F(E(P))." In both groups the inequality applied, since F(P) defines volume in the Venegas equation and (P) pressure and the range of VTs varied within the convex interval for individual P-V curves. Over 5 hrs, there were no significant differences between groups in minute ventilation, airway pressure, blood gases, haemodynamics, respiratory compliance or IL-8 concentrations. Conclusion No difference between groups is a consequence of BVV occurring on the convex interval for individualised Venegas P-V curves in all experiments irrespective of group. Jensen's inequality provides theoretical proof of why a variable ventilatory approach is advantageous under these circumstances. When using BVV, with VT centred by Venegas P-V curve analysis at the point of maximal compliance change, some leeway in low VT settings beyond ARDSNet protocols may be possible in acute lung injury. This study also shows that in this model, the standard ARDSNet algorithm assures ventilation occurs on the convex portion of the P-V curve."/>
Frequency Distribution Curves for Tidal Volume for the Two Groups. Frequency distribution curves of VT for each group calculated in bins of 0.5 mL/kg. The VT bins are represented on the x-axis and the percentage of all VTs from each group in each bin is represented on the y-axis. Control = solid diamonds. Experimental = open squares.