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vasoconstriction via TRPC6
Beate Fuchs1, Markus Rupp1, Hossein A Ghofrani1, Ralph T Schermuly1,2, Werner Seeger1,2, Friedrich Grimminger3,
Thomas Gudermann4, Alexander Dietrich4, Norbert Weissmann1*

Abstract

Background: Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung that matches blood
perfusion to alveolar ventilation to optimize gas exchange. Recently we have demonstrated that acute but not
sustained HPV is critically dependent on the classical transient receptor potential 6 (TRPC6) channel. However, the
mechanism of TRPC6 activation during acute HPV remains elusive. We hypothesize that a diacylglycerol (DAG)-
dependent activation of TRPC6 regulates acute HPV.

Methods: We investigated the effect of the DAG analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) on normoxic vascular
tone in isolated perfused and ventilated mouse lungs from TRPC6-deficient and wild-type mice. Moreover, the
effects of OAG, the DAG kinase inhibitor R59949 and the phospholipase C inhibitor U73122 on the strength of HPV
were investigated compared to those on non-hypoxia-induced vasoconstriction elicited by the thromboxane
mimeticum U46619.

Results: OAG increased normoxic vascular tone in lungs from wild-type mice, but not in lungs from TRPC6-
deficient mice. Under conditions of repetitive hypoxic ventilation, OAG as well as R59949 dose-dependently
attenuated the strength of acute HPV whereas U46619-induced vasoconstrictions were not reduced. Like OAG,
R59949 mimicked HPV, since it induced a dose-dependent vasoconstriction during normoxic ventilation. In
contrast, U73122, a blocker of DAG synthesis, inhibited acute HPV whereas U73343, the inactive form of U73122,
had no effect on HPV.

Conclusion: These findings support the conclusion that the TRPC6-dependency of acute HPV is induced via DAG.

Introduction
Hypoxic pulmonary vasoconstriction (HPV) is an essen-
tial mechanism in the lung matching blood perfusion to
alveolar ventilation, thus optimising gas exchange [1].
Despite decades of research, the signaling pathway
underlying HPV has still not been fully resolved. An
increase in intracellular calcium concentration ([Ca2+]i)
is an essential component in this process, leading to the
contraction of precapillary pulmonary arteries [2-4].
However, how [Ca2+]i is regulated in HPV is still a
matter of debate [2,3,5,6]. In addition to L-type voltage-
operated calcium channels (VOCC), non-selective tran-
sient receptor potential (TRP) channels have been

suggested as important regulators of vascular tone in
hypoxia [7-9]. In mammals, the family of TRP channels
comprises 6 subfamilies, based on their sequence
homology [10]. Among these, classical TRPC proteins
are expressed in pulmonary arterial smooth muscle
[4,5,9], specifically, in smooth muscle cells of distal pul-
monary arteries [11], which are suggested to be O2 sen-
sor and effector cells of acute HPV [12]. Focusing on
these aspects, the transient receptor potential channel
(TRPC) 6 has recently been identified to be essential for
acute but not sustained HPV in mice [9]. In this regard
it is important to mention that HPV has repeatedly
been shown to consist of two phases. An acute phase
occurring within several minutes and a sustained phase
developing within more than 30 min of hypoxic ventila-
tion [12-17]. TRPC6 belongs to the TRPC3/6/7 subfam-
ily of TRP channels which can be activated by
diacylglycerol (DAG) [18], independently of protein
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kinase C [19,20]. Hypoxia induces an accumulation of
DAG in isolated pulmonary artery smooth muscle cells
(PASMC) [9].
We therefore hypothesize that DAG contributes also

to the regulation of acute HPV and that the DAG sig-
naling pathway involves TRPC6 in intact lungs.
DAG synthesis results from activation of G-protein

coupled receptors or receptor tyrosine kinases and subse-
quent activation of phospholipase C isoforms (PLCb or
PLCg) leading to hydrolysis of phosphatidylinositol 4,5-
bisphosphate (PIP2) [21]. The degradation of DAG is cat-
alyzed by DAG kinases to phosphatidic acid (PA) [22].

Materials and methods
Animals
All animal experiments were approved by the local
authorities. Adult C57/BL6 mice were obtained from
Charles River Laboratories (Sulzfeld, Germany). TRPC6
deficient (TRPC6-/-) mice were generated as described
previously [7]. Respective wild-type (WT) littermates
from this colony were used as controls.

Isolated lung perfusion and ventilation
The model of isolated, perfused mouse lungs has been
described previously [23]. Briefly, lungs were excised
under deep anesthesia, perfused with Krebs-Henseleit
buffer (pH 7.37-7.40) in a recirculating system, and ven-
tilated with a mixture of 21% O2, 5.3% CO2 and the bal-
ance N2 (normoxic ventilation). The pressure in the
pulmonary artery and in the left atrium was measured
by small diameter catheters.

Induction of acute vasoconstriction
Repetitive hypoxic maneuvers of 10-minute duration
interrupted by 15-min periods of normoxia were per-
formed. The effects of the various pharmacological
agents on pressure responses provoked by alveolar
hypoxia (1% O2, 5.3% CO2 and the balance N2) were
determined within such a sequence of repetitive
hypoxic maneuvers. 1% O2 was chosen for hypoxic
ventilation as this degree of hypoxia resulted in the
most prominent HPV as described before also for
other species [24]. Normoxic pulmonary arterial pres-
sure was quantified directly before each hypoxic venti-
lation maneuver.
To evaluate the specific role of the agents applied in

HPV intrinsic pathways, the effect on hypoxia-indepen-
dent vasoconstriction was determined, using the throm-
boxane mimetic U46619 [25]. In these experiments, the
ventilation remained normoxic, and the lungs were chal-
lenged with 4.5 nM U46619 (Paesel and Lorei, Duisburg,
Germany; 5.7 mM stock solution in DMSO), applied as
a bolus into the pulmonary arterial line. Such bolus
applications were repeated every 25 min.

The experiments with TRPC6-/- mice as well as their
WT controls were performed during continuous nor-
moxic ventilation.

Application of the agents
After the second hypoxic maneuver, the DAG analog
1-oleoyl-2-acetyl-sn-glycerol (OAG), the DAG kinase
inhibitor R59949, the PLC inhibitor U73122 or its inac-
tive form (U73343) were applied into the recirculating
perfusion medium 10 min prior to the next hypoxic or
U46619 challenge with a stepwise increasing dose. For
application stock solutions of OAG (50 mM; Sigma-
Aldrich, Steinheim, Germany) and R59949 (100 mM;
Calbiochem, Bad Soden, Germany) were prepared in
DMSO (Merck, Darmstadt, Germany). U73122 and
U73343 were dissolved in 96% Ethanol (Fischer, Saar-
brücken, Germany) with a stock concentration of 1 mM.
Control experiments were performed with the applica-

tion of the respective solvents alone.

The effect of the DAG kinase inhibitor R59949 on
sustained HPV
To investigate the effect of the DAG kinase inhibitor
R59949 on sustained HPV lungs were ventilated for
120 min with a hypoxic gas mixture (1% O2, 5.3% CO2

and the balance N2) and R59949 was added to the per-
fusate 10 min prior to the onset of hypoxia. R59949 was
applied in a concentration (10 μM) that inhibited acute
HPV by approximately 50%. To characterize a possible
sustained effect of R59949 on normoxic vascular tone
this agent was applied in an analog schedule but during
normoxic ventilation. Control experiments were carried
out with the application of the solvent only.

Analysis
The strength of acute HPV is given as the maximum
increase in pulmonary arterial pressure (ΔPAP), refer-
enced to the second hypoxic challenge (set at 100%).
Changes of the normoxic pulmonary arterial pressure
(ΔPAP) in these experiments were referenced to the
normoxic PAP directly before the second hypoxic man-
euver. The U46619 and normoxic experiments are dis-
played accordingly. For sustained HPV the increase in
pulmonary arterial pressure is given. All values are
expressed as means ± SEM (standard error of the
mean). Statistical analysis was performed using ANOVA
with the Student-Newman-Keuls post hoc test or Stu-
dent’s t-test with Welsh’s correction as appropriate. A
p-value < 0.05 was considered significant.

Results
OAG-induced activation of TRPC6 under normoxic conditions
To decipher a possible role for DAG in TRPC6 activa-
tion, the effect of the membrane-permeable analog of
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DAG, OAG, on pulmonary artery pressure was investi-
gated in TRPC6-/- and WT mice. As illustrated in Figure 1,
OAG increased PAP dose-dependently only in WT mice
but not in TRPC6-/- mice. PAP measured after the initial
steady state period was 9.9 ± 0.1 mmHg (n = 9) and was
not different between WT and TRPC6-/- mice.
To address the role played by DAG in acute HPV, the

effect of the DAG analog OAG as well as of inhibitors
of both PLC and DAG kinase on HPV and normoxic
vascular tone was assessed.

The effect of OAG on acute hypoxia-induced
vasoconstriction
In experiments with repetitive hypoxic ventilation man-
euvers, normoxic PAP, assessed prior to each repetitive
hypoxic challenge, was dose-dependently increased by
OAG (Figure 2A). In parallel with this increase, the
strength of HPV was diminished (Figure 2B). This effect
was specific for HPV, since vasoconstriction induced by
the thromboxane mimetic U46619 was not suppressed,
but was rather increased by OAG (Figure 2C).
PAP measured after the initial steady state period,

prior to the first vasoconstrictor provocation was 9.9 ±
0.1 mmHg (n = 20), and was not different between
experiments with OAG application and solvent alone.
Absolute ΔPAP values for the strength of HPV and
U46619-induced vasoconstrictions were calculated at
1.6 ± 0.2 mmHg (n = 10) and 2.0 ± 0.2 mmHg (n = 10).

The effect of the DAG kinase inhibitor R59949 on acute
hypoxia-induced vasoconstriction
As DAG is degraded by DAG kinases [22,26], the effect
of the DAG kinase inhibitor R59949 on normoxic PAP,

the strength of HPV, as well as U46619-induced vaso-
constrictions was investigated. As seen for OAG, the
DAG kinase inhibitor dose-dependently increased nor-
moxic PAP (Figure 3A). In parallel, the strength of HPV
was reduced by R59949 and was completely abolished at
25 μM (Figure 3B). The inhibitory effect was specific for
HPV, since R59949 caused no significant inhibition of
U46619-induced vasoconstrictions, but amplification at
higher concentrations (Figure 3C).

The effect of the PLC inhibitor U73122 on acute hypoxia-
induced vasoconstriction
As PLC catalyzes the production of DAG [27], the
impact of PLC on HPV was investigated by application
of the PLC inhibitor U73122. As expected, U73122 did
not significantly alter normoxic PAP. The same was true
for control experiments with the inactive form of the
PLC inhibitor (U73343) or the solvent of the PLC inhi-
bitor (Figure 4A). In contrast, U73122 dose-dependently
inhibited the strength of HPV (Figure 4B). However,
U46619-induced vasoconstrictions were also diminished
(Figure 4C). These effects were absent in experiments
with the inactive compound, or the solvent of the PLC
inhibitor applied alone.

The effect of the DAG kinase inhibitor R59949 on
sustained HPV
A single application of 10 μM R59949, a concentration
that inhibited acute HPV by approximately 50%, resulted
in a transient vasoconstriction under normoxic ventila-
tion. The maximum increase in PAP occurred after 18 ±
2 min (Figure 5a). Although this dosage still inhibited
acute HPV when hypoxic ventilation was performed 120
min after a single application of R59949 (data not
given), no sustained elevation of PAP was noted during
continuous normoxic ventilation: significant differences
in PAP in comparison to the solvent control could be
detected for time points ≤ 70 min only (Figure 5a). If
R59949 was applied prior to a 120 min period of
hypoxic ventilation, only the acute but not the sustained
phase of HPV was inhibited (Figure 5b).

Discussion
The major finding of this study is that the initiation of
acute HPV occurs via a DAG-mediated activation of
TRPC6 in mice.
Regarding the vascular effects of alveolar hypoxia, it

has previously been shown that these can be divided
into three phases, one occurring within seconds, a sec-
ond developing upon hypoxic ventilation of more than
20 min, and a third which includes a vascular remodel-
ing process, permanently decreasing the area of the vas-
cular lumen [12]. Although some heterogeneity as to the
kinetics of the first two phases has been described
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Figure 1 No effect of 1-oleoyl-2-acetyl-sn-glycerol (OAG) on
normoxic vascular tone in TRPC6-/- mouse lungs. The effect of
OAG was investigated in isolated wild-type and TRPC6-/- mouse
lungs. The OAG-induced vasoconstriction is represented as the
increase in pulmonary artery pressure (ΔPAP) during normoxic
ventilation. OAG was applied in increasing doses every 25 min. Data
are derived from n = 5 and n = 4 wild-type and TRPC6-/-mice,
respectively. * Significant differences compared to wild-type mice
(p < 0.05).
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Figure 2 1-oleoyl-2-acetyl-sn-glycerol (OAG) diminished HPV specifically. The effect of OAG as well as its solvent on the normoxic vascular
tone, the strength of HPV, and the strength of U46619-induced vasoconstriction was investigated in isolated wild-type mouse lungs. (A) Increase
in normoxic pulmonary arterial pressure (ΔPAP), assessed directly before each hypoxic ventilation maneuver. (B) Strength of HPV referenced to
the effect of the second hypoxic ventilation maneuver (= 100%). (C) Strength of the U46619-induced vasconstriction, referenced to the effect of
the second U46619 application (= 100%). Data are derived from n = 5 isolated lung preparations each. * Significant differences compared to
control experiments with application of the solvent only (p < 0.05).
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Figure 3 Diacylglycerol kinase inhibitor R59949 diminished HPV specifically. The effect of the diacylglycerol kinase inhibitor R59949 as well
as its solvent on the normoxic vascular tone, the strength of HPV, and the strength of U46619-induced vasoconstriction was investigated in
isolated wild-type mouse lungs. (A) Increase in normoxic pulmonary arterial pressure (ΔPAP), assessed directly before each hypoxic ventilation
maneuver. (B) Strength of HPV referenced to the effect of the second hypoxic ventilation maneuver (= 100%). Absolute values of HPV for the
second hypoxia maneuver prior to R59949 application were 0.7 ± 0.1 (n = 5). (C) Strength of the U46619-induced vasoconstriction, referenced to
the effect of the second U46619 application (= 100%). Data are derived from n = 5 isolated lung preparations each. * Significant differences
compared to control experiments with application of the solvent only (p < 0.05).
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Figure 4 Inhibitory effect of phospholipase C inhibitor U73122 on HPV and U46619-induced vasoconstriction. The effect of the active
(U73122) and inactive (U73343) form of phospholipase C inhibitor as well as their solvent on the normoxic vascular tone, the strength of HPV,
and the strength of U46619-induced vasoconstriction was investigated in isolated wild-type mouse lungs. (A) Increase in normoxic pulmonary
arterial pressure (ΔPAP), assessed directly before each hypoxic ventilation maneuver. (B) Strength of HPV referenced to the effect of the second
hypoxic ventilation maneuver (= 100%). (C) Strength of U46619-induced vasoconstrictions, referenced to the effect of the second U46619
application (= 100%). Data are derived from n = 5 isolated lung preparations each. * Significant differences compared to control experiments
with application of the solvent only (p < 0.05).
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[26,28-31], it was recently demonstrated that TRPC6 is
essential for the acute phase, but not the sustained or
chronic vascular effects in mice [9]. However, it has not
yet been clarified which pathway controls TRPC6 in
acute HPV. TRPC6 is a member of the DAG-sensitive
TRPC3/6/7 subfamily, which has been shown to
increase [Ca2+]i in a membrane-delimited fashion, inde-
pendently of protein kinase C [32]. TRPC6 is insensitive
to activation by inositol 1,4,5-trisphosphate at the cellu-
lar level [33]. As to the DAG-sensitive nature of TRPC6,

it was hypothesized that an increase in DAG induces
HPV via this channel. This hypothesis was derived from
previous findings in isolated PASMC that 1) hypoxia
causes an accumulation of DAG at the cell membrane
and that 2) the DAG kinase inhibitor causes an increase
in [Ca2+]i in these cells. In this study, it is documented
for the first time in intact lungs that the membrane-
permeable analog of DAG, OAG, induces a vasocon-
striction in WT mice which is mediated via TRPC6.
This can be concluded from the observation that the
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Figure 5 Inhibition of acute but not sustained HPV by the diacylglycerol kinase inhibitor R59949. The effect of the diacylglycerol kinase
inhibitor R59949 as well as its solvent on normoxic vascular tone and sustained HPV was investigated for a period of 120 min. (A) Increase in
normoxic pulmonary arterial pressure (ΔPAP) referenced to the value directly before R59949 application. For comparison changes in PAP are
given for normoxic lungs in the absence of R59949. (B) Strength of sustained HPV in the presence and the absence of R59949. Data are derived
from n = 8 isolated lung preparations each. * Significant differences compared to experiments in the absence of R59949 (p < 0.05).
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DAG-induced vasoconstriction was absent in TRPC6-/-

mice, although it has been previously demonstrated that
TRPC6-/- mice do not lack non-hypoxia-induced vaso-
constrictor responses [9]. The latter finding excludes a
general lack of vasocontractility in TRPC6-/- mice.
The central role of DAG in acute HPV was further

supported by the effects of the DAG analog OAG, as
well as the DAG kinase inhibitor and the phospholipase
C inhibitor. Along these lines, it has been shown that
DAG accumulation can be caused by inhibition of DAG
kinases [34] but also by activation of PLC [35].
OAG did not only induce a vasoconstrictor response

under normoxic conditions but also inhibited the subse-
quent acute HPV during hypoxia. Consistent with this
idea, an increase in cellular DAG levels by the applica-
tion of DAG kinase inhibitor [34] increased vasocon-
striction, but decreased the subsequent acute HPV.
Thus, both OAG and R59949 interfere with the same
signal transduction cascade inducing acute HPV and
therefore mimic this physiological response under nor-
moxic conditions. The fact that low doses of OAG
slightly increased the strength of HPV maybe is induced
by the supplementary effect of the exogenous OAG in
addition to the endogenous DAG produced by acute
hypoxia. The inhibition of HPV caused by OAG or
R59949 was specific for HPV as non-hypoxia-induced
vasoconstriction induced by U46619 was not inhibited
by either agent.
The notion that OAG-induced vasoconstrictions

under normoxia were somewhat higher than the
strength of HPV indicates, as expected, that DAG not
only specifically mediates hypoxia-induced vasoconstric-
tions but also contributes to non-hypoxia-induced vaso-
constrictions as previously shown for G protein coupled
receptors [36].
In contrast to those agents which mimic acute HPV or

increase DAG levels, the PLC inhibitor U73122 should
decrease intracellular DAG production [37] and thus
should suppress but not mimic HPV. As expected, while
not mimicking acute HPV, U73122 suppressed HPV. It
is unlikely that this effect is due to an unspecific inhibi-
tion of other signaling processes, because the inactive -
but structurally analogous - compound U73343 had no
effect on acute HPV. The fact, that U46619-induced
vasoconstrictions were also suppressed by the PLC but
not the DAG kinase inhibitor, supports the notion that
the thromboxane mimetic-induced vasoconstriction is
dependent on PLC without triggering the DAG-TRPC6-
axis. In this regard it was shown that activation of
thromboxane receptors can contribute to contraction of
bovine pulmonary arteries by depletion of intracellular
calcium stores and calcium entry via store-operated cal-
cium channels [38]. Besides a role of store-operated cal-
cium channels, U46619-induced contraction was also

shown to be dependent at least in part on calcium entry
through VOCC [35]. In this process, ROS-induced PKC
zeta activation inhibited voltage-gated potassium (Kv)
channel activity leading to membrane depolarization and
activation of VOCC [36,37]. Moreover, PKC can gener-
ally also be activated by DAG [38]. Triggering different
pathways, cell-compartmentalization, as well as some
synergism of the above pathways may explain the
increase of U46619-induced vasoconstrictions after
application of the DAG analog OAG. Thus, the
enhancement of U46619-induced vasoconstrictions, in
contrast to the inhibition of HPV, further supports the
specific role of DAG in acute HPV signaling. A com-
partmentalized effect of DAG regulation in HPV is
further supported by the fact that the DAG kinase inhi-
bitor R59449 did not amplify U46619-induced but selec-
tively inhibited HPV.
The fact that the DAG kinase inhibitor R59449 inhib-

ited only acute HPV but not sustained HPV and
mimicked only acute but not sustained HPV during nor-
moxic ventilation is well in line with our previous find-
ing that DAG-regulated TRPC6 channels are essential
for acute but not sustained HPV.
With regard to previous findings that acute HPV may

be regulated by reactive oxygen species [39-43], we
speculate that DAG levels activating TRPC6 can be
increased by a redox-dependent mechanism. This can
hypothetically be caused by a redox-dependent modula-
tion of e.g. DAG kinase activity. In addition to TRPC6,
it was shown that Kv channels are essential for acute
HPV [44,45]. Although our current study did not inves-
tigate a possible effect of the DAG-TRPC6-axis on the
closure of Kv channels in HPV, these two systems may
be linked via modulation of the cellular sodium concen-
tration as previously suggested [46]. This concept would
be in line with the lack of acute HPV recently described
in malonyl-CoA decarboxylase deficient mice, which
lack hypoxic mitochondrial ROS signaling and Kv chan-
nel inhibition [40].
The specific role of DAG in mediating acute HPV

shown in our isolated lung experiments (where the
endothelium is present) and in our previous study [9] in
isolated PASMC (where the increase in [Ca2+]i was used
as a readout for HPV) indicates that the oxygen sensing
process underlying HPV resides in the PASMC. This is
well in line with numerous previous findings [47-50]
and the notion expressed by others that acute HPV (in
contrast to sustained) is independent from the endothe-
lium [13,15,17,51]. This, however, does not exclude an
important role of the endothelium in modulating HPV,
though not contributing to oxygen sensing. This inter-
pretation is well in line with the finding by us and
others that isolated PASMC need to be “primed” by e.g.
endothelin-1 as a prerequisite for functional oxygen
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sensing [9,52-54] and allows the suggestion that a basic
stimulation of DAG production by G-protein coupled
receptors is a prerequisite for oxygen sensing and signal
transduction of acute HPV, occurring cell compartment-
specific by DAG kinase inhibition.

Conclusions
To summarize, DAG was identified as an important
mediator in the signaling pathway underlying acute
HPV. Moreover, these data indicate that DAG activates
TRPC6 as an essential step in the mechanism of acute
HPV.
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