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Impact of smoking on dendritic cell phenotypes
in the airway lumen of patients with COPD
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Abstract

Background: Myeloid dendritic cells (DCs) are increased in the airway wall of patients with chronic obstructive
pulmonary disease (COPD), and postulated to play a crucial role in COPD. However, DC phenotypes in COPD are
poorly understood.

Methods: Function-associated surface molecules on bronchoalveolar lavage fluid (BALF) DCs were analyzed using
flow cytometry in current smokers with COPD, in former smokers with COPD and in never-smoking controls.

Results: Myeloid DCs of current smokers with COPD displayed a significantly increased expression of receptors for
antigen recognition such as BDCA-1 or Langerin, as compared with never-smoking controls. In contrast, former
smokers with COPD displayed a significantly decreased expression of these receptors, as compared with never-
smoking controls. A significantly reduced expression of the maturation marker CD83 on myeloid DCs was found in
current smokers with COPD, but not in former smokers with COPD. The chemokine receptor CCR5 on myeloid DCs,
which is also important for the uptake and procession of microbial antigens, was strongly reduced in all patients
with COPD, independently of the smoking status.

Conclusion: COPD is characterized by a strongly reduced CCR5 expression on myeloid DCs in the airway lumen,
which might hamper DC interactions with microbial antigens. Further studies are needed to better understand the
role of CCR5 in the pathophysiology and microbiology of COPD.
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Introduction
An abnormal immune response to inhaled noxious agents
such as tobacco smoke is a key pathogenetic feature of
chronic obstructive pulmonary disease (COPD) [1]. The
immunological dysfunction in COPD leads to a pathologic
formation of lymphoid follicles around the airways and
contributes to small airway obstruction [2]. Dendritic
cells (DCs), which are subdivided into myeloid DCs
(mDCs) and plasmacytoid DCs (pDCs), are specialized
antigen-presenting cells which initiate and control
adaptive immune responses in the lung. These cells
were postulated to play a key role in the formation of
lymphoid follicles in small airways of patients with
COPD [3-6]. In line with this postulate, histologic stud-
ies using lung tissue from patients with COPD showed
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that COPD is characterized by increased numbers of
Langerin expressing DCs in the epithelium and the ad-
ventitia of small airways and changes in selected costi-
mulatory molecules [7-11]. A further analysis of the
phenotype and function of these DCs in human lung
tissues was hampered by technical limitations of immu-
nohistochemistry (allowing to detect only a few
markers on one cell). For instance, it is currently un-
clear whether the decrease in CD83 positive cells in
small airways of patients with COPD represents a de-
crease in the total number of DCs or a reduced expres-
sion of this maturation marker on DCs [12].
Over the last years, we have established a flow cytometric

method to comprehensively analyze function-associated
surface molecules on DCs in human bronchoalveolar lavage
fluid (BALF) [13-16]. Using this method, we have demon-
strated that BALF mDCs of smokers with normal spirom-
etry display a strong upregulation of specific receptors for
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antigen recognition and presentation such as CD1a and
CD1c (BDCA-1) [17], Langerin (CD207) [18], Macrophage
Mannose Receptor (CD206) [19], BDCA-4 (CD304,
Neuropilin-1) [20], CD80 and CD86 [21], suggesting that
these changes represent a physiologic adaptation of airway
mDCs to cigarette smoke exposure [14]. On the other
hand, some surface molecules on BALF mDCs were un-
changed in smokers, including BDCA-3 (CD141, Throm-
bomodulin [22]) and CD83 (a maturation marker of DCs
[23]) [14]. However, there is currently little information on
DC phenotypes in patients with COPD. In addition, the re-
lationship of these phenotypes to the smoking status of pa-
tients with COPD is poorly understood. It was the aim of
this clinical study, therefore, to analyze function-associated
surface molecules of BALF DCs in COPD for the first time,
and to relate these findings to the current smoking status
of the patients.

Methods
Subjects
Controls were recruited using public notices in Rostock
(Germany). Patients were recruited at the University
Hospital of Rostock (Germany). Inclusion criteria for pa-
tients with COPD were as follows: 1. age between 35
and 75 years, 2. smoking history of at least 10 pack
years, 3. a ratio of FEV1/FVC of < 70% after inhalation
of a short-acting beta-agonist. Current smokers with
COPD were defined as subjects smoking at least 10
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Figure 1 Gating of Dendritic cells in BALF. Total cells were gated in a F
(linneg/dim) cells were gated (second column). In the linneg/dim gate, cells exp
+CD11c+)(third column), and cells expressing HLA-DR and CD123 were iden
shows the BALF from a patient with COPD (upper panel) and a healthy nev
cigarettes per day, former smokers were defined as sub-
jects who quit smoking at least one year ago. Controls
were recruited using the following inclusion criteria: 1.
age between 35 and 75 years, 2. no history of smoking
and no exposure to smoking partners or relatives at
home, 3. no history of any chronic lung disease. For both
groups, exclusion criteria were as follows: 1. any history
of malignant or chronic inflammatory diseases, 2. any
signs of a respiratory tract infection within the last 2
weeks prior to bronchoscopy, 3. a FEV1 of < 30% of
the predicted value. The study was approved by the
local ethics committee of Ärztekammer Mecklenburg-
Vorpommern, Rostock (Germany). All participants gave
their written informed consent.

Study design
All subjects were examined between 8 and 11 am. Lung
function tests and bronchoscopy were performed on
the same day. In a first step, informed consent was ob-
tained and a structured history was taken. Subse-
quently, body plethysmography was performed and the
diffusion capacity (DLCO) measured (Masterscreen,
Jaeger, Carefusion, Hoechberg, Germany). Then, 10 ml
of blood were taken for laboratory analyses and for the
quantification of plasmacytoid and myeloid DCs in per-
ipheral blood. Finally, a bronchoscopy was performed,
with an inhalation of 4% lidocaine for 15 minutes prior
to the procedure (Pari-Boy, Starnberg, Germany).
Gating of mDCs Gating of pDCs 

SC/SSC-plot (first column). In this cell population, lineage negative/dim
ressing HLA-DR and CD11c were identified as mDCs (linneg/dimHLA-DR
tified as pDCs (linneg/dimHLA-DR+CD123+)(fourth column). The figure
er-smoker (lower panel).
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Bronchoalveolar lavage and flow cytometry
Bronchoalveolar lavage was performed using flexible
bronchoscopes (Olympus, Hamburg, Germany) as de-
scribed [13-16]. Briefly, the bronchoscope was wedged
into a subsegment of the right middle lobe and a total
of 100 ml prewarmed sterile saline was instilled. The
fluid was recovered by gentle aspiration. BALF cells
were isolated, counted and then analysed with four-
colour flow cytometry as previously described [13-16],
using the antibodies detailed in Additional file 1: Table
S1. Blood dendritic cells were analyzed using freshly
collected EDTA-blood as described [24]. Among cells
negative/dim for lineage markers (CD3, CD14, CD16,
CD19, CD20, CD56) in BALF or peripheral blood,
mDCs were defined as CD11c+HLA-DR+linneg/dim cells
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Figure 2 Histogram plots of mDC surface markers in BALF. Myeloid DC
the staining of these cells with antibodies against surface markers (marker
antibodies (control antibody, grey). The figure shows examples from a curre
and pDCs as CD123+HLA-DR+linneg/dim cells [13-16]
(Figure 1). The inclusion of cells weakly positive for
lineage markers (“lineage dim cells”) was chosen be-
cause DCs can express low levels of lineage markers
such as CD14 [25]. This approach ensures that most of
these DCs are included in the analysis. However, we
cannot completely exclude the possibility that some of
these DCs were omitted by our gating strategy because
there is a smooth transition from monocytes to myeloid
DCs regarding the expression of surface molecules such
as CD14 in human BALF. Surface molecule expression
on CD11c+HLA-DR+linneg/dim cells (mDCs) was quanti-
fied in histogram plots using isotype control antibodies
to discriminate between specific and non-specific stain-
ing (Figure 2). The ligands of the chemokine receptor
CD86 MMR   Langerin

DCA-4  CCR-5 CD1a   

s were identified as linneg/dimHLA-DR+CD11c+ cells. Histograms show
antibody, red) compared to the staining with respective isotype control
nt smoker with COPD (COPD) and a healthy never-smoker (Control).
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CCR5 CCL3 (MIP-1alpha), CCL4 (MIP-1beta) and
CCL5 (RANTES) (detection limits: 4 pg/ml) were mea-
sured in BALF supernatants using commercial ELISA
Kits as described by the manufacturer (R&D Systems,
Wiesbaden, Germany).

Statistical analysis
Statistical analysis was performed using SPSS Statistics
(SPSS Inc., Chicago, Illinois, USA). The majority of
parameters was not normally distributed. Therefore,
parameters were expressed as medians (minimum –
maximum). For the comparison of groups, the Mann-
Whitney-U test for unrelated samples was used.
Correlation analyses were performed using Spearman’s
correlation coefficient. Probability values of p < 0.05
were regarded as significant.

Results
Subject characteristics
Ten never-smokers, 11 former smokers with the diag-
nosis of COPD and 13 current smokers with the diag-
nosis of COPD were included in the study based on the
inclusion and exclusion criteria. Subject characteristics
are detailed in Table 1. There were no differences in
age and body height between the groups. Former
Table 1 Subject characteristics

Control group
(C) n = 10

COPD total
group (T) n = 24

C
smo

Age (years) 51.0 [40…68] 55.0 [35…73] 5

Gender (m / f) 6 / 4 18 / 6

BMI (kg*m−2) 25.6 [23.2…36.9] 24.5 [18.7…39.0] 23

Pack years 0.0 [0…0] 34.0 [10…60] 4

Medication LABA without
ICS/LABA plus ICS/LAMA

0 / 0 / 0 3 / 10 / 10

FEV1 (% pred.) 114.3 [93.9…126.6] 63.6 [41.5…80.0] 65

IVC (% pred.) 107.1 [82.6…116.8] 86.7 [29.3…114.4] 83.6

FEV1 % FVC (%) 82.5 [77.2…98.3] 60.5 [34.4…71.5] 60

MEF50 (% pred.) 98.0 [72.2…156.2] 24.5 [11.7…39.4] 24

RV (% pred.) 91.0 [79.6…136.0] 136.1 [87.1…185.4] 129.7

TLC (% pred.) 100.5 [85.8…121.5] 102.7 [86.1…148.9] 101

Hemoglobin (mmol/l) 9.2 [7.3…10.3] 9.1 [7.1…11.3] 9

Hematocrit (%) 43.0 [38.0…49.0] 44.0 [38…52] 45

Platelets (*109/l) 229 [180…320] 236 [155…374] 24

Leukocytes (*109/l) 5.9 [3.8…8.2] 7.5 [3.9…12.3] 7

CRP (mg/l) 1.1 [1.0…9.5] 2.1 [1.0…15.1] 1

Shown are general characteristics of the subjects, results of pulmonary function tes
were also treated with a long-acting beta-agonist (LABA) in a fixed combination (“L
imum]. Abbreviations denote: c-reactive protein (CRP), Inspiratory vital capacity (IVC
the forced vital capacity (FEV1/FVC), maximum expiratory flow at 50% of VC (MEF50
side of the table show comparisons between the groups: Control vs. total group of
(former smoker) (C-F) and COPD (current smoker) vs. COPD (former smoker) (S-F).
smokers displayed a higher body weight than current
smokers with COPD (Table 1). There was no difference
in the smoking history (pack years), lung function pa-
rameters or the diffusion capacity between current
smokers and former smokers with COPD (Table 1). All
patients treated with an ICS were also treated with a
LABA, in a fixed ICS/LABA combination in one inhaler
(n = 10). The other patients were treated with a LAMA
or a LABA or a combination of both, or with a rescue
medication only (n = 14).
DC concentrations in peripheral blood and BALF
There was a non-significant trend to increased concen-
trations of pDCs in peripheral blood in patients with
COPD, as compared to controls. Blood pDC concentra-
tions were significantly higher in current smokers than
in former smokers with COPD (Table 2). Blood mDC
concentrations did not differ between the groups
(Table 2). Compared to controls, pDCs (but not mDCs)
in BALF were significantly increased in current
smokers, but not former smokers with COPD (Table 2).
Both mDC and pDC concentrations were significantly
higher in BALF of current smokers than in former
smokers with COPD (Table 2). Percentages of pDCs
OPD current
ker (S) n = 13

COPD former
smoker (F) n = 11

C-T
p

C-S
p

C-F
p

S-F
p

2.0 [35…63] 62.0 [38…73] 0.491 0.879 0.132 0.055

10 / 3 8 / 3 NA NA NA NA

.0 [18.7…37.4] 31.1 [23.5…39.0] 0.360 0.021 0.426 0.007

0.0 [15…60] 32.0 [10…50] <0.001 <0.001 <0.001 0.284

0 / 5 / 4 3 / 5 / 6 NA NA NA NA

.2 [41.5…80.0] 62.0 [51.5…71.4] <0.001 <0.001 <0.001 0.392

[29.3…114.4] 88.8 [35.2…97.9] 0.008 0.115 0.002 0.608

.5 [34.4…71.5] 60.5 [47.4…66.8] <0.001 <0.001 <0.001 0.955

.7 [11.7…39.4] 22.6 [16.9…32.0] <0.001 <0.001 <0.001 0.649

[115.3…185.4] 136.2 [87.1…183.8] <0.001 <0.001 0.001 0.569

.0 [89.3…148.9] 106.0 [86.1…127.0] 0.669 0.738 0.705 0.955

.3 [7.1…11.3] 8.9 [8.0…9.7] 0.809 0.832 0.468 0.531

.0 [38.0…52.0] 41.0 [39.0…48.0] 0.897 0.605 0.756 0.691

6 [155…374] 226 [165…331] 0.985 0.693 0.705 0.608

.7 [3.9…10.2] 7.3 [4.0…12.3] 0.101 0.077 0.314 0.955

.9 [1.0…10.6] 2.3 [1.0…15.1] 0.170 0.446 0.099 0.459

ts and blood parameters. All patients treated with inhaled corticosteroids (ICS)
ABA plus ICS”). Parameters are displayed as median values [minimum…max-
), Forced expiratory volume in the first one second (FEV1), ratio of the FEV1 to
), residual volume (RV), total lung capacity (TLC). The four columns on the right
COPD patients (C-T), Control vs. COPD (current smoker) (C-S), Control vs. COPD



Table 2 Dendritic cell concentrations and characteristics

Control group
(C) n = 10

COPD total group
(T) n = 24

COPD current smoker
(S) n = 13

COPD former smoker
(F) n = 11

C-T
p

C-S
p

C-F
p

S-F
p

Blood pDC (*103/ml) 0.64 [0.18…1.40] 0.80 [0.29…1.80] 0.95 [0.45…1.80] 0.68 [0.29…1.60] 0.564 0.284 0.918 0.013

Blood mDC (*103/ml) 1.29 [0.49…1.82] 1.11 [0.54…2.46] 1.09 [0.54…2.14] 1.12 [0.68…2.46] 0.867 0.648 0.863 0.910

BALF recovery (ml) 55.0 [50.0…64.0] 45.5 [27.0…60.0] 47.0 [27.0…60.0] 45.0 [30.0…60.0] 0.007 0.026 0.016 0.608

BALF cell count (*103/ml) 63.0 [21.0…106.0] 86.0 [6.0…530.0] 113.0 [45.0…530.0] 16.0 [6.0…259.0] 0.401 0.010 0.223 0.018

BALF pDC (*103/ml) 0.03 [0.01…0.20] 0.06 [0.0…0.55] 0.07 [0.0…0.55] 0.01 [0.0…0.15] 0.564 0.042 0.251 0.035

BALF pDC (% of all cells) 0.055 [0.01…0.26] 0.07 [0.0…0.25] 0.07 [0.0…0.25] 0.06 [0.03…0.17] 0.956 0.784 0.863 0.910

BALF mDC (*103/ml) 0.60 [0.20…1.62] 0.73 [0.06…4.13] 0.96 [0.21…4.13] 0.16 [0.06…1.68] 0.752 0.057 0.132 0.013

BALF mDC (% of all cells) 1.06 [0.53…1.53] 0.87 [0.32…2.76] 0.76 [0.32…2.76] 0.95 [0.35…1.71] 0.183 0.088 0.605 0.228

BDCA-1+ (% mDC) 58.1 [44.0…69.0] 62.7 [23.0…93.0] 80.1 [52.9…93.0] 43.5 [23.0…64.6] 0.752 0.003 0.006 <0.001

BDCA-3+ (% mDC) 58.8 [55.6…79.5] 57.7 [21.5…82.6] 61.7 [21.5…82.6] 56.8 [37.1…69.0] 0.148 0.313 0.132 0.608

BDCA-4+ (% mDC) 9.5 [3.9…28.6] 26.2 [0.0…68.9] 43.3 [13.8…68.9] 8.1 [0.0…28.9] 0.038 <0.001 0.605 <0.001

CD80+ (% mDC) 56.7 [45.6…73.5] 58.8 [30.0…79.1] 63.1 [44.2…79.1] 45.9 [30.0…60.9] 0.724 0.166 0.020 0.002

CD83+ (% mDC) 38.4 [20.6…45.8] 28.4 [13.4…51.5] 23.7 [13.4.…39.0] 34.2 [21.2…51.5] 0.109 0.010 0.918 0.055

CD86+ (% mDC) 80.3 [67.1…84.5] 85.2 [49.6…96.7] 89.3 [65.9…96.7] 78.0 [49.6…86.2] 0.118 0.004 0.863 0.002

CCR5+ (% mDC) 27.9 [12.3…51.6] 11.1 [1.8…28.8] 10.9 [1.8…28.8] 12.9 [5.7…23.4] 0.001 0.002 0.008 0.865

MMR+ (% mDC) 44.9 [30.6…56.1] 53.7 [22.8…84.0] 69.1 [50.6…84.0] 40.4 [22.8…69.2] 0.101 <0.001 0.251 <0.001

Langerin + (% mDC) 32.8 [19.7…51.0] 34.1 [9.4…76.8] 52.6 [28.3…76.8] 20.4 [9.4…44.6] 0.642 0.003 0.013 <0.001

CD1a + (% mDC) 43.5 [29.9…57.6] 56.3 [19.5…82.7] 72.7 [51.1…82.7] 35.6 [19.5…62.1] 0.196 <0.001 0.099 <0.001

RANTES / CCL5 (pg/ml) 10.1 [4.0…66.5] 12.6 [4.0…500.0] 7.5 [4.0…500.0] 14.6 [4.0…49.4] 0.669 0.483 0.973 0.494

Parameters are displayed as median values [minimum…maximum]. Abbreviations denote: Bronchoalveolar Lavage Fluid (BALF), plamacytoid Dendritic Cell (pDC),
myeloid Dendritic Cell (mDC), Blood Dendritic Cell Antigen (BDCA), Cluster of Differentiation (CD), Mannose Macrophage Receptor (MMR), Chemokine Receptor
(CCR), Regulated on Activation, Normal T Cell Expressed and Secreted (RANTES, also Chemokine Ligand 5, CCL5). The four columns on the right side of the table
show comparisons between the groups: Control vs. total group of COPD patients (C-T), Control vs. COPD (current smoker) (C-S), Control vs. COPD (former smoker)
(C-F) and COPD (current smoker) vs. COPD (former smoker) (S-F).
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and mDCs in BALF did not significantly differ between
the groups (Table 2).

Surface molecule expression on BALF mDCs
Due to the low number of pDCs in BALF, a compre-
hensive and reliable flow cytometric analysis of surface-
molecules on BALF pDCs could not be performed.
Compared with controls, BALF mDCs of current
smokers with COPD were characterized by an
increased expression of CD1a, BDCA-1, Langerin,
BDCA-4, MMR and CD86 (Figures 3, 4 and Table 2).
In contrast, former smokers with COPD showed a sig-
nificantly decreased expression of BDCA-1, Langerin
and CD80, as compared with controls. Trends to a de-
creased expression of CD1a, MMR and CD86 on mDCs
in former smokers were not significant (Figures 3, 4
and Table 2). Expression of BDCA-1, CD1a, Langerin,
BDCA-4, MMR, CD80 and CD86 was significantly
higher in current smokers than in former smokers
with COPD (Figures 3, 4 and Table 2). Of note, the
expression of BDCA-3 (CD141, Thrombomodulin)
did not differ between the groups (Figure 3 and
Table 2).
Current smokers with COPD were characterized by
a significantly lower expression of the maturation
marker CD83 on mDCs, as compared with controls.
The trend to a reduced expression of CD83 on
mDCs of former smokers was not significant (Figure 4
and Table 2). Compared with controls, CCR5 was
strongly decreased on mDCs of current and former
smokers (median: < 50% of controls). There was no
difference in CCR5 expression between current and
former smokers with COPD (Figure 4 and Table 2).
BALF concentrations of CCL3 (MIP-1alpha) and
CCL4 (MIP-1beta) were below detection limit in all
samples (data not shown). CCL5 (RANTES) concen-
trations in BALF did not differ between groups
(Table 2).

DC phenotypes and airflow limitation
The expression of BDCA-1, CD1a, Langerin and CD80 on
BALF mDCs correlated with the MEF50 (% predicted) in
current smokers with COPD (Additional file 1: Figure S1).
There were non-significant trends towards positive correla-
tions of MEF50 (% predicted) with MMR expression on
BALF mDCs (r = 0.49, p = 0.09), the number of BALF
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Figure 3 Surface molecule expression on BALF mDCs. Boxplots show the expression (% positive mDCs in BALF) of BDCA-1 (A), CD1a (B),
Langerin (C), BDCA-3 (D), BDCA-4 (E) and MMR (F) on mDCs in BALF from healthy never-smokers (Control), former smokers with COPD (COPD,
former smoker) and current smokers with COPD (COPD, current smoker). Boxplots display the median (line within the box), interquartil range
(edges of the box) and extremes (vertical lines). Outliers (all cases more distant than 1.5 interquartil ranges from the upper or lower quartil) were
omitted in the graphs. Significant differences between two time groups are marked with the exact p-value.
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mDCs (r = 0.53, p = 0.06) and the total number of BALF
cells (r = 0.55, p = 0.054) in current smokers with COPD.
In former smokers with COPD and in controls, no correla-
tions of MEF50 with the expression of cell surface molecules
were detected. There were no correlations of mDC surface
molecule expressions with the FEV1 in all groups, with the
only exception of a significant correlation between BDCA-
1 on mDCs and the FEV1 (% predicted; r = 0.69, p = 0.009).
DC characteristics and ICS/LABA treatment
Patients with fixed ICS/LABA combination therapy
displayed significantly lower concentrations of total
cells (Additional file 1: Figure S2-A) as well as mDCs
(Additional file 1: Figure S2-B) in BALF, as compared
to those patients not receiving this combination ther-
apy. BALF pDC cell concentrations did not significantly
differ between these two groups (p = 0.108). There was
no significant difference in the expression of CCR5 on
BALF mDCs (Additional file 1: Figure S2-C) and in the
concentration of the CCR5 ligand RANTES between
these two groups (Additional file 1: Figure S2-D). There
were no significant differences in the expression of
other surface molecules on mDCs between the two
groups (data not shown).

Discussion
This is the first comprehensive analysis of the expression of
function-associated surface molecules on airway DCs in
COPD. Our study revealed that, compared with never-
smoking controls, airway mDCs of current smokers with
COPD display an increased expression of receptors for anti-
gen recognition such as BDCA-1 or Langerin, whereas
mDCs of former smokers with COPD display a decreased
expression of these receptors. Only current smokers with
COPD, but not former smokers with COPD, were charac-
terized by a significantly reduced expression of the matur-
ation marker CD83 on mDCs. In contrast, the expression
of the chemokine receptor CCR5 was strongly reduced in
all patients with COPD, independently of the smoking
status.
The upregulation of surface molecules for antigen

recognition and presentation (such as CD1a, BDCA-1,
Langerin, MMR, BDCA-4 and CD86) and the unchanged
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Figure 4 Surface molecule expression on BALF mDCs. Boxplots show the expression (% positive mDCs in BALF) of CD80 (A), CD86 (B), CD83
(C) and CCR5 (D) on mDCs in BALF from healthy never-smokers (Control), former smokers with COPD (COPD, former smoker) and current smokers
with COPD (COPD, current smoker). Boxplots display the median (line within the box), interquartil range (edges of the box) and extremes (vertical
lines). Outliers (all cases more distant than 1.5 interquartil ranges from the upper or lower quartil) were omitted in the graphs. Significant
differences between two time groups are marked with the exact p-value.
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expression of BDCA-3 on BALF mDCs found in the
current study in smokers with COPD is strikingly similar to
the previously reported changes on BALF mDCs of
smokers with normal spirometry [14]. In contrast, BALF
mDCs of former smokers with COPD displayed a signifi-
cantly decreased expression of BDCA-1, Langerin and
CD80 and a trend to a decreased expression of CD1a,
MMR, BDCA-4 and CD86 on BALF mDCs, as compared
with never-smoking controls. Thus, changes of these mDC
surface molecules appear to be related to current smoking,
rather than to the presence of airway obstruction. Of note,
in current smokers with COPD, we found a positive correl-
ation between the expression of these molecules on mDCs
and the MEF50, a marker of flow limitation in peripheral
airways. Therefore, it might be hypothesized that an upreg-
ulation of these molecules can have protective functions in
smoke-exposed airways. However, further studies are
needed to elucidate the precise role of these receptors in
smoke-related lung diseases.
DC maturation after antigen uptake is a crucial step
for proper DC migration and antigen presentation to
lymphocytes in the draining lymph nodes [23]. Smokers
with normal spirometry display a normal expression of
the maturation marker CD83 on BALF mDCs, suggest-
ing that cigarette smoke does not per se affect airway
DC maturation [14]. In immunohistochemical studies,
Tsoumakidou and colleagues showed that smokers with
COPD or asthma have decreased numbers of CD83
positive cells in the airways [12,26]. It remained unclear
whether this observation represents a decrease in the
total number of DCs or a reduced CD83 expression on
DCs [27]. Here, we demonstrate that, in contrast to
smokers with normal spirometry [14], smokers with
COPD display a reduced CD83 expression on BALF
mDCs. Thus, the data support the hypothesis by Tsou-
makidou and colleagues that COPD might be associated
with an impaired DC maturation, which could hamper
DC migration to the draining lymph nodes [12].
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CCR5 belongs to the family of CC chemokine receptors
and plays a central role in the regulation of DC migration
by binding to chemokines such as CCL3 (MIP-1alpha),
CCL4 (MIP-1beta) and CCL5 (RANTES) [28]. In addition,
CCR5 binds to various antigens derived from bacterial, fun-
gal and viral pathogens. In some cases, a CCR5-mediated
entry of these microbial antigens can have detrimental ef-
fects on immune cells and suppress antimicrobial immune
responses [29,30]. For instance, the importance of CCR5 as
the major human immunodeficiency virus (HIV) co-
receptor controlling susceptibility to HIV infection led to
the development of the CCR5 antagonist Maraviroc which
has been approved by the FDA for the treatment of HIV in-
fections [31]. However, a CCR5-mediated uptake of other
microbial antigens by DCs can also stimulate antimicrobial
immune responses, resulting in an improved clearance of
these pathogens [32]. These data have been supported by
human and experimental studies showing that heterozy-
gous or homozygous carriers of dysfunctional CCR5 allels
infected with the influenza A virus, the West nile virus or
the tick-borne encephalitis virus suffer from a more severe
clinical course of the disease [33-37]. Thus, it appears that a
CCR5 deficiency can have protective or detrimental effects,
depending on the specific infectious agent. We have previ-
ously shown that smokers with normal spirometry display a
moderately decreased expression of the chemokine recep-
tor CCR5 on BALF mDCs (mean values: 73% of controls)
[14]. In the current study, it is demonstrated that COPD is
associated with a strong decrease in the CCR5 expression
of BALF mDCs (median values: < 50% of controls), inde-
pendently of the smoking status. The significance of this
CCR5 downregulation on mDCs in the airway lumen in
COPD is currently unclear. Animal models of cigarette
smoke-induced pulmonary inflammation suggest that
CCR5 contributes to pulmonary inflammation and to the
development of emphysema [38]. Another report showed a
positive correlation between the expression of CCR5 on
CD8+ T-cells in the airway wall and the severity of COPD
[39]. It might be speculated that chronic elevation of che-
mokine concentrations in the airway wall of patients with
COPD results in an accumulation of CCR5+ mDCs in the
airway wall and a relative decrease of CCR5+ mDCs in the
airway lumen. This reduced CCR5 expression on mDCs
could hamper the interaction of mDCs with pathogens in
the airway lumen. Therefore, further studies are needed to
disentangle the precise role of this receptor in the immuno-
pathology and microbiology of COPD [40].
Although the present study was neither intended nor

powered to analyze the effects of medications on airway
DCs in COPD, we performed a preliminary analysis
comparing mDCs of patients treated with a fixed com-
bination (ICS plus LABA) with those patients not
treated with this therapy. This analysis suggests that
treatment with a fixed combination is associated with
reduced concentrations of airway mDCs in patients
with COPD. Due to the limitations of the analysis
(mainly the presence of other confounding factors and
the small sample size of the subgroups), these results
must be interpreted with caution. However, they should
stimulate further research on the effects of ICS and
LABA on immune cells in the airways of patients with
COPD [41-44].
Our study has several limitations. First, only BALF

DCs, but not DCs located within the airway wall were
analyzed in this study. The phenotypes of the DCs in dif-
ferent compartments of the airway may differ substan-
tially. Therefore, the phenotypes described in this report
may not be representative for all airway compartments
in patients with COPD. Second, due to technical limita-
tions (there were too few pDCs in BALF for a reliable
analysis of pDC surface molecules), we did not analyze
the phenotype of plasmacytoid DCs (pDCs), although
these cells may play an important role in the pathogen-
esis of COPD [45]. Third, the median BALF recovery
was higher in the control group (median: 55 ml) than in
the patients with COPD (median: 45 - 47 ml). This
might have influenced total BALF DC counts in the
groups. However, it appears unlikely that this difference
affected the observed pattern of DC surface molecule
expression. For instance, there was no significant in dif-
ference in BALF recovery between smokers and ex-
smokers with COPD, but a strong difference in the ex-
pression of DC surface markers such as BDCA-1, CD1a
and Langerin. Finally, the sample size in each group
(controls, former smokers with COPD and current
smokers with COPD) was relatively small. Although
these sample sizes were sufficient to demonstrate the
strong effects of smoking and the role of COPD regard-
ing the expression of mDC surface molecules such as
Langerin, BDCA-1 and CCR5, they did not allow for fur-
ther subgroup analyses to identify possible confounding
factors.

Conclusion
This first comprehensive analysis of DC phenotypes in
COPD adds important new information to the ongoing
discussion on the role of DCs in the pathophysiology of
COPD.

Additional file

Additional file 1: Table S1. Antibodies used for four-colour flow
cytometry. Abbreviations denote: Blood Dendritic Cell Antigen (BDCA),
Fluorescein isothiocyanate (FITC), Phycoerythrin (PE), Allophycocyanin
(APC), Peridinin chlorophyll protein (PerCP), Macrophage Mannose
Receptor (MMR). Figure S1. DC surface molecules and airflow limitation
in current smokers with COPD. Abbreviations denote: Blood Dendritic Cell
Antigen (BDCA), Fluorescein isothiocyanate (FITC), Phycoerythrin (PE),
Allophycocyanin (APC), Peridinin chlorophyll protein (PerCP), Macrophage
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Mannose Receptor (MMR). The figure shows the correlation between the
expression of CD80 (A), BDCA-1 (B), CD1a (C) and Langerin (D) on BALF
mDCs (% positive mDCs in BALF) and the maximum expiratory flow
when 50% of the forced vital capacity is exhaled (MEF50, in % of the
predicted value) in current smokers with COPD. The Spearman correlation
coefficient (r) and the significance of the association (p) is given for each
marker. Figure S2. Impact of fixed combination therapy on mDCs in
BALF. Ten patients with COPD were treated with a fixed combination
(+ICS/+LABA), whereas 14 patients did not receive this combination
therapy (-ICS/-LABA). Boxplots show the total number of BALF cells (A),
the total number of mDCs (B), the expression (% positive mDCs in BALF)
of CCR5 on mDCs in BALF (C) and the concentration of the CCR5 ligand
RANTES in BALF in both subgroups. Boxplots display the median (line
within the box), interquartil range (edges of the box) and extremes
(vertical lines). Outliers (all cases more distant than 1.5 interquartil ranges
from the upper or lower quartil) were omitted in the graphs. Significant
differences between two time groups are marked with the exact p-value.
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