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Abstract

Background: Chronic persistent asthma is characterized by ongoing airway inflammation and
airway remodeling. The processes leading to airway remodeling are poorly understood, and there
is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent
this process. We sought to investigate whether TGFf3, stimulates bronchial epithelial cells to
undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by
corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1(.

Methods: BEAS-2B and primary normal human bronchial epithelial cells were stimulated with
TGFp, and expression of epithelial and mesenchymal markers assessed by quantitative real-time
PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the
epithelial cells were also incubated with corticosteroids or IL- | 3. Results were analyzed using non-
parametric statistical tests.

Results: Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFj,
significantly reduced the expression level of the epithelial adherence junction protein E-cadherin.
TGFp, then markedly induced mesenchymal marker proteins such as collagen |, tenascin C,
fibronectin and a-smooth muscle actin mRNA in a dose dependant manner. The process of
mesenchymal transition was accompanied by a morphological change towards a more spindle
shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-
treatment did not significantly alter the TGFf, induced transition but IL- | 3 enhanced the transition.

Conclusion: Our results indicate, that TGFf, can induce mesenchymal transition in the bronchial
epithelial cell line and primary cells. Since asthma has been strongly associated with increased
expression of TGFf, in the airway, epithelial to mesenchymal transition may contribute to the
contractile and fibrotic remodeling process that accompanies chronic asthma.

Background [1]. Persistent asthma is characterized by structural
Asthma is a chronic inflammatory disease of the airway, = changes termed airway remodeling. This ongoing remod-
affecting approximately 10% of the general population  eling and reconstruction of the asthmatic lung includes
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subepithelial fibrosis, myofibroblast hyperplasia, myo-
cyte hyperplasia and/or hypertrophy, thickening of the
lamina reticularis, and increased smooth muscle mass [2].
The more rapid decline in lung function over time in asth-
matics is considered to be at least partly caused by this
remodeling process. While the impact of corticosteroid
treatment on airway remodeling is controversial, even
aggressive anti-inflammatory therapy with corticosteroids
does not appear to fully prevent remodeling and these
long term effects [3]. It is important, therefore, to under-
stand both the processes that contribute to remodeling in
asthma as well as the impact of corticosteroids on these
processes.

Myofibroblasts are considered a hallmark feature of the
remodeling process in asthma. They are a morphological
intermediate between fibroblasts and smooth muscle
cells, and display increased synthetic activity [4]. Histo-
logic examination of human asthmatic airways has
revealed the presence of myofibroblasts in the proximity
of both the smooth muscle layer and the lamina reticula-
ris [5,6]. Due to their highly synthetic nature they are
thought to contribute significantly to the thickening of the
airway basement membrane. Myofibroblasts also express
alpha-smooth muscle actin (aSMA), and therefore pos-
sess contractile properties similar to smooth muscle cells.
Furthermore, myofibroblasts have been proposed to be
capable of fully differentiating into smooth muscle cells
thereby contributing to the increased smooth muscle
mass observed in chronic asthma [7].

The origin of lung myofibroblasts has remained ill
defined. Classically, myofibroblasts were thought to arise
from the underlying fibroblast tissue [8,9]. Blood-circulat-
ing fibrocytes, which can home to the site of fibrotic tis-
sue, have also been proposed as a source of lung
myofibroblasts [10-12]. Recently, the hypothesis that
myofibroblasts arise from epithelial cells through epithe-
lial to mesenchymal transition (EMT) has been proposed
[13-15]. EMT is a process in which epithelial cells may
revert to synthetically active mesenchymal fibroblast-like
cells, and is recognized as a crucial component of normal
development [16]. In recent years it has been recognized,
initially in epithelial cancer, that mature epithelial cells
can undergo a second round of EMT, leading to a hyper-
active and invasive, motile cell type.

In tubular epithelial cells in the kidney, EMT can be
induced by TGFp,, leading to increased collagen deposi-
tion and disruption of the epithelial integrity [17]. TGFp,
is known to be expressed by a variety of inflammatory and
structural lung cells in asthma, and is also recognized to
be involved in lung fibrosis. Recent publications in the
field of idiopathic pulmonary fibrosis (IPF) also point to
the alveolar epithelium as a major contributor to fibrosis
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by undergoing EMT [13,15,18]. Studies employing the
cancer derived human alveolar epithelial cell line, A549,
have confirmed the ability of alveolar epithelial cells to
undergo EMT in vitro [14]. Less is known, however, regard-
ing the ability of human bronchial epithelial cells to
undergo EMT. In a recent study of obliterative bronchioli-
tis (OB) in chronic rejection of lung allografts, Ward et al.
[19] showed compelling evidence for EMT occurring in
bronchial airway epithelial cells in vivo, suggesting a link
between injury and remodeling. While there has been no
clear evidence that EMT occurs in patients with asthma,
Hackett et al. demonstrated that TGFp, induces EMT in
both normal and asthmatic primary bronchial epithelial
cells in vitro [20].

Although, the regulation of TGFB, in asthma remains
incompletely understood, many investigators have
reported increased TGFf, levels in asthma. Compared to
normal subjects, asthmatic subjects were found to have
elevated TGFB, levels in bronchoalveolar lavage (BAL)
fluid and bronchial biopsies [21,22]. The increase in
TGFpB; was shown to persist despite oral corticosteroid
treatment [22,23] and to correlate with basement mem-
brane thickness and fibroblast number [24].

We hypothesized that bronchial epithelial cells may also
undergo EMT during chronic asthmatic inflammation,
thereby providing an additional source for myofibrob-
lasts, and contributing to the remodeling process
observed in the asthmatic lung. Here we report evidence,
that TGFp, induces EMT in the bronchial epithelial cell
line BEAS-2B as well as in primary normal human bron-
chial epithelial cells (NHBE). We further demonstrate that
IL-1f may assist in EMT by initiating crucial changes in
protein expression pattern. Pre-treatment with corticoster-
oids inhibited some of the EMT changes but had no
impact on the majority of changes. Our findings suggest
that bronchial epithelial cells do undergo TGFp,-induced
EMT and synthesize matrix proteins, and that corticoster-
oid treatment does not completely prevent this process.
Bronchial epithelial cell EMT may thus be a significant
contributor to the contractile and fibrotic remodeling
process that accompanies chronic asthma.

Methods

Cell culture

Primary NHBE (Lonza, Wakersville, MD) and trans-
formed human bronchial epithelial cell line BEAS-2B
(CRL-9609; American Type Culture Collection, Manassas,
VA) were grown as monolayers in 100% humidity and 5%
CO, at 37°C in serum-free defined growth media (BEGM,
Lonza) or keratinocyte media (Invitrogen, Carlsbad, CA).
NHBEs were used on passage 2 or 3. NHBE and BEAS-2B
cells were seeded a day prior to starting the treatment at
~30-40% confluence in 6 well or 12 well plates, then stim-
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ulated with recombinant human TGFf; (R&D Systems,
Minneapolis, MN) and/or IL-1$ (R&D Systems, Minneap-
olis, MN) in complete medium at the indicated concentra-
tions or complete medium alone. Dexamethasone (10-
M) or budesonide (10-3M) (Sigma-Aldrich, St. Louis,
MO) were added to the medium 16 h before stimulation
with TGFB, (1 ng/ml). Medium with or without TGFj,
was changed every 2 days. The experiments were designed
so that the cells for all time points reached confluence one
day prior to harvesting. Cells were therefore seeded and
harvested at the same time, but the cytokines or corticos-
teroids were added at the appropriate times for the indi-
vidual time points. Cells were lysed in RLT buffer (Qiagen,
Valencia, CA) or RNA Stat 60 (Tel-Test, Friendswood, TX)
reagent respectively for RNA isolation or in protein lysis
buffer.

RNA isolation, reverse transcription and quantitative real-
time PCR

Total RNA was extracted as previously described [25]. The
ABI 7300 real-time PCR machine (Applied Biosystems,
Foster City, CA) was used for real-time quantitative PCR.
The specific primers and dual labeled probes (Biosearch
technologies, Novato, CA) used in the real-time PCR are
listed in Table 1. The starting amount of cDNA in the sam-
ples was calculated using the ABI software package
(Applied Biosystems, FosterCity, CA).

Protein isolation and immunoblotting

Protein isolation and immunoblotting were performed as
previously described [26] using 20 pg of total protein and
nitrocellulose membrane. Specific antibodies were used at
a dilution of 1:500 for the detection of oo SMA (mouse
anti-human clone 1A4, Sigma) or 1:1000 for E-cadherin
(rabbit anti-human, H-108, Santa Cruz Biotechnology
Inc., Santa Cruz, CA) or 1:500 for fibronectin (mouse

Table I: Real-time PCR primer and probe sequences
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anti-human ascites fluid, clone IST-4, Sigma), followed by
horseradish peroxidase (HRPO)-conjugated goat anti-rab-
bit or goat anti-mouse antibodies respectively. Immunob-
lotting for B-actin (specific IgM antibody, a gift from Dr Ed
Chan, Dept. of Molecular and Experimental Medicine,
TSRI, La Jolla, USA) was used as loading control.

Wound healing and invasion assay

BEAS-2B cells were seeded in 6-well plates and 16 h later
stimulated with 5 ng/ml TGFB, or complete medium
alone for 3 days. Wells were marked with a straight black
line on the bottom for orientation later. Cells were ~90%
confluent at the time of scratch wounding. Three scratch
wounds were applied in each well with a 200 ul pipette tip
and non-adherent cells washed off with medium. Fresh
medium with or without TGFp; was added to the wells
and cells were incubated for up to 48 h. Phase contrast
light microscope pictures were taken on an EVOS inverted
microscope from AMG immediately after scratch wound-
ing (0 h), at 24 h and 48 h. Pictures were aligned using the
orientation line to ensure that the identical spots were fol-
lowed over time. Experiments were conducted independ-
ently 3 times each in triplicate.

BEAS-2B cells were seeded in T25 flasks and stimulated for
4 days with or without TGFf; in complete medium. Cells
were harvested and seeded at 50.000 cells per well on
Matrigel™ coated inserts (24 well BioCoat™ Matrigel™
invasion chamber, 8 um pores, BD Bioscience) in com-
plete medium without adding TGFf,. After 24 h incuba-
tion, cells were swiped off the top of the inserts and cells
that penetrated the filters were stained with Protocol
Hema 3 (Fisher Diagnostics). The number of invasive cells
was determined by counting all cells attached to the bot-
tom of the inserts under a light microscope at 10x magni-

Target Sense primer (5' = 3') Antisense primer (5' = 3') Probe (5'FAM = 3'BHQ)
E-cadherin CCACCAAAGTCACGCTGAATAC GGAGTTGGGAAATGTGAGCAA CCATCAGGCCTCCGTTTCTGG
ao-SMA CTGGCATCGTGCTGGACTCT GATCTCGGCCAGCCAGATC ATGCCTTGCCCCATGCCATCA
Tenascin C CAGAAGCCGAACCGGAAGTT TTCATCAGCTGTCCAGGACAGA TGCCACCCCAGACGGTTTCC

Fibronectin-EDA  GAGCTATTCCCTGCACCTGATG

CGTGCAAGGCAACCACACT

TGCAAGGCCTCAGACCGGGTTC

Collagen | CCTCAAGGGCTCCAAC GGTTTTGTATTCAATCACTGTCTTGC ATGGCTGCACGAGTCACACCGGA
Vimentin GGAAGAGAACTTTGCCGTTGAA GTGACGAGCCATTTCCTCCTT CCAAGACACTATTGGCCGCCTG
B-actin TGCGTGACATTAAGGAGAAG GTCAGGCAGCTCGTAGCTCT CACGGCTGCTTCCAGCTCCTC
2-microglobulin - AGCGTCTCCAAAGATTCAG AGACACATAGCAATTCAGGA ACTCACGTCATCCAGCAGAGAATGG
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fication. Experiments were conducted independently 3
times each in triplicate.

Gelatin zymography for matrix metalloproteinases
expression

NHBE and BEAS-2B cells were stimulated with TGFp, (1
or 5 ng/ml) in complete media for up to 4 days without
changing the media. One ml of fresh media was added
after 2 days of stimulation. 20 pl of conditioned media
were subject to zymography as described elsewhere [17]
using buffers from Bio-Rad. Protein bands were visualized
according to the manufactures manual. Protein bands
appear white in blue background.

Immunofluorescence staining for E-cadherin

BEAS-2B cells were grown on rat tail-collagen I coated
glass coverslips (22 mm, BD Bioscience, Bedford, MA)
and stimulated with TGFB, (5 ng/ml) for 4 days as
described above. Coverslips were stained with mono-
clonal mouse anti-E-cadherin antibody (R&D Systems,
Minneapolis, MN) in a dilution of 1:200, followed by the
secondary antibody (goat anti-mouse conjugated with
Alexa488, Jackson ImmunoResearch Laboratories Inc.,
West Grove, PA) in a dilution of 1:300. As a negative con-
trol the primary antibody was omitted. Nuclei were
stained with 4',6-diamidino-2-phenylindole (DAPI)
(Sigma-Aldrich, St. Louis, MO) and coverslips mounted
with Fluoromount-G (Southern Biotech, Birmingham,
AL). Images were captured with an Olympus Fluoview
1000 laser scanning confocal microscope (Olympus BX61
microscope equipped with a x20/0.7 dry objective lens
and Fluoview acquisition software; Olympus, Tokyo,
Japan) and the two channels merged in the Olympus
Fluoview software.

Statistical Analysis

Data were analyzed by the non-parametric Kruskal-Wallis
one-way analysis of variance or non-parametric Mann-
Whitney U tests.

Results

TGF , induces morphological changes in bronchial
epithelial cells

Stimulation of the bronchial epithelial cells line BEAS-2B
with TGFp, induced a change of morphology consistent
with EMT (Figure 1). Cells stimulated with TGFp, devel-
oped a spindle fibroblast-like morphology with reduced
cell-cell contact, while cells in media alone maintained
the typical epithelial cobblestone pattern.

TGF | induces gene expression characteristic of EMT

EMT is defined by changes in gene expression in which
epithelial markers such as E-cadherin decrease while mes-
enchymal markers such as aSMA (a marker characteristic
for myofibroblasts) increase. BEAS-2B cells were stimu-
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Control

Figure |

Morphological changes induced by TGFf3,. BEAS-2B
cells were grown to 40% confluency in tissue culture plates
and stimulated with TGFf, (5 ng/ml) or complete medium
alone (control) for 3 days. Pictures were taken with bright
field illumination using a Leica DM IRB inverted microscope
equipped with a Hamamatsu digital camera and processed
with OpenlLab 3.1.7 image acquisition software.

lated with TGFfB; 5 ng/ml and E-cadherin and aSMA
expression quantified by quantitative real time PCR.
TGFp, significantly reduced E-cadherin mRNA levels
while simultaneously increasing expression of aSMA (Fig-
ure 2A).

We determined the minimal concentration of TGFp, suffi-
cient to induce EMT in BEAS-2B cells. Expression of E-cad-
herin and aSMA mRNA were determined after treating the
cells with TGF, in a dose range from 0.01 ng/ml to 10 ng/
ml. Concentrations as low as 0.1 ng/ml TGFj, were suffi-
cient to induce the phenotypic markers of EMT with the
maximal response at 1 ng/ml for both genes (Figure 2B).

To confirm these mRNA changes, we assessed the effects
of TGFp, on E-cadherin and aSMA protein levels in BEAS-
2B cells (Figure 3A). Immunoblotting of cell lysates dem-
onstrated that E-cadherin protein levels fell within 24 h of
incubation with TGFf,. While not normally expressed by
BEAS-2B cells, aSMA protein became detectable after 4
days of TGFp, treatment. The decrease in cell-cell contact
induced by TGFp, was also confirmed by immunofluores-
cence staining for E-cadherin that demonstrated a loss of
the grid-like localization of E-cadherin at the cell-cell con-
tact surface following TGFp, treatment (Figure 3B).

TGF | stimulates the expression of basement membrane
proteins relevant for fibrogenesis in epithelial cells
Asthma is accompanied by the thickening of the basement
membrane due to the excessive production of matrix pro-
teins typically synthesized by fibroblasts and myofibrob-
lasts, including collagen I and III as well as fibronectin-
EDA and tenascin C. Our results shown above suggested
that bronchial epithelial cells can transition into a mesen-
chymal-like phenotype upon TGFp,treatment and might
therefore contribute to deposition of excessive matrix pro-
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Expression changes of E-cadherin and aSMA in BEAS-2B cells upon TGFf, treatment. BEAS-2B cells were stimu-
lated with TGF3, or complete medium alone (control) in triplicate for the indicated time and doses. Total RNA was isolated and
assessed in triplicate for the expression of E-cadherin, oo SMA and B-actin by means of quantitative real-time PCR. Expression
levels were normalized to the housekeeping gene B-actin and calculated as mean level of induction in comparison to control

untreated cells. A: Time course: Beas-2B cells were stimulated with 5 ng/ml TGFp, from one to 5 days. (*p < 0.0l by Kruskal-
Wallis one-way ANOVA). B: Dose response: Beas-2B cells were treated with TGFf, from 0.001 ng to 10 ng/ml for 5 days (*p

< 0.05 compared to control by Mann-Whitney U test).

teins. Within 24 hrs following stimulation with TGFf,,
BEAS-2B cells demonstrated significant increases in the
mRNA expression of collagen I, fibronectin-EDA and
tenascin C (Figure 4A). Synthesis of fibronectin was also
measured at the protein level, and was found to be signif-
icantly increased by treatment with TGFp, (Figure 4B).

Expression of collagen III mRNA, unlike collagen I, was
not changed by TGFj, (data not shown).

TGF | stimulation increases migration, invasion and release
of MMP-2 and MMP-9 proteins

EMT has been linked to increased migration and invasive-
ness in the context of cancer [27,28] as well as in compli-
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E-cadherin/DAPI

Changes of E-cadherin and aSMA protein levels in BEAS-2B cells upon TGFf3, treatment. A: Cell lysates from
BEAS-2B cells, stimulated for the indicated time with TGFp, (5 ng/ml) or complete medium, were immunoblotted for E-cad-
herin or aSMA as described in Methods. Blots were stripped and rehybridized with an antibody to -actin. B: Immunofluores-
cent staining for E-cadherin in BEAS-2B cells stimulated with TGFf, (5 ng/ml) for 4 days or complete medium alone. The left
panel shows only the E-cadherin fluorescence (pseudocolor green) and the right panel the overlay with the DAPI fluorescence
(pseudocolor blue). Images were captured at a magnification of 20x. Results are representative of 3 separate experiments.

cations associated with lung transplants [19,29]. We
therefore first assessed the capability for migration of
BEAS-2B cells with or without TGFp, pre-treatment in a
scratch-wound healing assay. Cells pre-treated with TGFp,
for 3 days showed much higher motility and achieved
almost complete wound closure within 48 h in contrast to
untreated cells (Figure 5A). Next, we assessed the effect of
TGFB; on cell invasion. In an invasion assay utilizing
Matrigel™ coated cell inserts we observed up to 100%
increased invasion by cells pre-treated for 4 days with
TGFp,; in comparison to untreated cells (Figure 5B).

Since increased expression of matrix-metalloproteinases
has been observed in EMT and connected to enhanced cell
migration and invasiveness, we then assessed the expres-
sion of matrix-metalloproteinases (MMP), specifically

MMP2 and MMP9 by gelatin zymography. Supernatants
from unstimulated BEAS-2B cells showed a low basal level
of MMP2 protein, which was significantly up-regulated
within 24 h of TGFp, treatment (Figure 5C). MMP-9 pro-
tein levels were undetectable at baseline levels, but
increased by 48 h to 96 h of treatment. MMP-9 was
detected as a double band corresponding to the zymogen,
pro-MMP-9 protein, at 92 kDa and the cleaved mature
form at 86 kDa.

TGF , stimulation increases expression of EMT markers in
primary normal human bronchial epithelial cells

Since BEAS-2B cells are a transformed human bronchial
epithelial cell line, we then assessed whether primary
NHBE cells also undergo EMT in response to TGFp, (Fig-
ure 6 + 7). Preliminary dose response experiments
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Figure 4

TGFf, increases the expression of connective tissue
proteins in BEAS-2B cells. A: BEAS-2B cells were stimu-
lated with TGFp, (5 ng/ml) or complete medium alone (con-
trol) and the levels of fibronectin-EDA, collagen | and tenascin
C mRNA were analyzed by quantitative real-time PCR as
described in Fig 2A. (*p < 0.05 by Kruskal-WVallis one-way
ANOVA) B: Cell lysates from BEAS-2B cells, stimulated for
the indicated time with TGFp, (5 ng/ml) or complete
medium, were immunoblotted for fibronectin as described in
Methods. Blots were stripped and rehybridized with an anti-
body to B-actin.
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revealed that the NHBE cells were more sensitive to
TGFB,-induced apoptosis (data not shown). The TGFpB,
dose used in these experiments was therefore reduced
from 5 ng/ml to 2 ng/ml. Like the pattern observed in
BEAS-2B cells, TGF, induced a fall in E-cadherin and an
increase in aSMA mRNA (Figure 6A) in the NHBE cells as
well as the corresponding changes in the protein levels
(Figure 6B). TGFpB, stimulation of NHBE cells also
induced increased mRNA levels for fibronectin, tenascin C
and collagen 1 (Figure 7A), as well as increased MMP-2
and MMP-9 activities in the culture supernatant (Figure
7B). TGFB, induced an increase of vimentin mRNA in
NHBEs (Figure 7A), an effect that was not observed in
BEAS-2B cells. This difference in the expression profile
might be due to variances between primary cells and
transformed cell lines. Experiments were repeated using
NHBE derived from two different donors. Both donors
showed similar results with only minor variations in the
time course and magnitude of change in mRNA expres-
sion.

IL-1 reduces the expression of E-cadherin and enhances
the effects of TGF | on tenascin C expression

We then examined whether the proinflammatory
cytokine, IL-1f, could also induce EMT in bronchial epi-
thelial cells. BEAS-2B cells were stimulated for 3 days with
IL-1B, TGFB,, the combination of IL-1f plus TGFf,, or
media alone then assessed for evidence of EMT (Figure 8).
Similar to TGFp;, IL-1P induced a significant decrease in
E-cadherin expression and a significant increase in
tenascin C expression. Unlike TGFf, however, IL-1f had
no effect on the expression of aSMA or any of the other
basement membrane proteins assessed (data not shown).
When added together with TGFp,, IL-1B had a significant
additive impact on the decrease in E-cadherin and the
increase in tenascin C expression compared to adding the
cytokines individually. IL-1$ had no additional impact on
TGFB,-induced changes in aSMA or other basement
membrane proteins.

Corticosteroid pretreatment does not abrogate TGF
induced EMT

BEAS-2B cells were pretreated with dexamethasone or
budesonide for 16 h and subsequently stimulated with
TGFB, for 3 days. The dose of TGFp, used in these experi-
ments was reduced to 1 ng/ml in order to enhance our
ability to detect any corticosteroid effect. Analysis of the
EMT marker genes revealed, that corticosteroid treatment
had a variable but incomplete effect on TGFf,-induced
EMT (Figure 9). Corticosteroids did not substantially alter
TGFp,-mediated downregulation of E-cadherin mRNA or
upregulation of collagen I, fibronectin, or tenascin mRNA.
Budesonide and dexamethasone did, however, partially
abrogate TGFf, induced aSMA mRNA upregulation. To
confirm biologic activity of the corticosteroids, we deter-
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TGFf, increases migration and invasion of BEAS-2B cells. A: BEAS-2B cells pre-stimulated with TGF, (5 ng/ml) or
complete medium alone for 3 days, followed scratch wounding with a 200 ul pipette tip at ~90% confluence. Pictures of the
same area were taken under bright field illumination immediately after wounding (0 h) as well as 24 h and 48 h later. B: BEAS-
2B cells were pre-stimulated with TGFf, (5 ng/ml) or complete medium alone for 4 days, seeded on Matrigel coated inserts in
complete medium without the addition of TGFp, and incubated for 24 h. Epithelial cells, which had migrated through the
inserts were counted under light microscope at 10% magnification. The number of invading cells after TGFp, treatment were
normalized to the number of invading control untreated cells, which were set as 100%. Data are averaged from three inde-
pendent experiment each performed triplicate. (*p < 0.0001 compared to control by unpaired Wilcoxon-Mann-Whitney Rank
Sum Test). C: Conditioned media of BEAS-2B cells stimulated with TGFp, (5 ng/ml) or complete medium alone were subject
to gelatin-zymography. Experiments were conducted three times with similar results.

mined the protein levels of GILZ [25] at 30 h of treatment.
Dexamethasone and budesonide both potently upregu-
lated GILZ as we reported earlier (data not shown).

Discussion

Chronic asthma may be accompanied by an enhanced
rate of decline in lung function irrespective of anti-inflam-
matory treatment. These clinical observations have been
linked to structural changes in the asthmatic lung termed
airway remodeling [30-32]. The pathogenesis of airway
remodeling has been previously attributed to reactivation
of the epithelial-mesenchymal trophic unit in which
increased levels of TGFp, contribute to a state where hypo-
proliferative but activated epithelial cells induce activa-
tion of fibroblasts to myofibroblasts [33-35]. Although
TGEFB, functions as a master switch in tissue repair and
wound healing, there is substantial evidence that disor-
dered expression of TGFf, may lead to fibrosis [15,36,37].
Clinical studies indeed confirm evidence for epithelial
shedding and damage in the asthmatic airway, along with
elevated levels of TGFf, in asthmatic bronchoalveolar lav-
age fluid and airway tissue [21,24]. While not all studies
have found elevated TGFp, levels in the airways of asth-
matic subjects [38,39], the bulk of evidence suggests that
chronic asthmatic inflammation is accompanied by
increased activity of TGFp, in the airways [21-23].

By virtue of their synthetic and contractile phenotype,
myofibroblasts are considered to be a key cell type respon-
sible for the excessive extracellular membrane protein
deposition and increase in smooth muscle mass associ-
ated with remodeled airways [36,40]. The origin of the
lung myofibroblast, however, is still unclear. An unknown
percentage of lung myofibroblasts derive from activation
of tissue fibroblasts or homing of blood-borne fibrocytes
[11,41]. In addition, there is emerging evidence in kidney
fibrosis and IPF that TGFf,-driven EMT of tubular intersti-
tial epithelial cells and alveolar epithelial cells may repre-
sent a significant source of tissue myofibroblasts
[14,15,42,43]. TGFB,; has previously been shown to
induce EMT in the alveolar-type cancer cell line, A549
[14]. In addition, in vivo studies have suggested that EMT
may occur in IPF as well as in alveolar and bronchial epi-
thelial cells during bleomycin-induced pulmonary fibro-
sis [15,44,45].

Despite the accumulating evidence that EMT contributes
to fibrotic remodeling in several organs including the
lungs, there is little evidence that EMT occurs in bronchial
epithelial cells and no evidence that it plays a role in the
airway remodeling that accompanies chronic asthma. We
hypothesized that exposure of normal bronchial epithe-
lial cells to chronic TGFp, stimulation would cause them
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TGFp, increases the mRNA of EMT-marker proteins in primary human bronchial epithelial cells (NHBE). A:
NHBE cells were stimulated with TGFp, (2 ng/ml) or complete medium alone (control) for 3 days in triplicate. The levels of
aSMA and E-cadherin mRNA were analyzed by quantitative real-time PCR. Expression levels were normalized to the house-
keeping gene 2-microglobulin and calculated as fold induction in comparison to control. Results are representative of experi-
ments performed with 2 different donors. (*p < 0.05 compared to control by Mann-Whitney U test) B: Cell lysates from
NHBE cells, stimulated for the indicated time with TGFp, (2 ng/ml) or complete medium, were immunoblotted with for E-cad-
herin or aSMA. Blots were reprobed for B-actin as loading control.

to undergo EMT, potentially representing another source
of myofibroblasts involved in airway remodeling in
asthma. Here we report that BEAS-2B as well as primary
normal human bronchial epithelial cells show evidence of
EMT upon prolonged in vitro stimulation with TGFp;.

TGFp,-induced downregulation of the epithelial cell spe-
cific adherence junction protein E-cadherin at both the
mRNA and protein levels was the earliest effect we
observed, reaching near-maximal effect within 24 hours
of stimulation in BEAS-2B cells. The loss of cell-cell con-
tact has been shown to be a crucial first event in the
remodeling process in the kidney [17,46]. Masszi [47] et
al. further reported that the disruption of cell-cell contact
is a critical regulator for TGFf, induced EMT in kidney

cells. They suggest a two-hit mechanism in which both
TGFp, stimulation as well as initial epithelial injury are
required for the induction of EMT. This correlates with the
observation that in the asthmatic airway the integrity of
the epithelial layer is disrupted, which might therefore
facilitate the fibrogenic action of TGFp,. Further it has
been demonstrated that B-catenin, released from the
cytosolic portion of E-cadherin, can function as a tran-
scription factor in concert with the lymphoid enhancing
factor 1 (LEF1) and induces EMT in epithelial cell lines
[47-49].

Myofibroblasts release a variety of ECM proteins contrib-
uting to the thickening of the lamina reticularis, a key fea-
ture in the remodeling process of the lung. We found that
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TGFp, induces the expression of EMT-marker proteins and matrix-metalloproteinases in NHBE. A: NHBE cells
were stimulated with TGFp, (2 ng/ml) or complete medium alone (control) for one to 3 days in triplicate. The levels of fibronec-
tin-EDA, tenascin C, collagen | and vimentin mRNA were analyzed by quantitative real-time PCR as described in figure 5A.
Results are representative of experiments performed with 2 different donors. (*p < 0.05 compared to control by Mann-Whit-
ney U test) B: Conditioned supernatant of NHBE cells stimulated with TGFf, (5 ng/ml or | ng/ml) or complete medium alone
were subject to Zymography. Results are representative of 2 separate experiments performed with 2 different donors.
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Figure 8

IL-1B reduce the expression of E-cadherin and
enhances the effects of TGF[} on Tenascin C expres-
sion. BEAS-2B cells were stimulated with TGFf3, (0.1 ng/ml)
or IL-1B (I ng/ml) or both for 3 days in triplicate. Total RNA
was isolated and assessed in triplicate for the expression of
E-cadherin and Tenascin C by means of quantitative real-time
PCR. Expression levels were normalized to the housekeeping
gene [3-actin and calculated as mean level of induction in
comparison to control untreated cells. Results show mean +
standard error of 3 separate experiments, each in triplicate
(* p <0.0001 compared to control; } p < 0.02 compared to
TGFB, treated; §p < 0.0005 compared to IL-P treated; all by
Mann-Whitney U test).

TGFp, stimulates increased expression of extracellular
matrix proteins (fibronectin, collagen I and tenascin C) in
BEAS-2B cells. Stable expression of a myofibroblast phe-
notype in renal epithelial cells has been shown to depend
on both TGFp, and adherence signals [13,46,50,51]. In
this regard, TGFp, induced expression of fibronectin and
integrins appeared to be necessary for the subsequent
induction of the expression of aSMA in renal cells [51,52].

http://respiratory-research.com/content/10/1/100

Because EMT results in an increase in cell migration and
invasiveness, we assessed the migratory and invasive
capacity of TGFp, exposed BEAS-2B cells. We observed
both increased migration and enhanced invasiveness in
BEAS-2B cells subjected to chronic exposure to TGFf;,
similar to the results reported by Borthwick et al [29] of
epithelial cells undergoing EMT in the context of oblitera-
tive bronchiolitis (OB) following lung transplantation.
The acquisition of a more motile phenotype of bronchial
epithelial cells undergoing EMT might facilitate invasion
of the sub-epithelial layer with enhanced contribution to
the deposition of excess matrix proteins. Accompanying
the increased migratory and invasive phenotype, we also
observed elevated production and secretion of MMP-9
and MMP-2. MMP-2 and MMP-9 not only promote a
motile cell phenotype through matrix degradation but can
also activate latent TGFf3;. Induction of MMP-2 expression
has been reported to be an important step in kidney fibro-
sis by disrupting the basement membrane thereby facili-
tating the migration of epithelial derived myofibroblasts
into the interstitium [17]. Further, asthmatic patients have
increased immunoreactivity for MMP-9 in their airway
epithelium and submucosa [53,54]. Overexpression of
MMP-proteins could further contribute to airway remod-
eling in asthma by feeding into the cycle of excess produc-
tion and turn-over of matrix proteins. A correlation
between fibrosis in asthma and MMP-9 expression has
recently been demonstrated in a mouse model of chronic
asthma [55]. MMP-9 knockout mice showed a modest
reduction in fibrosis, although no effect on mucus pro-
duction or smooth muscle thickness was observed, sug-
gesting a restricted role of MMP-9 in airway remodeling.

Alpha smooth muscle actin is characteristically expressed
in myofibroblasts, enabling contractibility and an overall
more invasive motile cell type. We detected upregulation
of aSMA on the mRNA as well as protein level in BEAS-2B
by days 3 to 4. In a recent clinical study Larsen et al [56]
showed evidence for activated mobile fibroblasts in the
BAL fluid of mild asthmatics, which upon stimulation
with TGFp, produced more ECM proteins. These in vivo
data are consistent with our hypothesis that epithelial
cells undergo transition into myofibroblasts in the context
of asthma.

Our results using BEAS-2B cells show that TGFf, clearly
induces EMT in the transformed bronchial epithelial cell
line. Importantly, we also observed an almost identical
pattern of EMT following stimulation with TGFp, in pri-
mary normal human bronchial epithelial cells (NHBE).
These results establish that TGFp-induced EMT is not lim-
ited to alveolar epithelial cells but can also be induced in
normal human bronchial epithelial cells in wvitro. It is
important to note, however, that our experiments utilized
normal rather than asthmatic cells. Wound healing is part
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Corticosteroids do not completely prevent TGFp3, induced EMT. BEAS-2B cells were pretreated with dexamethasone
(dex, 107 M) or budesonide (bud, 10-8 M) for 16 hours followed by subsequent stimulation with TGF, (I ng/ml) for one or 3
days. mRNA expression levels were assessed by quantitative realtime PCR for E-cadherin (I day) and aSMA, collagen |,
fibronectin-EDA and tenascin C after 3 days. Results are representative of 3 separate experiments, each in triplicate. (*p < 0.05
compared to non-TGFp, stimulated controls by Mann-Whitney U test).

of the normal response of the epithelium to injury. In
asthma the chronic cycle of injury and repair is thought to
lead to the deregulation of factors involved, resulting in
airway remodeling [57]. Our observations further high-
light the possible functional consequences of EMT in both
physiologic wound healing as well as pathophysiologic
remodeling in the airway. We also studied cells cultured
under submerged conditions rather than at the air-liquid
interface. A recent report by Hackett et al. [20] did study
TGFp; induced EMT in both primary airway epithelial
cells from normal and asthmatic donors as well as grown
under submerged versus air-liquid interface conditions.
They observed no differences between normal and asth-
matic cells under submerged conditions. Under air-liquid
interface conditions, the only significant difference they
observed was that EMT was restricted to the basal cells in
normal cultures but was less restricted in asthmatic cul-
tures.

The inflammatory cytokine IL-1p is elevated in BAL fluid
of symptomatic asthmatics [58], and there is evidence for

a cross-talk between the TGFf, and IL-1f signaling path-
ways [59]. Furthermore, overexpression of IL-1p caused
emphysema and fibrosis in the airway walls in a murine
model of COPD [60] and IL-1f has been shown to induce
endothelial to mesenchymal transformation in skin [61].
Therefore, we assessed the impact of IL-1f on TGFf;-
induced EMT in BEAS-2B cells. By itself, IL-1f induced a
statistically significant decrease in E-cadherin expression
and a statistically significant increase in tenascin C expres-
sion. When added together with TGFf,, IL-1p had a signif-
icant additive effect on the changes in expression of these
genes. Considering the critical role decreased E-cadherin
plays in the initiation of EMT, the limited effect of IL-1B
may prove to be biologically significant. Our results are
compatible to the report by Kim et al. [62] showing syner-
gistic effects of TGFf; and IL-1f on the expression of mes-
enchymal markers in the A549 cancer cell line, without
evidence of induction of EMT by IL-1p alone.

Bronchial asthma is a chronic inflammatory disorder in

which corticosteroids have become the first line of ther-
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apy. Whereas multiple studies support the benefit of cor-
ticosteroid treatment in respect to asthma symptoms and
disease exacerbations [53,63], there is considerable uncer-
tainty concerning whether corticosteroids significantly
slow airway remodeling. Several clinical studies as well as
studies using murine models of allergic airway inflamma-
tion have suggested that corticosteroids reduce subepithe-
lial fibrosis [19,63-66]. Other clinical studies show
evidence for persistently elevated levels of TGFf, and per-
ibronchial fibrosis in the airway of asthmatic patients
despite the reduction of inflammatory cells following
treatment with corticosteroids [22,67].

We were therefore interested to test the impact of corticos-
teroids in our model of EMT. Preincubation of BEAS-2B
cells with dexamethasone or budesonide followed by
TGEFp, stimulation in a moderate concentration did not
prevent the morphological changes or influence the
reduction in E-cadherin expression. The effect on the
induction of ECM proteins was variable as we observed no
reduction of the TGFpB, induced expression of fibronectin-
EDA, and a slight reduction in the expression of collagen
I and tenascin C. Budesonide, but not dexamethasone,
inhibited TGFpB, induced aSMA expression. We did not
confirm the lack of efficacy of corticosteroids in abrogat-
ing EMT using primary airway epithelial cells, and this
will be important to do in future studies.

These data suggest that corticosteroid have only a modest
impact on TGFp,-induced EMT. This finding is consistent
with reports that while corticosteroid have proven to be
very beneficial in treating asthmatic inflammation, their
efficacy in preventing or reversing the remodeling process
may be limited. New therapy strategies may need to be
developed to target airway remodeling in asthma. TGFp,
has been proposed as a target using anti-sense oligonucle-
otide, pan specific neutralizing antibodies as well as
kinase inhibitors targeting TGF(, receptors. Anti-TGFp,
and TGFp, antibodies have been shown to be effective in
animal models of renal and ocular fibrosis and are cur-
rently in phase I/1II trials in humans (reviewed in [68]).

Conclusion

In summary, we show evidence that human bronchial epi-
thelial cells undergo EMT upon chronic TGFB, stimula-
tion, that IL-1B enhances TGFf;-induced EMT, and that
corticosteroids do not substantially abrogate these effects.
Additional studies are clearly needed to both confirm
these results in primary asthmatic airway epithelial cells
and address whether EMT occurs in vivo during asthmatic
inflammation. Based on our results we suggest that bron-
chial epithelial cells might be one source for myofibrob-
lasts in vivo in the asthmatic airway, thereby contributing
to airway remodeling.

http://respiratory-research.com/content/10/1/100
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