Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet. 2007;370(9589):765–73.
Article
PubMed
Google Scholar
Thomson NC. Asthma and smoking-induced airway disease without spirometric COPD. Eur Respir J. 2017;49(5):1602061.
Article
PubMed
Google Scholar
Comer DM, Kidney JC, Ennis M, Elborn JS. Airway epithelial cell apoptosis and inflammation in COPD, smokers and nonsmokers. Eur Respir J. 2013;41(5):1058–67.
Article
CAS
PubMed
Google Scholar
Garmendia J, Morey P, Bengoechea JA. Impact of cigarette smoke exposure on host-bacterial pathogen interactions. Eur Respir J. 2012;39(2):467–77.
Article
CAS
PubMed
Google Scholar
Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol. 2002;2(5):372–7.
Article
CAS
PubMed
Google Scholar
Regan AK, Promoff G, Dube SR, Arrazola R. Electronic nicotine delivery systems: adult use and awareness of the 'e-cigarette' in the USA. Tob Control. 2013;22(1):19–23.
Article
PubMed
Google Scholar
Kalkhoran S, Glantz SA. E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir Med. 2016;4(2):116–28.
Article
PubMed
PubMed Central
Google Scholar
Rowell TR, Tarran R. Will chronic e-cigarette use cause lung disease? Am J Physiol Lung Cell Mol Physiol. 2015;309(12):L1398–409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orellana-Barrios MA, Payne D, Mulkey Z, Nugent K. Electronic cigarettes-a narrative review for clinicians. Am J Med. 2015;128(7):674–81.
Article
PubMed
Google Scholar
Jankowski M, Broek G, Lawson J, Skoczyaki S, Zejda JE. E-smoking: emerging public health problem? Int J Occup Med Environ Health. 2017;30(3):329–44.
PubMed
Google Scholar
Hartmann-Boyce J, McRobbie H, Bullen C, Begh R, Stead LF, Hajek P. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev. 2016;9:CD010216.
PubMed
Google Scholar
Bals R, Boyd J, Esposito S, Foronjy R, Hiemstra PS, Jiménez-Ruiz CA, et al. Electronic Cigarettes – Task Force report from the European Respiratory Society. Eur Respir J. 2019;53:1801151
Article
CAS
PubMed
Google Scholar
Layden JE, Ghinai I, Pray I, Kimball A, Layer M, Tenforde M, et al. Pulmonary Illness Related to E-Cigarette Use in Illinois and Wisconsin — Preliminary Report. N Engl J Med. 2019; Epub ahead of print.
Faner R, Sibila O, Agusti A, Bernasconi E, Chalmers JD, Huffnagle GB, et al. The microbiome in respiratory medicine: current challenges and future perspectives. Eur Respir J. 2017;49(4). https://doi.org/10.1183/13993003.02086-2016.
Article
PubMed
Google Scholar
Einarsson GG, Comer DM, McIlreavey L, Parkhill J, Ennis M, Tunney MM, et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax. 2016;71(9):795–803.
Article
CAS
PubMed
Google Scholar
Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One. 2011;6(2):e16384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Comer DM, Elborn JS, Ennis M. Comparison of nasal and bronchial epithelial cells obtained from patients with COPD. PLoS One. 2012;7(3):e32924.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miles AA, Misra SS, Irwin JO. The estimation of the bactericidal power of the blood. J Hyg (Lond). 1938;38(6):732–49.
CAS
Google Scholar
Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891–9.
Article
PubMed
Google Scholar
Insua JL, Llobet E, Moranta D, Pérez-Gutiérrez C, Tomás A, Garmendia J, et al. Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth galleria mellonella. Infect Immun. 2013;81(10):3552–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harding CR, Schroeder GN, Collins JW, Frankel G. Use of Galleria mellonella as a model organism to study Legionella pneumophila infection. J Vis Exp. 2013;81:e50964.
Google Scholar
Cervellati F, Muresan XM, Sticozzi C, Gambari R, Montagner G, Forman HJ, et al. Comparative effects between electronic and cigarette smoke in human keratinocytes and epithelial lung cells. Toxicol in Vitro. 2014;28(5):999–1005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lerner CA, Sundar IK, Yao H, Gerloff J, Ossip DJ, McIntosh S, et al. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung. PLoS One. 2015;10(2):e0116732.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schweitzer KS, Chen SX, Law S, Van Demark M, Poirier C, Justice MJ, et al. Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures. Am J Physiol Lung Cell Mol Physiol. 2015;309(2):L175–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sussan TE, Gajghate S, Thimmulappa RK, Ma J, Kim JH, Sudini K, et al. Exposure to electronic cigarettes impairs pulmonary anti-bacterial and anti-viral defenses in a mouse model. PLoS One. 2015;10(2):e0116861.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahmad S, Zafar I, Mariappan N, Husain M, Wei C-C, Vetal N, et al. Acute pulmonary effects of aerosolized nicotine. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L94–L104.
Article
PubMed
Google Scholar
McCarthy M. “Alarming” rise in popularity of e-cigarettes is seen among US teenagers as use triples in a year. BMJ. 2015;350:h2083
Article
PubMed
Google Scholar
Eaton DL, Kwan LY, Stratton K. National Academies of sciences, engineering, and medicine; health and medicine division; board on population health and public health practice; committee on the review of the health effects of electronic nicotine delivery systems: public health consequences of E-cigarettes. 2018.
Bayly JE, Bernat D, Porter L, Choi K. Secondhand exposure to aerosols from electronic nicotine delivery systems and asthma exacerbations among youth with asthma. Chest. 2019;155(1):88–93.
Article
PubMed
Google Scholar
Dickson RP, Erb-Downward J, Huffnagle GB. The role of the bacterial microbiome in lung disease. Expert Rev Respir Med. 2013;7(3):245–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;22:2355–65.
Article
Google Scholar
Ishak A, Everard ML. Persistent and recurrent bacterial bronchitis-a paradigm shift in our understanding of chronic respiratory disease. Front Pediatr. 2017;5:19.
Article
PubMed
PubMed Central
Google Scholar
Kulkarni R, Caskey J, Singh SK, Paudel S, Baral P, Schexnayder M, et al. Cigarette smoke extract–exposed methicillin-resistant Staphylococcus aureus regulates leukocyte function for pulmonary persistence. Am J Respir Cell Mol Biol. 2016;55(4):586–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antunes MB, Chi JJ, Liu Z, Goldstein-Daruech N, Palmer JN, Zhu J, et al. Molecular basis of tobacco-induced bacterial biofilms. Otolaryngol Head Neck Surg. 2012;147(5):876–84.
Article
PubMed
Google Scholar
McEachern EK, Hwang JH, Sladewski KM, Nicatia S, Dewitz C, Mathew DP, et al. Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun. 2015;83(6):2443–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulkarni R, Antala S, Wang A, Amaral FE, Rampersaud R, Larussa SJ, et al. Cigarette smoke increases Staphylococcus aureus biofilm formation via oxidative stress. Infect Immun. 2012;80(11):3804–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mutepe ND, Cockeran R, Steel HC, Theron AJ, Mitchell TJ, Feldman C, et al. Effects of cigarette smoke condensate on pneumococcal biofilm formation and pneumolysin. Eur Respir J. 2013;41(2):392.
Article
CAS
PubMed
Google Scholar
Cockeran R, Herbert JA, Mitchell TJ, Dix-Peek T, Dickens C, Anderson R, et al. Exposure of a 23F serotype strain of Streptococcus pneumoniae to cigarette smoke condensate is associated with selective upregulation of genes encoding the two-component regulatory system 11 (TCS11). Biomed Res Int. 2014;4:976347.
Google Scholar
Goldstein-Daruech N, Cope EK, Zhao K, Vukovic K, Kofonow JM, Doghramji L, et al. Tobacco Smoke Mediated Induction of Sinonasal Microbial Biofilms. PLoS One. 2011;6(1):e15700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Semlali A, Killer K, Alanazi H, Chmielewski W, Rouabhia M. Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression. BMC Microbiol. 2014;14:61 2180-14-61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bagaitkar J, Demuth DR, Daep CA, Renaud DE, Pierce DL, Scott DA. Tobacco upregulates P. gingivalis fimbrial proteins which induce TLR2 hyposensitivity. PLoS One. 2010;5(5):e9323.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang R, Li M, Ye M, Yang K, Xu X, Gregory RL. Effects of nicotine on Streptococcus gordonii growth, biofilm formation, and cell aggregation. Appl Environ Microbiol. 2014;80(23):7212–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs BB, O'Brien E, Khoury JB, Mylonakis E. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence. 2010;1(6):475–82.
Article
PubMed
Google Scholar
Brennan M, Thomas DY, Whiteway M, Kavanagh K. Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol. 2002;34(2):153–7.
Article
CAS
PubMed
Google Scholar
Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol. 2000;182(13):3843–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shapiro SD. End-stage chronic obstructive pulmonary disease: the cigarette is burned out but inflammation rages on. Am J Respir Crit Care Med. 2001;164(3):339–40.
Article
CAS
PubMed
Google Scholar
Le Rouzic O, Konak B, Kluza J, Marchetti P, Hennegrave F, Olivier C, et al. Cigarette smoke alters the ability of human dendritic cells to promote anti-Streptococcus pneumoniae Th17 response. Respir Res. 2016;17(1):94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pichavant M, Sharan R, Le Rouzic O, Olivier C, Hennegrave F, Rémy G, et al. IL-22 Defect During Streptococcus pneumoniae Infection Triggers Exacerbation of Chronic Obstructive Pulmonary Disease. EBioMedicine. 2015;2(11):1686–96.
Article
PubMed
PubMed Central
Google Scholar
Hwang JH, Lyes M, Sladewski K, Enany S, McEachern E, Mathew DP, et al. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria. J Mol Med. 2016;94(6):667–79.
Article
CAS
PubMed
Google Scholar
Holgate ST, Lackie PM, Davies DE, Roche WR, Walls AF. The bronchial epithelium as a key regulator of airway inflammation and remodelling in asthma. Clin Exp Allergy. 1999;29:90–5.
Article
PubMed
Google Scholar
Adcock IM, Barnes PJ. Molecular mechanisms of corticosteroid resistance. Chest. 2008;134(2):394–401.
Article
CAS
PubMed
Google Scholar
Robinson RJ, Hensel EC, Roundtree KA, Difrancesco AG, Nonnemaker JM, Lee YO. Week long topography study of young adults using electronic cigarettes in their natural environment. PLoS One. 2016;11(10):e0164038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spindle TR, Breland AB, Karaoghlanian NV, Shihadeh AL, Eissenberg T. Preliminary Results of an Examination of Electronic Cigarette User Puff Topography: The Effect of a Mouthpiece-Based Topography Measurement Device on Plasma Nicotine and Subjective Effects. Nicotine Tob Res. 2014;17(2):142–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ghosh A, Coakley RC, Mascenik T, Rowell TR, Davis ES, Rogers K, et al. Chronic E-cigarette exposure alters the human bronchial epithelial proteome. Am J Respir Crit Care Med. 2018;198(1):67–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clapp PW, Lavrich KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I. Cinnamaldehyde in flavored E-cigarette liquids temporarily suppresses bronchial epithelial cell Ciliary motility by Dysregulation of mitochondrial function. Am J Phys Lung Cell Mol Phys. 2019;316(3):L47–L486.
Google Scholar