic DNA from bacteria, yeast and insects contain
more unmethylated CG dinucleotides than mammalian
genomic DNA. Unmethylated CG-rich DNA sequence
motifs were developed and have been shown to stimulate
mammalian immune cells [1-3]. Toll-like receptors
(TLRs) are a family of receptors that function as pattern
recognition receptors with the ability to recognize specific
PAMPs. For example, TLR2 recognizes peptidoglycan,
TLR3 recognizes double stranded RNA, TLR4 recognizes
LPS, TLR5 recognizes flagellin, and TLR9 recognizes
unmethylated DNA.

Cells within the innate immune (e.g. dendritic cells, mac-
rophages, and B-lymphocytes) respond to CpG DNA [3].
CpG stimulation results in a signal transduction cascade
involving activation of the nuclear factor (NF)-κB and
activator protein (AP)-1 pathways [4,5]. However, not all
cells of the innate immune system respond uniformly to
CpG DNA stimulation. For example, CpG DNA strongly
activates extracellular regulated kinase (ERK) 1/2 in mac-
rophages, whereas CpG DNA causes a marginal activation
of ERK 1/2 in dendritic cells [6]. In murine B lymphoma
cells, CpG induces activation of c-Jun NH2-terminal
kinase (JNK) and p38, but not ERK [5]. There are a few
reports examining epithelial cell signaling responses to
CpG. In a human colon-derived crypt-like HT-29 cell line,
E. coli-derived DNA induced AP-1 translocation which
involved Fos [7]. In the respiratory cell line 1HAEo-, E.coli-
derived DNA induced a 2-fold increase in NF-κB translo-
cation as determined by luciferase assay [8]. A variety of
CpG sequences have been used in the abovementioned
studies which could lead to differences in signaling.

The epithelium is a barrier to the entry of pathogens, and
as a dynamic system for host response, the epithelium can
produce natural antimicrobial factors and release pro-
inflammatory cytokines. Therefore it is thought that the
airway epithelium plays a role in modulating innate
immunity. There have been a few studies to date that have
investigated the role of CpG on regulating cytokine release
in airway epithelial cells. For the most part, the responses
have been small, i.e. CpG induces roughly a 2-fold
increase in IL-8 production in human respiratory epithe-
lial cells (1HAEo-) and a tracheal epithelial cell line
derived from a patient with cystic fibrosis (CFTE29o-)
[8,9]. In BEAS-2B cells, TLR9 was among the least highly
expressed TLRs, and CpG had no effect on regulating
cytokine production [10].

In the setting of acute (pneumonia) and chronic (cystic
fibrosis) lung disease, bacteria and bacterial components
(including DNA) comprise the pulmonary milieu; more-
over, pro-inflammatory mediators are also likely to be
present. Physiologically, the body would not encounter
bacterial DNA alone, it would be in the presence of organ-
isms and inflammatory mediators. Therefore we were
interested in the role of CpG in the presence of other pro-
inflammatory molecules. Since interleukin IL-1β is one of
a family of cytokines involved in a variety of acute and
chronic diseases, we hypothesized that CpG DNA would
potentiate the IL-1β response in bronchial epithelial cells.
In this study, we evaluated the effect of CpG DNA on IL-
1β-induced IL-8 expression in SV40- transformed human
bronchial epithelial cells (16HBE14o-) cells.

Materials and methods
Cell culture
SV40-transformed human bronchial epithelial cells
(16HBE14o-) were grown as previously described [11].
Cells were treated with human IL-1β (Roche Applied Sci-
ence, Indianapolis, IN), human TNFα (R&D, Minneapolis
MN), synthetic CpG (5' TCG TCG TTC CCC CCC CCC CC
3'), or CpC (5' TCC TCC TTC CCC CCC CCC CC 3' ODN
(TriLink, San Diego, CA) with a phosphodiesterase back-
bone. The CpG sequence is the 2080 CpG sequence iden-
tified by Hartmann and Krieg to be a potent activator of
human B cells [12].

RT-PCR
RNA from untreated growing cells was extracted with TRI-
zol and RT-PCR was performed [13]. TLR9 primers used
were sense 5'-AAGGCCAGGTAA TTGTCACG-3'and anti-
sense 5'-AGCAGCTCTGCAGTACGTC-3' (PCR product,
224 bp) [14]. PCR amplification for all primers was per-
formed for 40 cycles of 94°C for 15 sec, 58°C for 30 sec,
72°C for 45 sec, followed by one cycle of 72°C for 10
min. Product was run on a 1.5% agarose gel containing 10
µg ethidium bromide.

ELISA
Cells were treated with CpG (0.3 µM – 3 µM), control
CpC (3 µM), IL-1β (0.1 ng/ml), or TNFα (3 ng/ml) either
alone or in combination for 16 h. In separate experiments,
cells were pretreated with chloroquine (1-10 µg/ml;
Sigma, St. Louis, MO) or SB202190 (0.3–3 µM; Calbio-
chem, La Jolla, CA) 1 h prior to treatment. In some exper-
iments, cells were treated with poly (I:C) (1–10 µg/ml
from Roche Applied Science, Indianapolis, IN) or lipopol-
ysaccharide (LPS; 0.1 – 10 µg/ml from Sigma, St. Louis,
MO) in the absence or presence of IL-1β. Cell superna-
tants were collected and clarified (13,000 rpm for 10 min
at 4°C) prior to being analyzed for IL-8 by ELISA (Bio-
source, Camarillo, CA).
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Immunoblot analysis
Growing cells were washed in PBS and extracted in a lysis
buffer as previously described [13]. Extracts (30 µg) were
resolved on a 10% SDS-polyacrylamide gel and trans-
ferred to nitrocellulose. After incubation with primary
antibody (TLR9, Santa Cruz, Santa Cruz, CA; phospho-
p38, Biosource, Camarillo, CA; p38, Cell Signaling Tech-
nology, Beverly, MA) signals were amplified and visual-
ized using enhanced chemiluminescence.

Transfection of siRNA
Cells were transfected using Lipofectamine 2000 (Invitro-
gen, Carlsbad, CA) and either a negative control siRNA
(Qiagen, Valencia, CA) or siRNA for TLR9 (Ambion, Aus-
tin TX; three TLR9 siRNA's were purchased and mixed
together). Cells were transfected at 30–50% confluence in
Optimem according to the protocol from Invitrogen. Sev-
enty two hours following transfection, TLR9 mRNA levels
were determined by RT-PCR. For the ELISA, 48 h follow-
ing tranfection, cells were deprived of serum for 8 h and
then treated with CpG (3 µM) in the absence or presence
of IL-1β (0.1 ng/ml) for 16 h.

Electrophoretic mobility shift assay (EMSA)
Cells were treated with CpG (0.3 µM) and/or IL-1β (0.1
ng/ml) for 1 h. Nuclear extraction procedures were per-
formed as described [15]. 4 µg of nuclear proteins were
preincubated with binding buffer and 100,000 counts/
min of [γ32P]-NF-κB probe (Santa Cruz), and incubated
on ice for 15 min. Five-fold cold NF-κB probe was added
for specific competition, and AP-1 was added for non-spe-
cific competition. Nuclear extracts were added and incu-
bated at RT for 15 min. Protein-nucleic acid complexes
were resolved, transferred to nitrocellulose, dried and
exposed to photographic film.

IL-8 mRNA stability
Cells were treated with IL-1β (0.1 ng/ml) in the absence or
presence of CpG (0.3 µM) for 2 h at which time media was
changed and actinomycin D (2 µg/ml) was added to the
cells to induce transcriptional arrest. One dish of cells
were harvested for total RNA isolation at 15 min intervals.

Northern blot analysis
Total RNA was isolated using TRIzoll reagent (Gibco-BRL,
Rockville, MA), and RNA (15 µg) was separated on a 1%
agarose/3% formaldehyde gel, transferred to nylon mem-
branes, and ultraviolet auto-cross-linked (UV Stratalinker
1800) as previously described [16]. Membranes were pre-
hybridized for 4 h at 42°C and subsequently hybridized
overnight with a radiolabeled IL-8 cDNA probe [17]. The
cDNA probe was labeled with [α-32P]dCTP (specific activ-
ity 3,000 Ci/mM, NEN Research Products) by random
priming. Membranes were subsequently washed twice

with saline-sodium citrate-0.1% SDS at 53°C and devel-
oped.

Statistical analysis
Statistical significance was assessed by one-way analysis of
variance (ANOVA) and differences were pinpointed by
Student-Newman-Keuls' multiple range test.

Results
TLR9 is expressed in human bronchial epithelial cells
We confirmed a previous report showing that the human
airway epithelial cell line (16HBE14o-) expresses TLR-9
by performing RT-PCR for mRNA and Western blot for
protein [9]. TLR9 mRNA was constitutively expressed (Fig-
ure 1A) and TLR9 protein was detected (Figure 1B).

TLR9 expression in human bronchial epitheliumFigure 1
TLR9 expression in human bronchial epithelium. A. Total 
RNA from 16HBE14o- was extracted, reverse-transcribed, 
and amplified with specific primers for TLR9 and β-actin. B. 
Whole cells were extracted and western blot analysis was 
performed using an antibody against TLR9. Each experiment 
was performed twice and a representative experiment is 
shown.
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CpG augments IL-1β-mediated IL-8 production
We hypothesized that exposure to CpG in the presence of
IL-1β may have pro-inflammatory effects on human air-
way epithelium. We treated cells with increasing doses of
CpG in the absence or presence of IL-1β. Treatment of
cells with ODNs alone had no effect on IL-8 release as
determined by ELISA. However, in the presence of IL-1β,
CpG synergistically increased IL-8 release (Figure 2A). A
dose-dependent increase was detected using CpG concen-
trations of 0.3 to 3 µM; however, we chose 3 µM for the
rest of our studies. A range of IL-1β concentrations from
10 pg/ml to 10 ng/ml were originally tested. The concen-
tration of 0.1 ng/ml IL-1β was chosen since that dose gave

a submaximal increase in IL-8 expression (data not
shown) and showed the largest level of synergy (data not
shown). To confirm the specificity of the CpG, control
ODN (CpC) was used. CpC had no effect on IL-1β-
induced release of IL-8 (Figure 2B). Endotoxin was not
detected in the synthetic ODN preparations (data not
shown).

To investigate the specificity of this synergy, we also
treated cells with poly (I:C) which binds TLR3, or LPS
which binds TLR4 in the absence or presence of IL-1β.
Either alone, or in the presence of IL-1β, poly (I:C) had no
effect on IL-8 production (data not shown). LPS had min-
imal effects on IL-8 production and did not induce syn-
ergy when co-treated with IL-1β (data not shown).

CpG synergistically increased TNFα-induced IL-8 
expression
Because bacterial DNA would exist in the presence of a
variety of pro-inflammatory mediators, we hypothesized
that CpG would also enhance the signaling of other
cytokine mediators. As predicted, CpG augmented TNFα-
induced IL-8 expression similar to the effect of IL-1β (Fig-
ure 3).

TLR9 inhibition attenuated CpG induced IL-8 expression
Chloroquine, an inhibitor of endosomal acidification,
has been shown to inhibit TLR9 signaling [7]. To confirm
that CpG signals through TLR9, we pre-treated cells with
increasing concentrations of chloroquine one hour before
treatment with IL-1β, CpG or both. Chloroquine had no

CpG synergistically increased TNFα-induced expression of IL-8Figure 3
CpG synergistically increased TNFα-induced expression of 
IL-8. Cells were treated with CpG in the absence or pres-
ence of TNFα. Cell supernatants were harvested and ana-
lyzed for IL-8 by ELISA. Data represent means ± SEM for 4 
separate experiments (compared to TNFα alone, *p = 0.026, 
ANOVA).
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effect on IL-1β induced IL-8 expression. However, inhibi-
tion of TLR9 signaling abolished CpG's synergistic effect
(Figure 4A). To further confirm the role of TLR9, we used
siRNA to selectively silence TLR9. TLR9 siRNA resulted in
greater than a 90% decrease in TLR9 mRNA compared to
scrambled siRNA (data not shown). Importantly, silenc-
ing TLR9 using siRNA resulted in the loss of CpG-induced
synergy of IL-8 (Figure 4B). Together, these data implicate
TLR9 mediating signaling in CpG-induced synergy.

CpG does not activate NF-κB
We next asked whether CpG increased NF-κB transloca-
tion to the nucleus. In these experiments, we directly
examined the effect of CpG on IL-1β-mediated nuclear
translocation of NF-κB. Treatment with IL-1β increased
nuclear translocation of NF-κB as determined by EMSA,
however CpG alone had no effect. Concomitant treatment
with CpG and IL-1β did not alter NF-κB nuclear transloca-
tion compared with that in cells treated with IL-1β alone
(Figure 5A). We next measured the degradation of IκBα.
Treatment with IL-1β caused degradation of IκBα com-
pared to control cells. CpG alone did not alter IκBα deg-
radation. Concomitant treatment with CpG and IL-1β did

CpG does not induce NF-κB translocation or DNA bindingFigure 5
CpG does not induce NF-κB translocation or DNA binding. 
A. Cells were treated with CpG, CpC, and/or IL-1β for 1 hr. 
Nuclear extracts were obtained, incubated with a 32P end-
labeled double-stranded NF-κB oligonucleotide probe, and 
resolved on a gel. Unlabed NF-kB probe (comp) or AP-1 
probe (non-comp) was added at 5 times the concentration of 
labeled probe to show specificity. This experiment was 
repeated twice. B. Cells were treated with CpG and/or IL-1β 
for 0.5, 1, or 2 h prior to extraction and resolution on a gel. 
Immunoblot analysis using an antibody against IκBα is shown. 
This experiment was repeated four times.
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Inhibition of TLR9 attenuated CpG-induced synergyFigure 4
Inhibition of TLR9 attenuated CpG-induced synergy. A. Cells 
were treated with increasingconcentrations ofchloroquine 
(CQ; 1-10 µg/ml) for 1 hr prior to addition of CpG and/or 
IL-1β. Data represent means ± SEM for 3–7 separate experi-
ments (compared to IL-1β alone, *p = 0.012, ANOVA). B. 
Cells were transfected with scrambled siRNA or TLR9 
siRNA. 48 h later, cells were depleted of serum for 8 h and 
then treated with IL-1β and/or CpG for 16 h. Cell superna-
tants were harvested and analyzed for IL-8 by ELISA. Data 
represent means ± SEM for 4 separate experiments (com-
pared to IL-1β alone, *p = 0.003, ANOVA). There was no 
statistical difference between IL-1β treatment in the scram-
bled siRNA vs TRL9 siRNA.
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not alter IκBα degradation or the time of reappearance of
IκBα (Figure 5B). There was no statistical difference
between the IκBα protein levels when comparing IL-1β
and IL-1β plus CpG treatment (data not shown). In addi-
tion, control CpC had no effect alone or in combination
with IL-1β (data not shown).

CpG increased p38 MAPK activation
We next tested the role of CpG in activating p38, a signal-
ing intermediate known to increase the stability of IL-8
mRNA levels. Cells treated with CpG show an increase in
p38 phosphorylation, as determined by Western blot
analysis. Alone, IL-1β had little effect on p38 phosphor-
ylation. Co-treatment of IL-1β with CpG did not further
augment p38 phosphorylation (Figure 6A and 6B). Pre-
treatment of cells with SB202190, a p38 inhibitor,
reduced IL-1β-induced IL-8 expression. Importantly,
SB202190 totally abolished CpG-induced synergy (Figure
6C). To test if CpG had an effect on ERK activation, we
measured ERK phosphorylation following CpG treatment
in the presence or absence of IL-1β. There were no signifi-
cant changes in ERK phosphorylation following CpG
treatment (data not shown).

CpG increases the stability of IL-8 mRNA levels
We next tested if CpG influenced the stability of IL-8
mRNA. For this, we treated cells with IL-1β in the absence
or presence of CpG for 2 h. Actinomycin D was added to
inhibit further transcription, and cells were incubated to
allow for mRNA decay. Total RNA was isolated in 15 min
increments for a period of 2 h. The half-life of IL-8 mRNA
following treatment with IL-1β alone was 66.7 ± 1.9 min.
When CpG was added with IL-1β, the half life of IL-8
mRNA increased to 87.7 ± 1.9 min (Figure 7A and 7B).

Discussion
Bacterial DNA has been shown to have immunostimula-
tory effects on cells of the innate immune system, in par-
ticular dendritic cells, macrophages, and B-lymphocytes
[3]. There have been a few reports showing that CpG or E.
coli DNA alone induced IL-8 production in airway epithe-
lial cells [8,9]. However these effects were minimal
(roughly 2-fold) compared to other activators such as
TNFα which increased IL-8 production by 10–20 fold in
16HBE14o- cells [18,19]. In BEAS-2B cells, treatment with
CpG had no effect on regulating cytokine production (10)
similar to our findings. It is conceivable that cells would
not be exposed to just bacterial DNA without other medi-
ators present (i.e. LPS from the bacteria, or pro-inflamma-
tory mediators from the host defense system). The present
study shows that CpG, while having no effect alone, aug-
ments IL-1β- and TNFα-induced IL-8 production in
human bronchial epithelial cells. In this report, we used a
CpG (2080) which is a 20-mer phosphodiester ODN with
a thymidine located between the two CpG dinucleotides

[12]. Hartmann has previously shown that this motif
resulted in a slightly higher activity than having an ade-

CpG-induced IL-8 is dependent on activation of p38Figure 6
CpG-induced IL-8 is dependent on activation of p38. A. Cells 
were treated with IL-1β, CpG alone or in combination for 1 
h and Western blots were performed for phospho-p38 (top 
blot) and total p38 (bottom blot). A representative experi-
ment is shown. B. Normalization of five separate experi-
ments (means ± SEM). Compared to control, *p < 0.001; 
CpG compared to CpG plus IL-1β is not statistically different 
p = 0.555). C. Cells were pretreated with increasing concen-
trations ofSB202190 (0.3-3 µM for 1 h) prior to addition of 
IL-1β or CpG. Cell supernatants were harvested and ana-
lyzed for IL-8 by ELISA. Data represent means ± SEM for 3–7 
separate experiments (compared to IL-1β alone, *p > 0.001, 
ANOVA).
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nine between the two CpG motifs [12]. CpG ODN
sequences with a phosphodiester backbone have been
shown to bind TLR9 more specifically than ones having a
phosphorothioate protected backbone [20,21].

To confirm the role of TLR9 signaling in CpG-mediated
regulation of IL-8, we transfected cells with siRNA against
TLR9. This resulted in greater than 90% decrease in TLR9
mRNA levels. When TLR9 was silenced, CpG treatment no
longer resulted in the synergistic activation of IL-1β-
induced IL-8 protein release. These data suggest the
importance of TLR9 in this effect. In addition, activation
of TLR3 or TLR4 in the presence of IL-1β had no further
effect on IL-8 production.

IL-8 is regulated transcriptionally by NF-κB, AP-1 and NF-
IL6. There is an absolute requirement for NF-κB in IL-8
promoter regulation. In immune cells, CpG increased NF-
κB activation and IL-8 synthesis [4,5]. In previous studies
performed using airway epithelial cells, one group
reported that CpG did not increase NF-κB reporter gene
expression [9], while another group reported that E.coli
DNA increased NF-κB reporter gene expression by almost
2-fold using 100 µg/ml E. Coli DNA [8]. In the present
study we used 18.5 µg/ml (0.3 µM, a concentration cho-
sen based on its level of synergy with IL-1β) CpG and we
did not detect an increase in NF-κB, however we did not
test higher concentrations nor did we perform any experi-
ments with E. coli DNA. It is possible that we would detect
small increases in NF-κB with higher doses of CpG.

IL-8 can also be regulated by post transcriptional modifi-
cations, therefore we investigated the role of CpG on
mRNA stabilization. Addition of CpG to IL-1β-treated
cells increased the half-life of IL-8 mRNA by 20 minutes.
While a 20 minute increase in mRNA half-life may seem
modest, it can affect mRNA abundance by orders of mag-
nitute (for review [22]). A few other incidences of CpG
increasing mRNA stability have been reported. CpG was
found to increase LPS-induced TNFα mRNA stability in a
murine macrophage-like cell line (RAW cells) [23]. Class
1 major histocompatability complex (MHC) mRNA levels
were stabilized following treatment with CpG in dendritic
cells [24]. In addition, there are many studies showing
that activation of p38 stabilizes IL-8 mRNA [25,26]. We
present evidence that CpG increased p38 phosphoryla-
tion, and pretreatment with SB202190, a chemical inhib-
itor of p38, abolished CpG-induced IL-8 expression.
Collectively these data suggest the mechanism by which
CpG increases IL-8 expression; upregulation of IL-8
mRNA transcription by IL-1β and enhanced IL-8 mRNA
stability by CpG induction of p38. Together these events
ultimately lead to increased IL-8 protein synthesis and
secretion.

The mRNA of many inflammatory cytokines contain AU-
rich elements (ARE) in their 3' untranslated regions which
regulate its stability. IL-8 mRNA contains several AUUUA
motifs in AU rich regions. The 3' tail is susceptible to
deadenylation and degradation by endonucleases and/or
3'-5' exonucleases (reviewed in [27]). Mitogen activating
protein kinase (MAPK) activating protein kinase-2 (MAP-
KAPK-2) is a downstream substrate of p38 and regulates a
variety of proteins which regulate mRNA stabilization,
including HuR and TTP (reviewed in [28]). HuR has been
shown to bind AREs with high affinity and block the
decay of deadenylated mRNA resulting in mRNA stabili-
zation [28]. It is possible that p38 is regulating HuR acti-
vation, although we did not test that in this manuscript.
TPP, on the other hand, acts to promote deadenylation to

CpG increased IL-1β-induced IL-8 mRNA stabilityFigure 7
CpG increased IL-1β-induced IL-8 mRNA stability. A. Cells 
were treated with IL-1β in the absence or presence of CpG 
for 2 h at which time media was changed and actinomycin D 
was added to the cells to induce transcriptional arrest. Both 
groups of cells were harvested for total RNA extraction at 
15 min intervals, as indicated. The top gel is a representative 
Northern blot and the bottom gel shows the 18s rRNA lev-
els depicted by ethidium bromide staining of the transferred 
membrane. B. Decay rate of Northern blot shown in A. Data 
points are plotted as the percent IL-8 mRNA remaining rela-
tive to time zero. Half-life calculations are depicted as the 
average (± SEM, n = 4 separate experiments) time at which 
there was 50% IL-8 mRNA remaining under the respective 
treatments.
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destabilize mRNA. It has been proposed that p38 phos-
phorylates TPP which causes it downregulation, resulting
in mRNA stabilization [28]. In this study, we did not
investigate which of the ARE binding proteins were being
regulated by CpG-induced activation of p38. It is conceiv-
able that both HuR and TPP could be activated and work
in synergy to increase the stabilization of IL-8 mRNA.

TLR9 is expressed on a variety of airway epithelial cell
types including 16HBE14o- (present study and [9]), tra-
cheal and bronchial epithelium [9], respiratory epithe-
lium from large airways resected during surgery [8],
primary bronchial epithelial cells[10], and BEAS-2B cells
[10]. CpG activation in human primary B cells and mac-
rophages has been shown to be due to internalization of
the DNA [12,29]. By selectively deleting TLR9 using
siRNA, we showed the requirement of TLR9 in CpG-
induced synergy. The use of chloroquine, an inhibitor of
vesicular acidification, suggested that bacterial DNA is
internalized in human airway epithelial cells; however
this was not demonstrated in the present study.

In conclusion, we have shown that CpG modulates the
expression of cytokine-derived IL-8 expression by increas-
ing the phosphorylation of p38 leading to an increased
half-life of IL-8 mRNA. Since NF-κB is crucial for tran-
scriptional regulation of IL-8, a stimulus which increases
NF-κB; i.e. IL-1β, TNFα, LPS, etc., is required for the initial
increase in IL-8 transcription. CpG, through TLR9, con-
tributes by stabilizing the existing mRNA. This study sug-
gests an important role for CpG DNA in augmenting the
immune response in human airway epithelium.

Abbreviations
IL, interleukin; NF, nuclear factor; ODN, oligodeoxynu-
cleotide; TLR, toll like receptor; TNF, tumor necrosis factor
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