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Maresin-1 reduces the pro-inflammatory response
of bronchial epithelial cells to organic dust
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Abstract

Background: Exposure to organic dust causes detrimental airway inflammation. Current preventative and
therapeutic measures do not adequately treat resulting disease, necessitating novel therapeutic interventions.
Recently identified mediators derived from polyunsaturated fatty acids exhibit anti-inflammatory and pro-resolving
actions. We tested the potential of one of these mediators, maresin-1 (MaR1), in reducing organic dust-associated
airway inflammation.

Methods: As bronchial epithelial cells (BECs) are pivotal in initiating organic dust-induced inflammation, we
investigated the in vitro effects of MaR1 on a human BEC cell line (BEAS-2B). Cells were pretreated for 1 hour with
0–200 nM MaR1, followed by 1–24 hour treatment with 5% hog confinement facility-derived organic dust extract
(HDE). Alternatively, a mouse lung slice model was utilized in supportive cytokine studies. Supernatants were
harvested and cytokine levels determined via enzyme-linked immunosorbent assays. Epithelial cell protein kinase C
(PKC) isoforms α and ε, and PKA activities were assessed via radioactivity assays, and NFκB and MAPK-related
signaling mechanisms were investigated using luciferase vector reporters.

Results: MaR1 dose-dependently reduced IL-6 and IL-8 production following HDE treatment of BECs. MaR1 also
reduced HDE-stimulated cytokine release including TNF-α in a mouse lung slice model when given before or
following HDE treatment. Previous studies have established that HDE sequentially activates epithelial PKCα and
PKCε at 1 and 6 hours, respectively that regulated TNF-α, IL-6, and IL-8 release. MaR1 pretreatment abrogated these
HDE-induced PKC activities. Furthermore, HDE treatment over a 24-hour period revealed temporal increases in
NFκB, AP-1, SP-1, and SRE DNA binding activities, using luciferase reporter assays. MaR1 pretreatment did not alter
the activation of NFκB, AP-1, or SP-1, but did reduce the activation of DNA binding at SRE.

Conclusions: These observations indicate a role for MaR1 in attenuating the pro-inflammatory responses of BECs to
organic dust extract, through a mechanism that does not appear to rely on reduced NFκB, AP-1, or SP-1-related
signaling, but may be mediated partly through SRE-related signaling. These data offer insights for a novel
mechanistic action of MaR1 in bronchial epithelial cells, and support future in vivo studies to test MaR1’s utility in
reducing the deleterious inflammatory effects of environmental dust exposures.
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Background
Agricultural-related organic dust exposures are known to
trigger airway inflammation. Individuals working within
environments such as concentrated animal feeding opera-
tions (CAFOs) experience chronic respiratory diseases
associated with this work [1,2]. Airway inflammation
resulting from organic dust exposure is characterized by
heightened pro-inflammatory cytokine release, neutrophil
infiltration, and tissue remodeling processes. Long-term
effects of chronic exposure include increased risk for lung
function loss and obstructive pulmonary diseases [3]. Pre-
ventative measures such as the use of respirator masks to
limit dust exposure are available, although these measures
are not widely adopted or consistently utilized amongst
the exposed populations [4]. Currently available therapeu-
tics do not adequately treat or alleviate disease [5]. There-
fore, improved preventative and therapeutic options are
needed to assist this population of affected individuals.
To develop better-tailored therapies to prevent or treat

organic dust-related airway inflammation, the basic biology
underlying the disease must be more fully investigated.
Previously published research using organic dust extracts
derived from hog CAFOs (HDE) has shown a single
exposure to organic dust causes bronchial epithelial cells
(BECs) to release early response cytokines (tumor necrosis
factor-α [TNFα], interleukin-6 [IL-6], and interleukin-8
[IL-8] in vitro or keratinocyte-derived chemokine [KC] and
macrophage inflammatory protein-2 [MIP-2]) in vivo, lead-
ing to the recruitment of pro-inflammatory neutrophils and
macrophages [6]. This pro-inflammatory HDE-stimulated
cytokine release in BECs requires the activation of PKC
[7,8]. Inhibiting the activation of pathways associated with
these pro-inflammatory processes in BECs may alleviate the
subsequent detrimental lung inflammation.
Specialized pro-resolving lipid mediators (SPM) such as

resolvins, lipoxins, protectins, and maresins are derived
from the metabolism of polyunsaturated fatty acids
(PUFAs) [9-11]. These mediators have been shown to
exhibit a variety of cell type-specific anti-inflammatory
and pro-resolving effects, as reviewed by G. Bannenberg
in 2010 [12]. These effects include reducing neutrophil
infiltration, polarizing macrophages to an M2 phenotype
while increasing phagocytic capacities, modulating pro-
inflammatory cytokine release by epithelial cells and pro-
moting neutrophil clearance across mucosal surfaces.
While reducing inflammation, SPM have also been shown
to increase lung immunity and resistance to infection
[13,14]. These attributes make lipid mediators favorable
candidates for treating pulmonary diseases characterized
by neutrophil-emphasized inflammatory processes, such
as those associated with organic dust exposures.
The potential utility of PUFAs or PUFA-derived media-

tors has not yet been studied in the context of organic
dust exposures, although published literature reporting
their use in other similar models of inflammation has
demonstrated a potential therapeutic application. For
example, resolvin E1 has shown promise in reducing pro-
inflammatory cytokine release, improving host immunity
in the context of acute lung injury, and reducing cell infil-
tration and airway hyper-responsiveness in a murine
model of asthma [14-16]. Resolvin D1 has been reported
to promote resolution of airway inflammation induced by
cigarette smoke as well as acute lung injury caused by LPS
in mice [16,17]. Although not yet studied in the lung
environment, MaR1 has shown utility in reducing neutro-
phil infiltration while increasing macrophage phagocytic
capacities in a murine model of peritonitis [18]. Previously
published data from our group suggest the recruitment and
subsequent actions of macrophages in organic dust expo-
sures are highly important in determining the outcomes of
the pro-inflammatory insult, and pro-inflammatory cyto-
kine production by BECs exposed to injurious stimuli such
as organic dusts is key to the recruitment of these macro-
phages as well as neutrophils into the lung [19-23]. How-
ever, MaR1’s effects on BECs, along with other cells in the
lung are currently unknown.
In consideration of the important roles that BECs play in

potentiating the pro-inflammatory effects of HDE, includ-
ing the release of cytokines, in part through protein kinase
C (PKC) isoform activation, and recruitment and activation
of other leukocyte responders [7,24-26], the purpose of our
study was to determine whether MaR1 would reduce the
pro-inflammatory effects in BECs induced by HDE. End-
point measurements included PKCα and PKCε activities,
transcription factor binding activities and cytokine release.
Results of the experiments reported here demonstrate that
MaR1 can reduce dust-induced PKCα and PKCε activation
and pro-inflammatory cytokine release in the BECs. While
NFκB, AP-1, and SP-1-related signaling are important to
the pro-inflammatory response of BECs to HDE, MaR1
pretreatment did not reduce the DNA-binding activities of
these transcription factors. Although, the HDE-induced
DNA binding activities at the serum response element
(SRE) is reduced upon MaR1 pretreatment, suggesting this
pathway is modified by MaR1. Taken together, these data
reveal previously uncharacterized anti-inflammatory effects
of MaR1 on BECs and ex vivo mouse lung slice cultures
exposed to HDE and support future in vivo studies testing
the utility of MaR1 for potential treatment of organic dust-
mediated lung inflammation.

Methods
Materials
7(S)-Maresin-1 (7S,14R-dihydroxy-4Z,8E,10Z,12Z,16Z,
19Z-docosahexaenoic acid) and 7(R)-Maresin-1 (7R,14S-
dihydroxy-4Z,8E,10E,12Z,16Z,19Z-docosahexaenoic acid)
were obtained from Cayman Chemical (Ann Arbor, MI,
USA). The human bronchial epithelial cell line BEAS-2B
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was purchased from American Type Culture Collection
(Manassas, VA, USA).

Animal care and housing
Male C57Bl/6 mice were purchased from Jackson La-
boratories (Bar Harbor, ME, USA) and housed in cages
(group housing) under pathogen-free conditions. Mice
received a standard mouse chow diet, and care was
supervised by the University of Nebraska Medical Center
Animal Care Facilities. Experimental use of animals was
regulated and approved by the University of Nebraska
Medical Center Institutional Animal Care and Use
committee.

Preparation of mouse lung slices
Mouse lung slices were prepared using previously de-
scribed methodology [27,28]. Briefly, C57BL/6 male mice
were euthanized with 50 mg/mL pentobarbital, and
lungs filled with low melting point agarose. Lungs were
sliced using a vibrating microtome (EMS-4000; Electron
Microscope Sciences, Hatfield, PA) and cultured for
4 days in RPMI medium (with 2 medium changes) prior
to use in experiments.

Tissue culture
BEAS-2B cells were grown as submerged cultures in
serum-free LHC-9 (Invitrogen; Grand Island, NY):RPMI
(Sigma; St. Louis, MO, USA) media (1:1) containing 100
U/ml Penicillin + 100 μg/ml Streptomycin (Invitrogen;
Grand Island, NY, USA). Cells were incubated at 37°C/5%
CO2 and passaged via trypsinization. Experiments were
performed using cells of approximately 85% confluency.

Preparation of organic dust extract
Organic dust extract was prepared as previously described
[7]. Briefly, settled dust from hog confinement facilities was
placed in Hanks’ balanced salt solution (Biofluids; Rockville,
MD, USA) (1 gram dust per 10 ml solution). This solution
was incubated for 1 hour, followed by two vortexing and
centrifugation steps. The resulting supernatant was sterile-
filtered (0.2 μM filter) (Nalgene; Rochester, NY, USA) and
aliquoted at −20°C.

TNF-α, IL-6, and IL-8/CXCL1 cytokine levels
BEAS-2B cells were pretreated for 1 hour with 0–200 nM
7(S)-MaR1 or 7(R)-MaR1, followed by 5% HDE for
24 hours. Cell supernatants were collected and IL-6 and
IL-8 enzyme-linked immunosorbent assays (ELISAs) were
performed as previously described [7]. Alternatively, mouse
lung slices were pre-treated for 1 hour with 0–200 nM
MaR1, followed by 5% HDE treatment, or given 5% HDE
treatment followed by 0–200 nM 7(S)-MaR1 1 hr after the
HDE treatment was given. At 24 hours following HDE
treatment, lung slice supernatants were collected and
assayed for murine TNF-α, IL-6, and the murine IL-8
cognate CXCL1 using ELISAs.

Transcription factor binding activities
Cells were reverse transfected onto 96-well plates using
Cignal Vector Reporters for NFκB, AP-1, SP-1, and SRE
(SABiosciences; Valencia, CA, USA), using manufacturer’s
directions with Lipofectamine 2000 (Invitrogen; Grand
Island, NY, USA). Transfected cells were treated with 5%
HDE (with or without 0–200 nM 7(S)-MaR1 pretreat-
ment) for 1–24 hours, then harvested using Promega
Dual-Glo Luciferase Reagent (Promega; Madison, WI,
USA); luciferase activity was measured on a Victor 3 V
plate reader (Perkin Elmer; Waltham, MA, USA). The lu-
ciferase vectors work such that a firefly luciferase reading
that is inducible (i.e. AP-1 reporter) is obtained, as well as
a constitutive renilla luciferase reading, for normalization.
Normalized data is thus expressed as relative luciferase
units, which are compared across treatment groups and
expressed as fold-change values over controls.

PKCα, PKCε, and PKA activities
BEAS-2B cells were pre-treated for 1 hour with 0, 100, or
200 nM 7(S)-MaR1, followed by 1 hour or 6 hours treat-
ment with 5% HDE. Cells were lysed and measured for
PKCα and PKCε kinase activities, as previously described
[29-31].

Statistical analyses
Student’s t tests and ANOVA (Tukey’s method for post-hoc
multiple comparisons) tests were used to compare control
versus treated groups, as appropriate. P values ≤ 0.05 were
considered significant. Data are expressed as mean +/−
standard error of the mean (SEM). Graphing/statistical ana-
lyses were performed using the Graphpad Prism software
program.

Results
MaR1 reduces the release of HDE-induced pro-
inflammatory cytokines (IL-6 and IL-8) by airway epithelial
cells (BEAS-2B cell line)
Previous studies have shown treatment of BECs with 5%
HDE for 24 hours leads to significant increases in IL-6
and IL-8 release [7,8]. To test the effects of MaR1 pre-
treatment on cytokine release from BECs in response to
HDE, BEAS-2B cells were pretreated with 0, 1, 10, 100,
or 200 nM MaR1 (in all studies, the 7[S] form of MaR1
was used, unless otherwise stated). After 1 hr, 5% HDE
was added to the cultures and allowed to incubate for
24 hours. In cells receiving MaR1 pretreatment, IL-6
and IL-8 cytokine levels were dose-dependently inhibited
compared to cells receiving HDE alone, as measured at
24 hours post-HDE exposure (Figure 1). In the absence
of HDE, MaR1 alone had no effect on IL-6 or IL-8 levels
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at any concentration tested. These studies were repeated
using the 7(R) isoform of MaR1, achieving similar results
(data not shown).

MaR1, given prior to or during HDE treatment, reduces
the release of pro-inflammatory cytokines (TNF-α, IL-6,
and CXCL1) in a mouse lung slice model of HDE exposure
To ascertain the reproducibility of MaR1’s effects in a
translationally relevant airway model system, mouse lung
slices were used to test the capacity of MaR1 to limit
HDE-induced cytokine release. Using the mouse lung slice
model, precision cut mouse lungs slices prepared from
C57Bl/6 mice were pretreated for 1 hour with 0, 100, or
200 nM MaR1 followed by 5% HDE. Alternatively, lung
slices were first treated with 5% HDE, then given 0, 100,
or 200 nM MaR1concomitantly with HDE treatment
(at 1 hour following treatment with HDE). At 24 hours
following HDE treatment, TNF-α, IL-6, and CXCL1 (mur-
ine IL-8 homolog) cytokine release were significantly
inhibited in a dose-dependent manner in MaR1 pre-
treatment (Figure 2) and MaR1 post-treatment (Figure 3)
studies. Taken together, these results show the ability of
MaR1 to attenuate the release of the pro-inflammatory
HDE-induced TNF-α, IL-6, and CXCL1 cytokines as both
a pretreatment as well as after initial HDE exposure
(MaR1 given after introduction of HDE). Additionally,
these results provide validation for the effects of MaR1 on
HDE-stimulated cytokine release by BEAS-2B in culture.

Effects of HDE with and without MaR1 pretreatment on
PKCα, PKCε, and PKA kinase activities
Data from our group has shown HDE augments the
release of TNF-α, IL-6, and IL-8 from cultured airway epi-
thelial cells and in vivo in a manner that is dependent, at
least in part, on PKC activation [8]. Specifically, sequential
activation of PKCα and PKCε isoforms occurs following
HDE exposure, with PKCα activity peaking at 1 hour and
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Figure 1 Effects of MaR1 pretreatment on HDE-induced IL-6 and IL-8
cells. BEAS-2B cells were pretreated with 0, 1, 10, 100, or 200 nM MaR1 for
cell supernatant was collected and assayed for A) IL-6 and B) IL-8 levels, us
4 separate experimental replicates (biological replicates), with two technica
PKCε activity peaking at 6 hours following HDE exposure
[7,8]. In dominant-negative PKCα BECs, TNF-α is not
produced, and PKCε activation, IL-6, and IL-8 release are
abrogated. However, in PKCε dominant-negative BECs,
TNF-α and IL-6 release are not affected, but IL-8 release
is diminished [8]. These studies highlight the importance
of PKC activation in the release of TNF-α, IL-6, and IL-8 in
HDE-stimulated BECs. Therefore, to determine the effects
of MaR1 on kinases that regulate the HDE-induced pro-
inflammatory responses, BEAS-2B cells were pretreated
with 0, 100, or 200 nM MaR1 for 1 hour, followed by 1 or
6 hour treatment with 5% HDE. Cell lysates were then
assayed for PKCα and PKCε kinase activity levels. As
expected, in cells treated with 5% HDE, PKCα levels were
significantly increased within 1 hour following HDE expos-
ure. Pretreatment with 100 or 200 nM MaR1 eliminated
this effect (Figure 4A). Similarly, in BEAS-2B cells treated
for 6 hours with 5% HDE, PKCε kinase activity was signifi-
cantly stimulated over untreated controls, while maresin-1
pretreatment eliminated this effect (Figure 4B). MaR1 did
not inhibit phorbol ester (PMA)-stimulated PKCα or PKCε,
suggesting that MaR1 is not functioning as a non-specific
kinase inhibitor of these enzymes (data not shown).
These results indicate MaR1 can reduce the activation
of PKCα and PKCε during HDE stimulation of BECs.
Because PKC activity is known to potentiate the pro-
inflammatory responses in BECs exposed to HDE, MaR1’s
mechanism of reducing inflammatory cytokine release is
likely mediated in part through these inhibitory actions on
PKCα and PKCε.
Previous experiments by our laboratory have shown that

PKA activation negatively regulates the pro-inflammatory
cytokine release in BECs induced by HDE exposure [32].
We therefore sought to determine whether or not MaR1
was inhibiting the release of pro-inflammatory cytokines
not only by inhibiting PKCα and PKCε activity, but also
through the activation of PKA. To determine the effects
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Figure 2 Effects of MaR1 pretreatment on HDE-induced TNF-α,
IL-6, and CXCL1 release 24 hours following HDE treatment in
mouse lung slices. Mouse lungs slices were pre-treated for 1 hour
with 0, 100, or 200 nM MaR1, followed by 5% HDE treatment. At
24 hours following HDE treatment, lung slice supernatants were
collected and assayed for murine TNF-α (A), IL-6 (B), and the murine
IL-8 cognate CXCL1 (C). **p < 0.01 vs. 5% HDE; ***p < 0.001 vs. 5%
HDE. Data are representative of 4 separate experimental replicates.

Nordgren et al. Respiratory Research 2013, 14:51 Page 5 of 10
http://respiratory-research.com/content/14/1/51
of MaR1 on PKA, we pretreated BEAS-2B cells with 0,
100, or 200 nM MaR1 for 1 hour, then treated with 5%
HDE for 1 hour. Cell lysates were then assayed for PKA
activity. We found that MaR1 did not significantly alter
PKA activity levels when given as a pretreatment to
HDE for 1 hour (Figure 4C). Similarly, no change in
PKA activity was observed after 6 hour HDE exposure
in MaR1-pretreated cells (data not shown). These data
suggest that the inhibition of PKCα and PKCε and con-
comitant reduction in IL-6 and IL-8 release by BECs
following HDE stimulation by MaR1 is independent of
the actions of PKA.

Effect of HDE on transcription factor binding activities in
BECs with and without MaR1 pretreatment
To determine the effects of HDE on downstream pro-
inflammatory signal activation in BECs, Cignal Vector
Reporters were used. Following reverse transfection of
BEAS-2B cells with the luciferase vectors, cells were
pre-treated with 0 or 200 nM MaR1 for 1 hour prior to
stimulation with HDE. After 1 hour pretreatment, cells
were challenged with or without 5% HDE for 1, 6, 12, or
24 hours. In HDE-treated cells, NFκB, AP-1, SP-1, and
SRE transcription factor binding activities exhibited sig-
nificant increases over control cells that received no
HDE treatment in a time-dependent manner. No signifi-
cant changes were seen in the binding activities of NFκB,
AP-1, or SP-1 in cells that were given MaR1 pretreat-
ment prior to HDE stimulation (Figure 5A-C). Although,
at 24 hours following HDE exposure, there was a signifi-
cant decrease in SRE activation in MaR1 pretreated cells
(Figure 5D). These results suggest that the mechanism
by which MaR1 modulates the pro-inflammatory re-
sponses of HDE-stimulated BECs is likely not propa-
gated through NFκB, AP-1, and SP-1 transcription
factor-related signaling, but may be affecting the activa-
tion of SRE-related signaling mechanisms.

Discussion
Through these investigations, we have found a potential
role for the SPM MaR1 in reducing the pro-inflammatory
responses of BECs to HDE. These findings include re-
duced pro-inflammatory cytokine production and PKCα/ε
activities. In addition, studies performed using a mouse
lung slice model indicate the utility of MaR1 in reducing
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Figure 3 Effects of MaR1 treatment given during HDE exposure
on HDE-induced TNF-α, IL-6, and CXCL1 release 24 hours
following HDE treatment in mouse lung slices. Mouse lungs
slices were given 5% HDE treatment. At 1 hour following the
addition of HDE, 0, 100, or 200 nM MaR1 was added to the slices. At
24 hours following HDE treatment, lung slice supernatants were
collected and assayed for murine TNF-α (A), IL-6 (B), and the murine
IL-8 cognate CXCL1 (C). *p < 0.05 vs. 5% HDE; **p < 0.01 vs. 5% HDE.
Data are representative of 3 separate experimental replicates.
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the pro-inflammatory cytokine release caused by HDE
in a more complex and biologically relevant model sys-
tem, where structural and lung resident cells remain in
contact, simulating a more realistic biological environ-
ment than cell line cultures. Importantly, in the mouse
lung slice model, MaR1 was shown to be effective at re-
ducing pro-inflammatory cytokine release in mouse
lung slices not only when given as pre-treatment to
HDE, but when given 1 hour following HDE exposure
as well. These data suggest the potential utility of MaR1
as a preventative as well as a therapeutic treatment in
the prevention of airway inflammatory disease.
These findings are of particular importance, as organic

dust-related airway inflammation causes multiple dele-
terious effects. Individuals who experience acute expo-
sures to organic dust develop heightened neutrophilia
and pro-inflammatory cytokine production in their air-
ways. Prior studies indicate that BECs play an important
role in releasing pro-inflammatory cytokines, which re-
cruit inflammatory leukocytes into the lung following
organic dust exposures. Therefore, preventative and
treatment measures that reduce the stimulation of these
cells by organic dust might prove clinically beneficial to
patients. MaR1 may represent a novel class of drugs for
preventing and/or treating the airway inflammatory
consequences following organic dust exposures.
Recently discovered pro-resolving lipid mediators,

such as the resolvins, protectins, lipoxins, and maresins
have been found to have potent anti-inflammatory and
pro-resolution effects on multiple different cell types
that are relevant in the lung environment. For example,
resolvin E1 can decrease the levels of IL-6 and IL-1β
found in lung tissue following HCl-induced acute lung
injury [14]. Resolvin E1 also limited lymphocyte recruit-
ment, IL-13 release, and airway hyper-responsiveness
in a murine model of asthma [15]. LPS-induced and
cigarette smoke-induced lung inflammation was di-
minished by treatment with resolvin D1 [16,17]. The
role of MaR1 has not yet been characterized within the
lung, although studies investigating the effect of MaR1
in limiting inflammation in a murine peritonitis model
highlight its potential in attenuating macrophage and
neutrophil-dominating inflammatory diseases [18]. Our
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findings of reduced inflammatory cell-recruiting TNF-α,
IL-6, and IL-8/CXCL1 release in vitro (BEAS-2B cell line)
and/or ex vivo (mouse lung slice model) suggests a po-
tential anti-inflammatory role for MaR1 by reducing
macrophage and neutrophilic-dominant organic dust-
induced lung disease. In our studies, we chose to use
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To better understand the mechanisms underlying
the reduced inflammatory cytokine response following
organic dust-exposed BECs and mouse lung slices with
MaR1 pretreatment, a series of experiments were
performed to analyze intracellular signaling events.
We have previously reported that HDE-stimulated
TNF-α, IL-6, and IL-8 release in BECs is dependent
upon the sequential activation of PKC isoforms, where
PKCα is responsible for TNF-α release, and TNF-α
leads to IL-6 release and PKCε activation, while PKCε
activation subsequently induces IL-8 release [7,8]. A
summary of these previously published findings is pro-
vided in Figure 6. In this study, pretreatment with
MaR1 prior to HDE stimulation effectively abrogated
the early (1 hour) activation of PKCα and subsequent
TNF-α release, IL-6 release, and activation of PKCε at
6 hours. Although PKA activation has been implicated
in inhibiting organic dust-induced PKC activation in
epithelial cells [32], we observed no change in PKA ac-
tivity in response to MaR1 pretreatment. Our data sug-
gest that MaR1 interferes with HDE-mediated PKC
activation indirectly, as MaR1 appeared to have no en-
zyme inhibitory effect itself in the presence of the dir-
ect PKC activator, PMA. We hypothesize that MaR1
action is upstream of PKCα, potentially at the level of cell
surface receptor signaling. As reviewed by Serhan,
et al. in 2011, other PRM have been shown to bind specific
g-protein coupled receptors to propagate agonist and
antagonist effects, and this is a well-known mechanism of
action for other poly-unsaturated fatty acid-derived lipid
mediators (such as the prostaglandins) [34]. This therefore
is likely how MaR1 also acts, although cognate receptors
for MaR1 are currently undefined.
Additional potential intracellular signaling/transcrip-

tional pathways were explored to explain the action of
MaR1 in reducing pro-inflammatory cytokine release
Figure 6 Summary of known and proposed pro-inflammatory signalin
composition of HDE leads to activation at multiple surface receptors, includ
(1) [35,36]. HDE causes PKCα activity to increase within 1 hr, leading to TNF
on TNF-α) and IL-8 (dependent on PKCε) release occurs by 24 hours post-HD
and SRE-related transcription factors in the HDE-induced pro-inflammatory re
PKCε activities, SRE DNA binding activities, and TNF-α, IL-6, and IL-8 releas
pathways is undefined but is likely upstream of PKCα activation. Other SPM
antagonist actions, although MaR1 receptor interactions are unknown. A r
response in BECs that MaR1 reduces.
following HDE treatment in BECs. HDE treatment alone
temporally activated the binding activities at the NFκB,
AP-1, SP-1, and SRE DNA binding elements. Our la-
boratory and others have previously shown the import-
ance of NFkB and MAPK-related pathway activation in
various cells (i.e. phagocytes, epithelial cells) following
organic dust exposures [37-40]. MaR1 pretreatment did
not significantly affect the total binding activities of
NFκB, AP-1, or SP-1. However, MaR1 did attenuate
HDE-induced SRE binding activities at 24 hours follow-
ing HDE exposure. Binding at SRE is known to be acti-
vated through both MAPK and Rho kinase signaling
mechanisms via serum response factor (SRF) binding at
SRE sites [41,42]. This reveals potential pathways that
may be targeted by MaR1 to reduce HDE-induced pro-
inflammatory consequences to BECs. Interestingly, the
activation of SRF-related signaling and SRE binding activ-
ity has been shown to be dependent on PKCα and PKCε
activities [42], corroborating with our findings that these
enzymes are required for HDE-related pro-inflammatory
cytokine production in BECs and are inhibited by MaR1.
The role of SRF-related signaling in airway epithelial
cells is not well characterized, nor has this pathway been
previously reported to be modulated by SPM. Therefore,
future directions will be aimed at investigating the acti-
vation of this pathway in BECs, and how the pathway is
modulated by MaR1.
It is noteworthy that NFκB activation was not signifi-

cantly altered by MaR1 treatment in the cells, as reports
have shown that omega-3 fatty acids and their deriva-
tives (including resolvin D1, resolvin D5, and resolvin
E1), limit NFκB activation, implicating this transcription
factor as a key target of various SPM [14,16,43-45]. The
lack of alteration in total NFκB activity with MaR1 treat-
ment indicates diversity in the mechanisms by which the
various SPM function and highlights the prospects for
g events occurring in BECs following HDE exposure. The complex
ing growth factor receptors (i.e. EGFR) and toll-like receptors (i.e.TLR2)
-α release and activation of PKCε by 6 hours (2) [8]. IL-6 (dependent
E exposure (3) [7,8]. Our data implicate activation of NFκB, AP-1, SP-1,
sponse. Our data reported here indicate that MaR1 reduces PKCα and
e. The direct mechanisms of action of MaR1 on HDE-modulated
are known to act through various GPCRs with agonist and

ed X indicates a feature of the HDE-induced pro-inflammatory
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tailoring specific SPM to different diseases based on
their differing activation signatures. Although, it is im-
portant to note that NFκB, AP-1, and SP-1 each regulate
a substantial number of different gene targets and re-
ceive integrative signals to do so [46-48]; it is possible
that MaR1 may affect transcriptional activities of specific
gene sets regulated by these transcription factors that
may cause only subtle changes in total binding activities.
Taken together, our data regarding NFκB, AP-1, SP-1,
and SRE DNA binding activities suggest MaR1 is acting
in part through modulation of SRE-related signaling. Al-
though, we anticipate that MaR1 is also acting through
alternate signaling pathways to counterbalance the pro-
inflammatory stimulation propagated through these
pathways in HDE-stimulated BECs.

Conclusion
In conclusion, the experiments described in this report
indicate a novel role for MaR1 in HDE-induced BEC
inflammatory responses whereby MaR1 reduced PKC
activation, resulting in diminished epithelial cell TNF-α,
IL-6, and IL-8 production following HDE stimulation.
DNA binding activity assays revealed MaR1 to have a
modulatory effect on HDE-induced SRE-related signaling.
Furthermore, studies utilizing the ex vivo mouse lung slice
model reveal the potential of MaR1 in preventing in-
flammation when given either prior to or following
HDE exposure. Together, these data provide support for
further investigations aimed at determining the potential
utility of MaR1 in limiting organic dust-induced inflamma-
tion in an in vivo model. A body of work shows that
supplementing the diets of patients suffering from acute
lung injury or acute respiratory distress syndrome with ω-3
PUFAs significantly lessened lung inflammation and
mortality [49]; these studies highlight the potential of
SPMs (like MaR1) for treating/ameliorating inflammatory
lung conditions. In vivo investigations will therefore be
highly relevant for determining the potential utility of
MaR1 and other SPM in preventing and/or treating organic
dust-related exposures in agriculture workers.
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