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Abstract

Pulmonary hypertension is an “umbrella term” used for a spectrum of entities resulting in an elevation of the
pulmonary arterial pressure. Clinical symptoms include dyspnea and fatigue which in the absence of adequate
therapeutic intervention may lead to progressive right heart failure and death. The pathogenesis of pulmonary
hypertension is characterized by three major processes including vasoconstriction, vascular remodeling and
microthrombotic events. In addition accumulating evidence point to a cytokine driven inflammatory process as a
major contributor to the development of pulmonary hypertension.
This review summarizes the latest clinical and experimental developments in inflammation associated with pulmonary
hypertension with special focus on Interleukin-6, and its role in vascular remodeling in pulmonary hypertension.
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Introduction
Pulmonary hypertension summarizes various conditions
in which the blood pressure in the pulmonary circula-
tion is significantly elevated. By definition, pulmonary
hypertension is diagnosed when the mean pulmonary ar-
terial pressure (mPAP) exceeds 25 mmHg as measured
by right-heart catheterization. Since the first inter-
national conference by the World Health Organization
(WHO) in Geneva in 1973, the classification of pulmon-
ary hypertension was subjected to many changes. The
current classification is based on the WHO-Conference
in Nice (2013) [1] and separates the term pulmonary ar-
terial hypertension (PAH) from pulmonary hypertension
(PH) due to left heart disease, pulmonary disease, chronic
thromboembolic pulmonary hypertension (CTEPH) and
PH of miscellaneous etiologies. The current classification
is summarized in the list ‘Updated clinical classification of
pulmonary hypertension (Nice, 2013)’ below [1].

Updated clinical classification of pulmonary hypertension
(Nice, 2013) [1]

1. Pulmonary arterial hypertension (PAH)
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1.2.1. BMPR2
1.2.2. ALK1, ENG, SMAD9, CAV1, KCNK3
1.2.3. Unknown

1.3. Drug- and toxin-induced
1.4. Associated with

1.4.1. Connective tissue diseases
1.4.2. HIV infection
1.4.3. Portal hypertension
1.4.4. Congenital heart diseases
1.4.5. Schistosomiasis
1’ Pulmonary veno-occlusive disease and/or
pulmonary capillary hemangiomatosis

1” Persistent pulmonary hypertension of the newborn
(PPHN)

2. Pulmonary hypertension due to left heart disease
2.1. Left ventricular systolic dysfunction
2.2. Left ventricular diastolic dysfunction
2.3. Valvular disease
2.4 Congenital/acquired left heart inflow/outflow tract

obstruction and congenital cardiomyopathies
3. Pulmonary hypertension owing to lung diseases and/

or hypoxia
3.1. Chronic obstructive pulmonary disease
3.2. Interstitial lung disease
3.3. Other pulmonary diseases with mixed restrictive

and obstructive pattern
3.4. Sleep-disordered breathing
3.5. Alveolar hypoventilation disorders
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3.6. Chronic exposure to high altitude
3.7. Developmental abnormalities

4. Chronic thromboembolic pulmonary hypertension
(CTEPH)

5. Pulmonary hypertension with unclear multifactorial
mechanisms
5.1. Hematologic disorders: chronic haemolytic

anemia, myeloproliferative disorders,
splenectomy

5.2. Systemic disorders: sarcoidosis, pulmonary
histiocytosis, lymphangioleiomyomatosis

5.3. Metabolic disorders: glycogen storage disease,
Gaucher disease, thyroid disorders

5.4. Others: tumoral obstruction, fibrosing
mediastinitis, chronic renal failure, segmental
PH

The pathophysiological mechanisms of pulmonary
hypertension are not fully understood. Despite the clinical
heterogeneity of the entities listed in ‘Updated clinical
classification of pulmonary hypertension (Nice, 2013)’ [1]
a common pathway resulting from a combination of gen-
etic susceptibility and environmental factors seems to play
a pivotal role in the pathogenesis of pulmonary hyperten-
sion. This pathway is characterized by vasoconstriction
due to constrictive agents such as endothelin-1 [2], an
imbalance of vasodilators (e.g. nitric oxide (NO) and
prostacyclin) (e.g. endothelin-1) microthrombosis as well
as vascular remodeling. Depending on the specific entity
that causes the elevation of pulmonary pressure, these
three factors are present in most forms of pulmonary
hypertension. Oral anticoagulation and specific vasodila-
tors are employed to address vasoconstriction and in situ
thrombosis. However, in pulmonary hypertension the
currently available drugs are insufficient to reverse vas-
cular remodeling. Vascular remodeling is characterized
by smooth muscle cell proliferation, hypertrophy of the
medial layer, arteriolar muscularization and endothelial
cell proliferation. Numerous factors have been identified
that might trigger ongoing remodeling of the vessel wall
but the bone morphogenetic protein receptor type II
(BMPR2), which is predominantly expressed on pulmon-
ary endothelium and smooth muscle cells, is considered
to be the master regulator of vascular remodeling in pul-
monary hypertension. Mutations or non-genetic alter-
ations, such as the downregulation of this receptor, might
lead to the vasculopathic lesions observed in patients with
pulmonary hypertension. In up to 70% of familial PAH
and in up to 30% of idiopathic PAH patients are carriers
of BMPR2 mutations.

Review
Evidence from animal models and studies in patients
with pulmonary hypertension suggest that inflammation
contributes to the development of pulmonary hyperten-
sion, in particular in PAH. In lung biopsies from patients
with PAH, mononuclear cells are often observed in plexi-
form lesions, mainly consisting of T cells, macrophages
and, to a lesser extent B cells [3]. A recent study revealed
that the degree of perivascular inflammation correlates
with both vascular wall thickness as well as mPAP [4].
The increased prevalence of PAH in patients with inflam-
matory diseases like thyroiditis [5] and in autoimmune
disorders including connective-tissue diseases [6] further
indicates an important role for the inflammatory process
in the pathogenesis of the disease.

Monocytes & macrophages
Increased numbers of macrophages are present in pul-
monary lesions from patients with severe PAH [7]. Activa-
tion of macrophages induces the release of IL-1β, IL-6,
tumor necrosis factor-α (TNF-alpha), and IL-10, which all
play an important role in the pathogenesis of PAH [8].
Furthermore activated macrophages may present antigens
to T cells resulting in T-cell activation and T-cell derived
cytokine production, which further facilitates the inflam-
matory process associated with PAH [9]. Macrophages in
mice with hypoxia-induced PH seem to switch their
phenotype in a more activated type due to hypoxia and
upregulate expression of genes involved in inflammatory
processes (i.e. IL-1β, IL-13) [10]. Interestingly this switch
may be caused by IL-6, one of the major elevated cytokine
in PAH [11].

T cells
T cells are increased in pulmonary vasculature in lungs
from PAH patients. Cytotoxic CD8+ T cells even consti-
tute the major part of the inflammatory component in
plexiform vascular lesions. The nuclear factor of activated
T cells (NFAT), a transcription factor that promotes cyto-
kine gene transcription, is upregulated in PAH, leading to
increased levels of cytokines, a main feature of PAH [12].
T cell deficient rats are more likely to develop PAH and
deficiency of CD8+ T cells in PAH patients correlated with
a worse survival, which indicate that T cells play a
protective role during the development of PH [13].
Various pathways are likely to generate this protective
effect, for example Treg (T regulatory) cells might prevent
the development of pulmonary hypertension and margin
endothelial injuries, through the upregulation of BMPR2
in lung tissue [14]. T cells have been shown to downregu-
late the macrophage-mediated inflammatory angiogenesis
in the lung [7].

B-cells
B-cell differentiation is stimulated by CD4+ T helper (Th)
cells. These stimulated B cells produce autoantibodies
which may explain the increased levels of antinuclear
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antibodies generally found in PAH patients [15]. Com-
pared with non idiopathic PAH patients, B cells in periph-
eral blood from idiopathic PAH patients show a different
RNA expression profile suggesting that in PAH patients
B cells are activated [16].
Figure 1 shows the different inflammatory cells present

in vasculopathic lesions of a patient with PAH.
Cytokines
Cytokines represent a large group of signaling proteins
that are produced and secreted by cells of the immune
system and regulate numerous biological processes in-
cluding inflammation, immunity and hematopoiesis. Cyto-
kines are specific mediators that interact in an autocrine,
paracrine or endocrine fashion.
Cytokines emerged as major contributing factors in

the pathogenesis of pulmonary hypertension [17-19]. In
addition, cytokines might act as biomarkers both for
diagnosis and clinical outcome of patients with pulmonary
hypertension. Here we review experimental results and
clinical data of the most important cytokines in pulmonary
hypertension. Several novel experimental and transgenic
models have been described in the context of pulmonary
hypertension [20] but it is unclear whether the findings in
these models can be extrapolated to the human situation.
The two best established models to date are the monocro-
taline (MCT) and hypoxia induced model. Increased vas-
cular remodeling has been observed by addition of an
angiogenesis inhibitor, a modifying extension known as the
“Sugen hypoxia” model. This model is promising to be-
come a more physiological surrogate of the human disease.
Figure 1 Plexiform lesion in a patient with PAH. Complex vascular lesio
cells (arrow head) and eosinophils (*). HE staining.
However, also in this model little is known about the con-
tribution of inflammation.
Specific cytokines
IL-1β
Clinical data: Elevated serum levels of IL-1beta were
found in PAH patients and correlate with a worse outcome
[21]. In a case report, the IL-1beta receptor antagonist
Anakinra was shown to resolve pulmonary hypertension in
a patient with Adult-Onset Still’s Disease [22].
Experimental evidence: In hypoxia-induced pulmonary

hypertension and in the MCT model, data on IL-1β
were found to diverge: in the MCT model, high levels of
IL-1β were measured and, conversely, treatment with an
IL-1β receptor antagonist reduced pulmonary hyperten-
sion and right ventricular hypertrophy, while no such
findings were reported in the hypoxia mouse model [23].
This difference might be due to the action of MCT, a
pyrrolizidine alkaloid with highly toxic and, potentially,
inflammatory effects. In some studies, a link between
levels of IL-1β and prostacyclins, in particular PGI2, was
described: PGI2 is a metabolite of arachidonic acid with
vasodilating and antiproliferative properties. The vasodi-
lating effects are mediated through the second messenger
cyclic adenosine monophosphate (cAMP). Patients with
pulmonary hypertension have significantly decreased ex-
pression of endogenous PGI2 [24]. Interestingly, IL-1β
enhances the expression of PGI2 in human pulmonary ar-
tery smooth muscle cells [25]. Similarly, in rat PASMC,
IL-1-β increased the expression of PGI2 and 6-keto-
PGF1α, a stable metabolite of PGI2 [26]. The increased
*
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expression of PGI2 might represent an endogenous re-
sponse to the inflammatory injuries in the lung tissue. Itoh
et al. measured an increase of the cyclooxygenase (COX)-2
mRNA in PASMC treated with IL-1β [26]. COX-2 is a
key enzyme in the regulation of prostaglandin synthesis.
Bradbury et al. showed that IL-1β induces COX-2 [27]
an, in a follow-up paper, the authors showed that adenylyl
cyclase, which converts adenosine triphosphate (ATP) to
cAMP is downregulated by IL-1β. Moreover, accumula-
tion of cAMP was attenuated in response to PGI2 ana-
logues in human PASMCs, which is presumably due to
COX-2 induction [28].
IL-18, a pro-inflammatory cytokine and member of the

IL-1 family, is activated by the cleavage of IL-1β–converting
enzyme, generating the biologically active IL-18. IL-18
is elevated in the patients with PAH and there is evidence
that abnormal levels of IL-18 play a role in vasculopathy
of the pulmonary circulation [29]. A recent study demon-
strated that vascular injury may lead to an upregulation of
IL-18 from PASMC of the medial vessel layer. IL-18 acts
through an autocrine or paracrine effect on smooth muscle
cells via its receptor, IL-18Rα, causing proliferation and
recruitment of other smooth muscle cells. These mecha-
nisms contribute to transmigration of PASMC and to
hypertrophy of the medial vessel layer [29].
A recent study demonstrated that vascular injury may

lead to an upregulation of IL-18 from PASMC of the
medial vessel layer. IL-18 acts through an autocrine or
paracrine effect on smooth muscle cells via its receptor,
IL-18Rα, causing proliferation and recruitment of other
smooth muscle cells. These mechanisms contribute to
transmigration of PASMC and to hypertrophy of the
medial vessel layer [29].
Potential implications: These data implicate that IL-1β

appears to have deleterious effects for the development
and progression of pulmonary hypertension. The exact
mechanisms, however, remain unclear and therapeutic
inhibition of IL-1β is limited to anecdotal case reports
precluding therapeutic use at this moment.

IL-6
IL-6 is an important mediator in hepatic acute phase re-
sponse [30] and is produced by inflammatory cells, i.e.
monocytes and T-lymphocytes. As suggested by recent
publications, IL-6 might be one of the most important
cytokines involved in the pathogenesis of PAH and
hypoxia-induced pulmonary hypertension.
Clinical data: Serum levels are significantly higher in

patients as compared with normal controls [31]; the levels
were found to correlate with patients survival and levels of
IL-6 also turned out to be a better predictor for survival
than traditional clinical tests (e.g. the 6-minute walking dis-
tance and hemodynamic measurements) [21,32]. Moreover,
IL-6 seems to have a strong impact on the development of
pulmonary hypertension in COPD. COPD patients with
pulmonary hypertension had higher plasma levels than
those without pulmonary hypertension and the levels of IL-
6 correlated with the mPAP [33]. A further association was
found between the presence of pulmonary hypertension in
COPD patients and polymorphisms of the IL-6 gene: pa-
tients with the GG phenotype (−174G/C) of the IL-6 gene
had higher pulmonary pressure than patients with the CC
or GC phenotype [33,34]. These data indicate that varia-
tions in the genes encoding inflammatory cytokines might
contribute to the development of pulmonary hypertension.
About 6% of patients with liver cirrhosis develop PAH (por-
topulmonary hypertension, PPHTN) [35]. In these patients,
IL-6 was found to be significantly increased compared
to cirrhosis patients without elevation of the pulmonary
pressure [36].
Experimental evidence: Increased levels of IL-6 mRNA

were measured in MCT rats that developed pulmonary
hypertension and right ventricular hypertrophy (RVH).
When these rats were treated with immunosuppressive
steroids decreased levels of IL-6 and reduced pulmonary
pressures and RVH were measured [37]. Similar findings
were obtained in mice by injections of supraphysiologi-
cal doses of IL-6 that resulted in pulmonary hyperten-
sion, an effect that was even pronounced under hypoxic
conditions [38]. The most convincing data for the role of
IL-6 were reported by Steiner et al. that employed trans-
genic mice overexpressing IL-6. These animals showed
enhanced muscularization both of the proximal arterial tree
and in the distal arteriolar vessels and were found to have
occlusive neointimal angioproliferative lesions, mostly con-
sisting of endothelial cells and T-lymphocytes. These vascu-
lopathic changes corresponded to the increase of right
ventricular systolic pressure and RVH [39,40].
As mentioned before, BMPR2 mutations might be

found in about 70% of familial PAH and in up to 30% of
idiopathic PAH patients. Of interest, however, dysregula-
tion of the BMPR2 receptor has also been found in other
forms of pulmonary hypertension. In an experimental
model, Takahashi et al. found a significant downregula-
tion of BMPR2 in rodents exposed to hypoxia [41]. Since
these changes could not be correlated with adequate
changes of the corresponding mRNA levels, a finding also
confirmed by the MCT model of experimental pulmonary
hypertension [42], Brock et al. identified a posttranscrip-
tional mechanism to be responsible for the downregula-
tion of BMPR2, involving IL-6, the signal transducer and
activator of transcription STAT3 and the microRNA clus-
ter 17/92 [43].
Subsequent studies showed that specific inhibition of

these microRNAs by antagomiRs were found to restore
functional levels of BMPR2 and to inhibit or even reverse
the vascular remodeling and subsequent hemodynamic al-
terations [44,45].
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In addition, IL-6 might contribute to vascular remodeling
also through other, miR-independent pathways. For ex-
ample, it was shown that elevated levels of IL-6 resulted in
an upregulation of vascular endothelial growth factor recep-
tor II (VEGFR2) and matrix metalloproteinase-9 (MMP-9),
an endopeptidase that promotes angiogenesis through regu-
lation of cell attachment, proliferation, and migration.
MMP-9 itself was found to upregulate VEGFR2, whereas
levels of the ligand, VEGF, are increased by IL-6 directly. As
such, high levels of IL-6 continuously activate the prolifera-
tion of PASMCs and probably trigger the transformation of
pulmonary endothelial cells to pulmonary arterial smooth
muscle cells [39].
Potential implications: IL-6 seems to be one of the most

important inflammatory cytokines in the development of
PAH, and in particular of hypoxia-induced pulmonary
Figure 2 Proposed mechanism of BMPR2 downregulation by IL-6. The
Phosphorylated STAT3 forms a dimer and translocates into the nucleus, wh
miRNA transfers into the cytoplasma and, by binding to the target mRNA,
hypertension. The IL6 - STAT3 - miR-17/92 - BMPR2
pathway is an attractive tool that contributed to the un-
derstanding of the pathogenesis of the pulmonary arterial
remodeling and, in the future, might be further translated
into the development of a causative treatment (Figure 2).

IL-8
Clinical data: Elevated serum levels of IL-8 were found
in PAH patients and were also described as predictor of
survival in PAH patients [21]. IL-8 is thought to play an
important role in the development of PAH, especially in
early phases of vascular remodeling. IL-8 is known to
have proangiogenic and antiapoptotic activities and acts
as a growth factor for endothelial cells [46]. These effects
could also explain why patients with PAH in association
with connective tissue diseases show higher IL-8 serum
binding of IL-6 to its receptor triggers the phosphorylation of STAT3.
ere it activates the transcription of the miR-17/92 cluster. The mature
silences BMPR2.
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levels than patients without PAH [47]. Levels of IL-8 are
elevated in early stages of high altitude pulmonary edema
implicating that IL-8 might be involved in the hypoxic
pressure response of pulmonary vessels [48].
Experimental evidence: Downregulation of the C-C

chemokine receptor type 7 (CCR7), a regulator of lympho-
cyte trafficking [49], was described in patients with PAH.
This deficiency leads to perivascular infiltration of T and B
cells in mouse lungs, similarly to the findings observed in
human PAH [50]. CCR7 −/−mice show elevated mRNA
levels of IL-12 that - since IL-12 acts upstream of IL-8
in bronchial epithelial cells - [51] triggers the release of
IL-8 [52].

IL-10
IL-10, released by T-cells, is one of the most important
anti-inflammatory cytokines that inhibit overreaching in-
flammatory processes.
Clinical data: Elevated levels of IL-10 are found in pa-

tients with PAH, which could serve as counterregulating
mechanisms against the inflammation in lung tissue. The
elevated IL-10 levels were found to be inversely correlated
with prostacyclin agonists therapy, i.e. patients under a PH-
target therapy with prostacyclin agonists showed higher
levels of IL-10 compared to patients without such therapy
[21]. Conversely, PAH patients showed a significant de-
crease in IL-10 expression following cardiopulmonary by-
pass operation [53].
Experimental evidence: Ito et al. demonstrated that in-

jections of IL-10 reduced the mean pulmonary arterial
pressure in MCT rats and significantly improved sur-
vival [54].
Potential conclusion: Whether these observations reflect

“true mechanisms” or represent an abnormal response re-
main unclear at the moment. In fact, since intravenous
prostacyclin agonists are indicated for severe disease the
correlation between levels of IL-10 and intravenous PH
target therapy might be biased and it cannot be excluded
that levels of IL-10 correlate with the severity of PAH
[21,22]. Experimental data, however, suggest a protective
role of the anti-inflammatory cytokine IL-10.

IL-13
Experimental evidence: According to previous research
data, IL-13 acts as an important mediator of cell prolifera-
tion and tissue remodeling in lungs [55]. In experimental
pulmonary hypertension the role of IL-13 remains am-
biguous. IL-13 acts mainly through two receptors: the low
affinity receptor IL-13Rα1 and the high affinity receptor
IL-13Rα2. The IL-13Rα2 is a ‘decoy’ receptor and acts as a
strong and selective IL-13 signaling inhibitor. Both IL-13
and IL-13Rα2 are found highly expressed in pulmonary
vessels of PAH patients. Hecker et al. showed by in vitro
experiments that addition of Il-13 decreased proliferation
of PASMC, an effect that was pronounced by silencing
IL-13Rα2. Conversely, Graham et al. demonstrated that
infection with the parasite Schistosoma mansoni re-
sulted in PAH and remodeling of pulmonary arteries.
Since this finding was pronounced in mice lacking IL-
13Rα2, the pro-proliferative effects on pulmonary ves-
sels observed in Schistosomiasis are probably mediated
by the eosinophilic effector cytokine IL-13 [56].
Further evidence for a role of IL-13 to promote vascu-

lar remodeling in pulmonary hypertension comes from
Cho et al. that investigated an IL-13 – IL-13Rα2 – Arginase
2 (Arg 2) pathway. Arg2 is a key enzyme of the L-arginine
metabolism and was found to be induced by IL-13 in lung
tissue from mice [57]. It is thought that Arg2 contributes to
pulmonary hypertension mainly by competing with nitric
oxide (NO)-synthase for the substrate arginine, leading to
reduced bioavailability of the vasodilating NO [58]. More-
over, the enzymatic reaction of Arg2 itself appears to gener-
ate pro-proliferative factors [59]. Consistent with these
findings, in Arg2 −/−mice overexpressing IL-13 remodeling
of pulmonary arteries was found to be decreased [60].
Potential conclusion: IL-13 promotes the development

of pulmonary hypertension via an IL-13 - IL-13Rα2 -
Arg2 pathway leading to an imbalance of NO homeosta-
sis and increased muscularization of pulmonary arteries.
However, the experimental data show both protective and
deleterious effects of IL-13 and it is too early to make con-
clusions on the potential use of IL-13 and its pathways as
therapeutic target for pulmonary hypertension.

TNF-α
Clinical data: Similarly to other inflammatory cytokines,
elevated serum levels of tumor necrosis factor (TNF)-α
were described in PAH patients [21]. Moreover, COPD
patients with pulmonary hypertension show significantly
higher TNF-α and C-reactive protein levels than COPD
patients without pulmonary hypertension, further cor-
roborating the role of COPD as an inflammatory sys-
temic disease [61].
Experimental evidence: When used in high concentra-

tions, TNF-α suppresses the mRNA expression of the
vasodilating PGI2 [26]. Injections of TNF-α to rats also
increased vascular reactivity, which might contribute to
pulmonary hypertension [62]. Similarly, TNF-α over ex-
pression in alveolar type II cells resulted in chronic pul-
monary inflammation, septal destruction, bronchiolitis
and pulmonary hypertension [63].
Sutendra et al. hypothesized that increased levels of TNF-

α may lead to a decrease of pyruvate dehydrogenase (PDH).
PDH is a mitochondrial gate-keeping enzyme and may play
an important role by making pulmonary arterial smooth
muscle cells resistant to apoptosis. It could be demon-
strated that the PDH activity was significantly decreased
in cells treated with TNF-α, while MCT-treated rats that
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were injected with Etanercept (a TNF-α antagonist)
were found to be protected from development of PAH
[64]. In another study, rats treated with a TNF-α blocker
(rhTNFRFc) showed some amelioration in pulmonary
hemodynamics, right ventricular hypertrophy and pul-
monary inflammation [65] and in pigs with endotoxemic-
shock-induced pulmonary hypertension, Etanercept was
able to lower both pulmonary arterial pressure and pul-
monary vascular resistance compared to pigs without
Etanercept therapy [66]. Other studies using TNF-α -
antagonists, however, could not confirm an improve-
ment of pulmonary hypertension [67,68].
Potential conclusion: TNF-α might play an important

role in the development of pulmonary hypertension, even
though the concrete mechanisms remain unknown. Inter-
estingly some studies show that TNF-α blockers amelior-
ate pulmonary pressure, while other studies found no
significant effects.

Conclusions
Inflammatory cytokines seem to play a crucial role in
the development of pulmonary hypertension. However,
while experimental research has contributed a lot to our
understanding of the pathogenesis and development of
this devastating disease, it remains difficult to provide an
integrative pathway for the different identified factors and
to translate these findings to human pulmonary hyperten-
sion, which remains a challenge for future research in the
field. Since the cytokines discussed in this article and the
cells that release them and respond to them probably form
a complex network with different signaling pathways in-
volved, many conclusions on the role of inflammatory
cytokines for pathogenesis and treatment of pulmonary
hypertension remain speculative so far. Moreover, due
to the multiple and redundant activation of pathways and
the interaction of many cytokines, targeting one specific
factor might not prove successful in a clinical setting.
It is the authors’ view that the best-investigated and

most promising cytokine to date is IL-6, in particular for
the development of hypoxia-induced pulmonary hyperten-
sion. Research focusing on the pathway of IL-6, involving
the action of microRNAs and regulation of the expression
of BMPR2 thus is ongoing to extend these findings to
other forms of pulmonary hypertension or the use of these
factors as surrogate markers for the disease.
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