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Abstract
Background: The response to β2-adrenoceptor agonists is reduced in asthmatic airways. This
desensitization may be in part due to inflammatory mediators and may involve cysteinyl-
leukotrienes (cysteinyl-LTs). Cysteinyl-LTs are pivotal inflammatory mediators that play important
roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. We
tested the hypothesis that leukotriene D4 (LTD4) and allergen challenge cause β2-adrenoceptor
desensitization through the activation of protein kinase C (PKC).

Methods: The isoproterenol-induced cAMP accumulation was evaluated in human airway smooth
muscle cell cultures challenged with exogenous LTD4 or the PKC activator phorbol-12-myristate-
13-acetate with or without pretreatments with the PKC inhibitor GF109203X or the CysLT1R
antagonist montelukast. The relaxant response to salbutamol was studied in passively sensitized
human bronchial rings challenged with allergen in physiological salt solution (PSS) alone, or in the
presence of either montelukast or GF109203X.

Results: In cell cultures, both LTD4 and phorbol-12-myristate-13-acetate caused significant
reductions of maximal isoproterenol-induced cAMP accumulation, which were fully prevented by
montelukast and GF109203X, respectively. More importantly, GF109203X also prevented the
attenuating effect of LTD4 on isoproterenol-induced cAMP accumulation. In bronchial rings, both
montelukast and GF109203X prevented the rightward displacement of the concentration-
response curves to salbutamol induced by allergen challenge.

Conclusion: LTD4 induces β2-adrenoceptor desensitization in human airway smooth muscle cells,
which is mediated through the activation of PKC. Allergen exposure of sensitized human bronchi
may also cause a β2-adrenoceptor desensitization through the involvement of the CysLT1R-PKC
pathway.
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Background
Inhaled β2-adrenoceptor (β2-AR) agonists represent a first-
line treatment of bronchial asthma. However, a reduced
response to β2-AR agonists has been observed in asth-
matic subjects and it has been suggested to play a role in
airway hyperresponsiveness [1,2]. Although genetic fac-
tors may influence responses to β-agonists [3,4], it is
believed that the reduced response of β2-AR may result
from use of β-agonists leading to receptor desensitization
[5,6]. Moreover, β2-AR desensitization can be induced in
human airway smooth muscle cells (HASMC) by expo-
sure to inflammatory mediators that are likely to be
present in the asthmatic airways [7,8]. In allergic asthma,
several products are released from either resident or circu-
lating inflammatory cells or even from the HASMC them-
selves [9] upon exposure to allergen. Among these
mediators, cysteinyl-leukotrienes (cysteinyl-LTs) are long
known to play an important role in asthma [10,11].
Cysteinyl-LTs originate from the oxidative metabolism of
arachidonic acid through 5-lipoxygenase in different
inflammatory cells and are released upon exposure to sen-
sitizing allergens [12,13]. Cysteinyl-LTs exert a variety of
effects with relevance to the etiology of asthma [14], like
smooth muscle contraction [15-17] and proliferation
[18,19], eosinophil recruitment into the airways [20],
increased microvascular permeability [21], enhanced
mucus secretion and decreased mucus transport [12,22].
Furthermore, in passively sensitized human bronchi, the
response to β2-AR agonists is reduced after allergen expo-
sure, and this can be prevented by either a cell membrane
stabilizer or a leukotriene receptor antagonist, suggesting
a role for cysteinyl-LTs released by resident inflammatory
cells regulating β2-AR function [23]. Consistent with this
hypothesis is the clinical observation that concurrent
administration of salbutamol and the CysLT1receptor
(CysLT1R) antagonist montelukast affords greater protec-
tion against exercise- and hyperventilation-induced
asthma than salbutamol alone [24].

The intracellular mechanisms through which cysteinyl-
LTs may cause β2-AR desensitization in asthmatic airways
have not been fully investigated. In the present study, we
tested the hypothesis that cysteinyl-LTs may cause β2-AR
desensitization through the activation of protein kinase C
(PKC). For this purpose, the isoproterenol-induced cAMP
production was first studied in HASMC pre-incubated
with exogenous LTD4 or the PKC activator phorbol-12-
myristate-13-acetate (PMA). Then, the effects of montelu-
kast and the specific PKC inhibitor GF109203X were com-
pared in LTD4-challenged HASMC. Possible effects of
LTD4 on protein kinase A (PKA) or adenylyl-cyclase were
assessed by treatments with the PKA inhibitor H89 or for-
skolin. The hypothesis that the LTD4-PKC pathway may
also be involved for allergen-induced β2-AR desensitiza-
tion was tested by assessing the effects of montelukast and

GF109203X in passively sensitized human bronchial
rings challenged with allergen.

Methods
Materials
Smooth muscle cells from human bronchi were pur-
chased from Invitrogen-Cambrex (Walkersville, MD). Cell
culture supplies, forskolin, PMA, isobutylmethylxanthine
(IBMX) and isoproterenol were purchased from Sigma
Chemical Co (St. Louis, MO); LTD4 and cAMP EIA kit
from Cayman Chemical Co. (Ann Arbor, MI); montelu-
kast was a gift from Merck & Co. (West Point, PA).
GF109203X and H89 were from Calbiochem (La Jolla,
CA). DC™Protein assay from Bio-Rad Laboratories (Rich-
mond, CA). Bronchial rings for functional studies were
obtained from 6 non-asthmatic patients undergoing tho-
racotomy for lung cancer.

HASMC studies
Monolayers of HASMC from human bronchi were grown
in Minimum Essential Medium supplemented with 10%
FBS, 100-U/ml penicillin, and 100-μg/ml streptomycin, as
previously described in detail [25]. Cells were used
between 3rd and 8th passage at a 1:3 ratio in 75-cm2 culture
flasks. At least two different cell line have been used.

Accumulation of cAMP was measured in cells grown to
confluence in 12-well plates and serum-starved for 24 h.
Cells were incubated at 37°C for 10 min in 1-ml PBS con-
taining 3 × l0-4M ascorbic acid and 10-3M isobutylmethyl-
xanthine. Reactions were stopped by placing the plates on
ice, cells were then washed once with cold PBS and 150 μl
of l0-1M HC1 were added to each well. After 20-min incu-
bation, cells were scraped and centrifuged 12000 × g for
10 min. Supernatant solutions were first assayed for pro-
tein concentration and then for cAMP content using a
cAMP EIA-kit following manufacturer's instructions.
cAMP concentrations of unknown samples were deter-
mined by computer-assisted interpolation from a stand-
ard curve.

Concentration-response curves of cAMP accumulation in
response to isoproterenol (10-9M to 10-4M) were obtained
in HASMC at control (vehicle treated) or after exposure to
LTD4 (10-6M for 30 min), with or without 30-min pre-
incubation with 10-6M GF109203X. The increase of cAMP
above baseline in response to 10-5M isoproterenol was
studied in HASMC at control and after 30-min exposure
to 10-6M LTD4 or 5 × l0-7M PMA, with or without 10-6M
montelukast, GF109203X, or H89. The effect of 10-4M for-
skolin was studied by 10-min incubation after 30-min
exposure to either vehicle or LTD4.
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Bronchial tissue studies
24 bronchial rings from surgical specimens were passively
sensitized against dust mites by an overnight incubation
(18 h) at room temperature with serum pooled from three
atopic subjects diluted 1:9 in aerated (95% O2, 5 % CO2)
PSS of the following composition (mM): NaCl 110.5,
KC1 3.4, CaCl2 2.4, MgSO4 0.8, KH2PO4 1.2, NaHCO3
25.7, and dextrose 5.6, as previously described in details
[26]. The serum specific concentrations of specific IgE for
Dermatophagoides Pteronyssinus and D. Farinae were
larger than 13.2 Phadebast RAST units/ml (Pharmacia,
Uppsala, Sweden) and the total serum concentration was
180 ± 33 international units/ml. Nineteen sensitized rings
were incubated with montelukast (10-7M, n = 5 and 10-

6M, n = 5), or GF109203X (10-7M, n = 2 and 10-6M, n =
1), or PSS (n = 6) for 30 min and then challenged by a 60-
min incubation with 200 AU/ml of Dermatophagoides
mix at 37°C. Challenged rings incubated with PSS alone
served as control (n = 6). Rings were then suspended in
water-jacketed 25-ml tissue baths containing aerated PSS
at 37°C using two stirrups connected to a fixed hook at
the bottom of the tissue bath and to a force transducer via
a silk string, respectively. Rings were gradually stretched
until a steady reference length of 1 gr was achieved. PSS
was changed every 20 min. All rings were contracted with
10-6M carbachol and, after a steady contraction was
achieved, relaxed with salbutamol added cumulatively
from 10-9M to 10-4M with half-Log increments. Each con-
centration-response curve was fitted by sigmoid least-
square interpolation between extreme values constrained
at 100% (maximal carbachol-induced force) and 0 (min-
imal force at 10-4M salbutamol).

Statistical analysis and experimental design
All curves shown were analyzed by Prism-4 software using
the four parameters logistic equation and parameters
compared using the extra sum of square principle [27].
Parameter errors are expressed as percentage coefficient of
variation (%CV) and calculated by simultaneous analysis
of at least two different and independent experiments per-
formed in duplicate or triplicate (for HASMC). One-way
independent or two-way repeated-measure analysis of
variance (ANOVA) were used whenever appropriate with
Dunnett or Bonferroni post-hoc tests for multiple com-
parisons. P values < 0.05 were considered statistically sig-
nificant. Data are expressed as means ± S.E.M.

Results
Isoproterenol-induced cAMP accumulation in HASMC 
culture
Increasing concentrations of isoproterenol caused a con-
centration-dependent accumulation of cAMP in all exper-
iments.

After challenge with LTD4 (Fig. 1A) the maximum cAMP
accumulation was significantly (P < 0.05) reduced (33%)
from 4109 pmol/mg prot (CV 10%) to 2760 pmoles/mg
prot (CV 13%), whereas EC50 was substantially unaffected
(from 0.68 μM, CV 59% to 0.69 μM, CV 82%). In monte-
lukast-treated and LTD4-challenged HASMC (Fig. 1B), iso-
proterenol-induced cAMP accumulation was not
significantly different from unchallenged HASMC and sig-
nificantly greater than in untreated LTD4-challenged
HASMC (P < 0.01).

After challenge with PMA (Fig. 1C), the maximum isopro-
terenol-induced cAMP accumulation was significantly (P
< 0.01) reduced to 52% ± 12 SEM of the maximal stimu-
lation, suggesting that PKC plays a pivotal role in the reg-
ulation of β2-AR in HASMC. In GF109203X-treated and
PMA-challenged HASMC, isoproterenol-induced cAMP
accumulation was not significantly different from unchal-
lenged HASMC and significantly greater than in untreated
PMA-challenged HASMC (P < 0.01).

More importantly, in GF109203X-treated and LTD4-chal-
lenged HASMC (Fig. 2) the maximal isoproterenol-
induced cAMP accumulation was 3417 pmoles/mg prot
(CV 5%), significantly (P < 0.01) greater than 2464
pmoles/mg prot (CV 7%) in untreated LTD4-challenged
HASMC and insignificantly different from 3632 pmol/mg
prot (CV 5%) in unchallenged HASMC, confirming a crit-
ical role for PKC in the LTD4-induced β2-AR desensitiza-
tion.

Pre-treatment with H89 did not alter the effect of LTD4
challenge on isoproterenol-induced maximal cAMP accu-
mulation (Fig. 3A), suggesting that LTD4-induced β2-AR
desensitization does not involve PKA activation. Moreo-
ver, LTD4 challenge did not affect the forskolin-induced
maximal cAMP accumulation (Fig. 3B), suggesting that
the adenylyl cyclase was not directly affected by LTD4.

Relaxant responses to salbutamol in human bronchial 
rings
The mean weight of the 24 bronchial rings was 91 ± 5 mg.
The mean resting force and the mean normalized-
response to carbachol were 0.83 ± 0.05 g and 14 ± 2 gr/gr
of tissue, without significant differences between sensi-
tized, challenged, and treated rings Table 1.

Salbutamol relaxed bronchial rings significantly (P <
0.01) in a concentration-dependent manner (Fig. 4). The
salbutamol concentration-response curve of challenged
rings was significantly (P < 0.01) shifted to the right of the
dose response curve of sensitized unchallenged rings, with
significant differences (P < 0.01) at salbutamol concentra-
tions from 10-6M to 10-5M. Pre-treatment with either 10-

6M or 10-7M montelukast displaced significantly (P <
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0.01) to the left of the concentration-response curves of
challenged rings, with significant differences (P < 0.05) at
salbutamol concentrations from 10-6M to 10-5M.

The mean values for IC50 of challenged rings was -5.49 ±
0.12 Log M significantly (P < 0.05) higher than -6.07 ±
0.15 Log M of sensitized untreated rings (Fig. 5). The IC50
values of challenged rings treated with 10-6M and 10-7M
montelukast were -6.05 ± 0.03 and 5.96 ± 0.19, respec-
tively, which were not significantly different from those of
sensitized untreated rings. The IC50 values of challenged
rings treated with montelukast were lower than those of
challenged rings (P < 0.05 for 10-6M and P = 0.07 for 10-

7M).

In challenged rings treated with either 10-7M or 10-6M
GF109203X, the concentration-response curves to salb-
utamol were significantly (P < 0.01) shifted to the left of
the concentration-response curve of challenged rings (Fig.
6).

Discussion
The major findings of the present study can be summa-
rized as follows: 1) In HASMC, exogenous LTD4 caused a
reduction of isoproterenol-induced cAMP accumulation
similar to that caused by direct activation of PKC, 2) this
effect of LTD4 was prevented not only by the CysLT1R
antagonist montelukast, but also by direct inhibition of
PKC, and 3) both montelukast and direct PKC inhibition

Effect of exogenous LTD4 or PMA challenge on isoproterenol-induced cAMP accumulation in HASMCFigure 1
Effect of exogenous LTD4 or PMA challenge on isoproterenol-induced cAMP accumulation in HASMC. A-B. 
Effects of leukotriene D4 (LTD4, 10-6M) challenge and pretreatment with the CysLT1R antagonist montelukast (MK, 10-6M) on 
cAMP accumulation induced by multiple (A) and single (B, 10-5M) isoproterenol concentrations in HASMC. C. Effect of phorbol-
12-myristate-13-acetate (PMA, 5 × l0-7M) challenge and pretreatment with the PKC inhibitor GF109203X (10-6M) on cAMP 
accumulation induced by 10-5M isoproterenol in HASMC. The results are presented as mean ± S.E.M. of at least three experi-
ments performed in triplicate. **P < 0.01 (one-way ANOVA).
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prevented the reduction of response to salbutamol caused
by allergen challenge of passively sensitized human bron-
chi.

Comments on methodology
We first constructed concentration response curves of iso-
proterenol-induced cAMP accumulation in HASMC utiliz-
ing a non-cumulative protocol. A maximum effect was
clearly observed at isoproterenol concentration of 10-5M,
and this was therefore used for subsequent single-concen-
tration experiments. Isoproterenol was used in cAMP
accumulation experiments because, as a full β-AR agonist,
is more suited for the desensitization studies. The β2-AR
selective partial agonist salbutamol was used for bron-
chial rings studies because it is the reference drug gener-
ally used for clinical studies. However, in two separate
experiments we found that the effect of salbutamol on
cAMP accumulation was much weaker than that of iso-
proterenol, while the relative reduction caused by LTD4
challenge was similar to that observed using isoprotere-
nol, being even slightly more pronounced (Fig. 7). There-
fore, we are confident that the results of our HASMC and
bronchial rings studies are comparable.

Furthermore, the fact that after LTD4 challenge in HASMC
only the maximal cAMP accumulation was reduced,
whereas only the IC50 of salbutamol-induced relaxation
was reduced might be explained by the fact that the relax-
ing effect of a β2 agonist is a far more downstream
response than a second messenger (i.e. cAMP) produc-
tion, and certainly involve the activation of other compo-
nents downstream of the receptor, while the β2-AR may
perform functions other than adenylyl cyclase activation
[28], yet equally involved in bronchial relaxation.

As in our previous studies [23,26,29-31], human bron-
chial rings were passively sensitized by using a pool of sera
containing high levels of specific IgEs but low levels of
total IgEs. With this method of passive sensitization and
allergen challenge, followed by repeated washouts, the
force generation capacity of airway smooth muscle was
not altered [23], which makes us confident that the refer-
ence force of 1 g and the level of pre-contraction induced
by carbachol 10-6M were similar in all experimental con-
ditions. Furthermore, the relaxant responses to either the-
ophylline [26] or forskolin [30] remained unaltered in
previous studies using the same methodology. Therefore,

Effect of exogenous LTD4 challenge and pretreatment with GFX109203X on isoproterenol-induced cAMP accumulation in HASMCFigure 2
Effect of exogenous LTD4 challenge and pretreatment with GFX109203X on isoproterenol-induced cAMP 
accumulation in HASMC. Effects of LTD4 (10-6M) challenge and pretreatment with GF109203X (10-6M) on cAMP accumu-
lation induced by multiple (A) and single (B, 10-5M) isoproterenol concentrations in HASMC. The results are presented as mean 
± S.E.M. of at least three experiments performed in triplicate. **P < 0.01 (one-way ANOVA).
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the use of sensitized unchallenged rings as a control seems
justified and any difference in response to salbutamol can
be attributed to changes in the β2-AR pathway.

For relaxation studies, bronchial rings were pre-contracted
with the non-selective muscarinic agonist carbachol, thus
activating both M3 and M2 receptors on smooth muscle
cell membrane. M2 receptors are coupled to Gi-protein,
which inhibits adenylyl cyclase. Thus, had sensitization or

allergen challenge changed Gi-protein expression or activ-
ity, the response to a β2-agonist would have been affected.
In this model, however, both expression and activity of
Gi-protein were similar in sensitized and challenged rings
[29].

In bronchial tissue studies, the effects of allergen chal-
lenge were presumably due to mediator release from resi-
dent inflammatory cells [23]. Thus, it cannot be excluded

Table 1: Physical and mechanical characteristics of the human bronchial rings used for different experiments.

condition n muscle weight, g resting force CCh response, g/g of tissue

sensitized 5 72 ± 4 0.72 ± 0.04 12 ± 3
challenged 6 77 ± 4 0.73 ± 0.11 12 ± 3
MLK 10-7M 5 102 ± 14 0.91 ± 0.05 19 ± 5
MLK 10-6M 5 109 ± 9 0.84 ± 0.15 14 ± 3
GFX 10-7M 2 116; 99 0.96; 1.23 31; 10
GFX 10-6M 1 96 1.05 8

Data are mean ± s.e.m. or individual values.

Effect of exogenous LTD4 challenge on isoproterenol- or forskolin-induced cAMP accumulation in HASMCFigure 3
Effect of exogenous LTD4 challenge on isoproterenol- or forskolin-induced cAMP accumulation in HASMC. A. 
Effects of LTD4 (10-6M) challenge and pretreatment with the PKA inhibitor H89 (10-6M) on cAMP accumulation induced by sin-
gle (10-5M) isoproterenol concentration in HASMC. B. Effects of LTD4 (10-6M) challenge on cAMP accumulation induced by sin-
gle (10-4M) forskolin concentration in HASMC. The results are presented as mean ± S.E.M. of at least two experiments 
performed in triplicate. **P < 0.01, *P < 0.05 (oneway ANOVA).
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that the protective effects of GFX and montelukast against
β2-AR dysfunction were in part due to inhibition of medi-
ator release. However, the observation that GFX and mon-
telukast also protected against β2-AR dysfunction in
HASMC does suggest that airway smooth muscle PKC was
directly involved

Comments on results
The response to β2-AR has been found to be reduced in
airways from subjects with fatal asthma [32]. A reduced
β2-AR responsiveness in asthma may be the result of acti-
vation of the β2-AR by specific agonists (homologous
desensitization) or activation of other receptors by the
inflammatory mediators, which are present in the asth-
matic airways (heterologous desensitization) [33]. β2-AR
desensitization induced by agents that increase cAMP lev-
els, such as bradykinin [34] and some cytokines [35] act-

ing through the elevation of prostaglandin E2 [36], is
probably regulated by PKA [6,33]. On the contrary, mus-
carinic agonists [37], phorbol esters, and other inflamma-
tory mediators may attenuate responses to β-agonists
through the activation of PKC [38], as also recently sug-
gested in bovine tracheal smooth muscle preparations
[39,40]. However, it appears that these mechanisms of
desensitization are cell-type specific [41] and may depend
on kinase expression levels [42].

Among the inflammatory mediators involved in asthma,
cysteinyl-LTs seem to play a key role in the bronchocon-
strictor response to allergen [15-17] through activation of
CysLT1R. Though preferentially coupled to Gq/11-protein,
constitutively expressed CysLT1 also activates pertussis
toxin (PTX)-sensitive and -insensitive G-proteins [43,44].
In HASMC, we have previously found that CysLT1 stimu-

Effect of the pretreatment with montelukast on salbutamol-induced relaxation in challenged human bronchial ringsFigure 4
Effect of the pretreatment with montelukast on salbutamol-induced relaxation in challenged human bronchial 
rings. Relaxant responses to salbutamol in carbachol-contracted human bronchial rings. Values of 100 and 0 on y-axis repre-
sent maximal force in response to 10-6M carbachol and minimal force at 10-4M salbutamol, respectively. ▲, sensitized control 
rings (n = 5); ■, challenged-untreated rings (n = 6); ❍, montelukast 10-7M-treated rings (n = 5); �, montelukast 10-6M-treated 
rings (n = 5). The results are presented as mean ± S.E.M. *P < 0.05 (two-way repeated-measure ANOVA followed by Bonfer-
roni post-hoc test) ■ vs. ▲, ❍, and �.
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lation activates PKC [25] and mitogen-activated protein
kinases ERK1/2 through mechanisms that involve a PTX-
sensitive G-protein [19]. Thus, it is possible that cysteinyl-
LTs may contribute to β2-AR desensitization not only by a
PKC-dependent mechanism, but also by modulating the
adenylyl cyclase-PKA pathway.

The results of the present study show that the cAMP accu-
mulation in response to isoproterenol is reduced in
HASMC treated with exogenous LTD4 or the PKC activator
PMA and the relaxant response to salbutamol is reduced
in human bronchi challenged with the sensitizing aller-
gen. The effects of LTD4 in HASMC and allergen challenge
in bronchial rings were prevented by the CysLT1R antago-
nist montelukast and the PKC specific inhibitor
GF109203X. Altogether, these findings strongly suggest
that in the models used in the present study β2-AR desen-
sitization was the result of PKC activation by LTD4.

In HASMC, exogenous LTD4 did not alter the cAMP accu-
mulation induced by forskolin, thus excluding that the
reduced response of β2-AR to isoproterenol was due to

adenylyl cyclase dysfunction. The PKA inhibitor H89 also
failed to prevent the LTD4-induced β2-AR desensitization
in HASMC, thus ruling out the possibility of the involve-
ment of this protein kinase. Indeed, H89 tended to
enhance the response to isoproterenol both in LTD4-chal-
lenged and -unchallenged HASMC, suggesting the pres-
ence of the well known GS/Gi switch phenomenon of β2-
AR coupling due to PKA phosphorylation [45], which was
not enhanced by LTD4. This finding suggests that the β2-
AR function is independently modulated by PKA and PKC
mechanisms and it is consistent with the observations by
Penn et al. [6] who showed that inhibition of PKC did not
alter β2-AR desensitization induced by PKA activation.

Effect of the pretreatment with the PKC inhibitor GF109203X on salbutamol-induced relaxation in challenged human bronchial ringsFigure 6
Effect of the pretreatment with the PKC inhibitor 
GF109203X on salbutamol-induced relaxation in 
challenged human bronchial rings. Relaxant responses 
to salbutamol in five carbachol-contracted human bronchial 
rings. Values of 100 and 0 on y-axis represent maximal force 
in response to 10-6M carbachol and minimal force at 10-4M 
salbutamol, respectively. ■, challenged-untreated rings; ❍, 
rings pre-treated with 10-7M GF109203X; ▲, ring pre-
treated with 10-6M GF109203X.

Salbutamol concentrations inhibiting 50% of active force in carbachol-contracted human bronchial ringsFigure 5
Salbutamol concentrations inhibiting 50% of active 
force in carbachol-contracted human bronchial rings. 
Effects of montelukast on salbutamol concentrations inhibit-
ing 50% of carbachol-induced contraction (IC50). * P < 0.05 
challenged vs. sensitized and montelukast 10-6M, # P = 0.07 
challenged vs. montelukast 10-7M (one-way ANOVA fol-
lowed by Bonferroni post-hoc test). Each symbol represent 
rings from the same subject.
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In human bronchi, allergen challenge may cause β2-AR
desensitization through different mechanisms involving
inflammatory mediators other than LTs, thus possibly
involving PKA. However, in previous studies we found
that the reduction of relaxant response to salbutamol in
allergen-challenged rings was not prevented by inhibition
of prostaglandins [23], IL-lβ, or TNFα [30], which are
known to cause β2-AR dysfunction/desensitization
through the activation of PKA [6,33,35,36].

Conclusion
In conclusion, taken together these data suggest that
cysteinyl-LTs cause desensitization of β2-AR in both
HASMC and isolated human bronchi through an acute
mechanism involving PKC but not PKA, and that this
desensitization might be prevented by the CysLT1R antag-
onist montelukast. If cysteinyl-LTs released from resident
or circulating inflammatory cells or even from the smooth

muscle cell itself are the major responsible for β2-AR
desensitization in asthma, then the concurrent adminis-
tration of CysLT1R antagonists may represent a useful tool
to improve the response to β2-AR agonists in this disease.
Clinical trials are necessary to assess the efficacy of the
association between CysLT1R antagonists and β2-AR ago-
nists in bronchial asthma.
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Effect of exogenous LTD4 challenge on salbutamol-induced cAMP accumulation in HASMCFigure 7
Effect of exogenous LTD4 challenge on salbutamol-
induced cAMP accumulation in HASMC. Effect of LTD4 
(10-6M) challenge on cAMP accumulation induced by 10-4M 
salbutamol in HASMC. Note the weaker effect of salbutamol 
compare to isoproterenol (10-5 M) and the similarity with the 
effects of LTD4 in Fig.s 1-3. The results are presented as 
mean ± s.e.m. of two experiments performed in triplicate. *P 
< 0.01 (one-way ANOVA).
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