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Abstract
Background Although electronic nose (eNose) has been intensively investigated for diagnosing lung cancer, cross-
site validation remains a major obstacle to be overcome and no studies have yet been performed.

Methods Patients with lung cancer, as well as healthy control and diseased control groups, were prospectively 
recruited from two referral centers between 2019 and 2022. Deep learning models for detecting lung cancer with 
eNose breathprint were developed using training cohort from one site and then tested on cohort from the other site. 
Semi-Supervised Domain-Generalized (Semi-DG) Augmentation (SDA) and Noise-Shift Augmentation (NSA) methods 
with or without fine-tuning was applied to improve performance.

Results In this study, 231 participants were enrolled, comprising a training/validation cohort of 168 individuals (90 
with lung cancer, 16 healthy controls, and 62 diseased controls) and a test cohort of 63 individuals (28 with lung 
cancer, 10 healthy controls, and 25 diseased controls). The model has satisfactory results in the validation cohort 
from the same hospital while directly applying the trained model to the test cohort yielded suboptimal results (AUC, 
0.61, 95% CI: 0.47─0.76). The performance improved after applying data augmentation methods in the training 
cohort (SDA, AUC: 0.89 [0.81─0.97]; NSA, AUC:0.90 [0.89─1.00]). Additionally, after applying fine-tuning methods, 
the performance further improved (SDA plus fine-tuning, AUC:0.95 [0.89─1.00]; NSA plus fine-tuning, AUC:0.95 
[0.90─1.00]).

Conclusion Our study revealed that deep learning models developed for eNose breathprint can achieve cross-site 
validation with data augmentation and fine-tuning. Accordingly, eNose breathprints emerge as a convenient, non-
invasive, and potentially generalizable solution for lung cancer detection.

Clinical trial registration This study is not a clinical trial and was therefore not registered.
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Introduction
Lung cancer remains a predominant cause of cancer-
related mortality worldwide, accounting for an estimated 
2.2 million new cases and 1.8 million deaths in 2020 [1]. 
In its early stages, lung cancer often presents no symp-
toms, making it challenging to detect during routine 
health examinations. Although low-dose computed 
tomography (CT) of chest has been employed for lung 
cancer screening to facilitate earlier diagnosis and reduce 
mortality, a significant number of lung cancer patients 
remain undiagnosed until the disease has advance [2]. 
Furthermore, low-dose CT of chest has its limitations, 
including high cost, radiation exposure, and limited avail-
ability in many clinics. Consequently, there is a pressing 
need for a non-invasive, cost-effective, and readily acces-
sible screening tool for early detection of lung cancer.

Electronic nose (eNose) is a novel device using sensors 
to generate breathprints that reflect patterns of volatile 
organic compounds [3]. eNose has the advantage of being 
non-invasive, easy to operate, short turnaround time and 
point-of-care. eNose has been applied in diagnosis of 
various diseases, encompassing communicable diseases 
such as COVID-19, tuberculosis and non-communicable 
diseases including diabetes and cancer. eNose has also 
been investigated in lung cancer diagnosis and treatment 
monitoring in previous studies.

Earlier studies evaluating eNose in lung cancer detec-
tion were mainly single center and compare between 
lung cancer and healthy control [4]. Previous studies 
also have shortcomings of lack of validation, especially 
cross-site validation [5]. While breathomics are prone 
to change in environment, external validation remains a 
major obstacle to clinical application. While more recent 
studies usually include a multicenter design of recruiting 
participants, cross site and independent validation were 
still not readily available [6, 7].

On the other hand, algorithms for eNose breathprint 
analysis is also in evolution [8]. Deep learning involving 
convoluted neural network (CNN) is novel and emerging 
technique for breathprint analysis [8, 9]. Some analytic 
approaches such as transfer learning and data augmen-
tation have been applied in other aspects of biomedical 
imaging researches [10]. These methods could potentially 
propagate sample size, enhance performance and ame-
liorate the drop of performance in domain shift [11, 12]. 
Most eNose studies have not yet incorporated this into 
analytic methods of eNose breathprint for lung cancer 
identification.

This study, therefore, aimed to validate eNose breath-
print for lung cancer diagnosis in a cross-site setting 
with deep learning techniques including data augmen-
tation and fine-tuning incorporated into the analytic 
methods. We aimed to expand generalizability of eNose 

breathprint in lung cancer diagnosis and advance eNose 
further in clinical practice.

Methods
Patient selection and study setting
This study was conducted prospectively at two facili-
ties: the National Taiwan University Hospital (NTUH; 
test cohort, S2, site 2) and its Hsin-Chu branch (NTUH-
HC; training/validation cohort, S1, site 1), both of which 
are referral centers for individuals with lung cancer and 
lung cancer suspects in Taiwan. The NTUH, a 2300-bed 
medical center in northern Taiwan, and the NTUH-HC, 
a regional hospital located 60  km away with a 700-bed 
capacity, have actively participated in eNose breath-
print studies. The personnel at these institutions are 
well-acquainted with the eNose collection process and 
equipment operation. The institutional review boards 
(IRB) of participating hospitals approved this study (IRB 
no. 202112057RINB, 108-011-E). Inform consent was 
obtained from all participants who agreed to participate 
in this study.

For this study, we enlisted participants from three 
groups: individuals diagnosed with lung cancer, healthy 
controls, and diseased controls with either structural 
lung diseases confirmed on chest CTs or spirometry-con-
firmed chronic obstructive pulmonary disease. We con-
firmed the absence of lung cancer in the diseased control 
group through chest CT imaging and follow-up evalua-
tions. During a two-year follow-up period, all control 
participants, encompassing both healthy and diseased 
controls, remained free from lung cancer.

Definition of diseases and data collection
For lung cancer patients, pathological confirmation was 
required for establishing the diagnosis. The stage was 
classified according to the 8th edition of the Ameri-
can Joint Committee on Cancer staging system for lung 
cancer [13]. We collected the data from a prospectively 
maintained database and medical records. Comorbidities 
included chronic obstructive pulmonary disease (COPD), 
asthma, diabetes mellitus (DM), and end-stage renal dis-
ease (ESRD). For healthy participants, a screening inter-
view was performed to exclude underlying lung diseases 
and smoking habits. Chest x-rays of healthy participants, 
if available, were also reviewed to exclude structural lung 
disease. For diseased controls, participants must have 
either structural lung diseases confirmed on chest com-
puted tomography or spirometry-confirmed chronic 
obstructive pulmonary disease.

Breath sample collection
The breath sample collection process has been described 
in our previous study [9]. Briefly, the breath sampling sys-
tem included a one-way VBMax™ filter and two one-litre 
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multi-layer foil gas sampling bags. Participants fasted 
for 4 h and avoided smoking and alcohol before testing. 
Each individual took a deep breath, then used the blow-
to-breath sampling system connected to two Robert 
Clamps: the first collecting dead space air (not analyzed) 
and the second collecting end-tidal breath for analysis.

Breath analysis using eNose
The eNose system, developed by SEXTANT (Enosim Bio-
Tech Co., Ltd., Hsinchu City, Taiwan), builds upon previ-
ous work and incorporates a total of 14 metal-oxide gas 
sensors. This system, which also includes flow meters 
and temperature and humidity sensors, is designed to 
work seamlessly with the necessary interface circuits. 
Leveraging Metal-Oxide-Semiconductor (MOS) gas 
sensors sourced from Figaro USA, Inc. and Nissha FIS, 
Inc., the SEXTANT system operates based on oxida-
tion-reduction sensing mechanisms. These sensors have 
been enhanced with different materials to optimize both 
selectivity and sensitivity in detecting various gases [9]. 
A video describing the process of breath analysis using 
eNose is also available as Additional File 1: Supplemen-
tary Video.

CNN model construction
For eNose breathprint, we first pre-processed the raw 
data of eNose into 14-channel 16 × 16 images and use a 
parallelizable calculation model, the convolution neural 
network, as the training model. We chose the rectified 
linear units (ReLUs) as the activation function to improve 
the training speed, and applied three layers of CNN to 
extract binary output from input images. Positive and 
negative outputs refer to whether this patient has lung 
cancer or not, respectively. The structure of CNN is 
shown in Additional File 2: Figure S1

Data augmentation and fine-tuning
In this study, we applied two methods of data augmen-
tation including Semi-supervised Domain General-
ized (Semi-DG) Augmentation (SDA) and Noise-Shift 
Augmentation (NSA) methods. In SDA, Fourier trans-
formation was applied and while in the NSA, we added 
Gaussian noise to the breathprint and performed a back-
ward shift operation [14–17]. The detailed techniques 
of data augmentation were described in Additional 
File 3: Supplementary File, Additional File 4: Figure S2 
and Additional File 5: Figure S3. We augmented eNose 
breathprint at an 1:1 ratio.

For fine-tuning, we first trained the model on the 
training cohort to obtain the initial weight of the model. 
Then, we used 10 test cohort to fine-tune the model to 
obtain new model weights. We chose to fine-tune our 
dataset using 10 samples based on our previous study, 
where we aimed to use a small proportion of our dataset, 
approximately 10–20% of the samples, for tuning [18]. 
We also conducted another analysis using 20 samples 
but observed only marginal improvement in the results. 
Additionally, data used for fine-tuning were separated 
from the test data and not used for testing.

Dataset definition and analytic flow
The training cohort was divided at 7:3 ratio, with 70% 
used for model training and the remaining 30% for model 
validation, according to time frame of recruitment. 
For the analysis, data augmentation (at a 1:1 ratio) was 
applied to the training portion. After training and valida-
tion, the model was tested with or without fine-tuning 
on the test dataset. The rest of the test dataset served to 
evaluate the model’s performance. The detailed process 
was described in Fig. 1.

Fig. 1 Flowchart and analytic flow. CNN, convoluted neural network; NSA, noise-shift augmentation; SDA, semi-supervised domain generalized 
augmentation
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Statistical analysis
All variables were presented as either numbers (percent-
ages) or as the mean ± standard deviation, depending on 
their nature. For categorical variables, the chi-square 
test was employed. For continuous variables, either 
the student’s t-test or the one-way analysis of variance 
(ANOVA) was used for comparison. To evaluate the 
model’s performance, we assessed accuracy, sensitivity, 
and specificity. Additionally, the area under the receiver 
operating characteristic (AU-ROC) curves were con-
structed to showcase the model’s performance. Con-
fidence intervals (CI) were provided for analysis using 
the bootstrapping procedure. For the machine learning 
method, we used the scikit-learn package (version 0.23.2) 
in Python (version 3.8.5). All p-values were two-sided, 
with statistical significance set at p < 0.05.

Results
Demographics of participants
A total of 231 participants were enrolled (168 in the 
training/validation cohort (Site 1, National Taiwan Uni-
versity Hospital Hsin-Chu branch cohort) and 63 in the 
test cohort (Site 2, National Taiwan University Hospital 
cohort)). Table  1. describes the demographic data of all 
participants in the training, validation and test cohort. 
In the training cohort (S1), there were 70 (59.3%) lung 
cancer patients and 48 (33.9%) non-lung cancer control 
subjects (including 10 healthy control and 38 diseased 
control). In the validation cohort (S1), there were 20 
(40%) lung cancer and 30 (60%) control subjects (includ-
ing 6 healthy control and 24 diseased control). On the 
other hand, there were 28 (44.4%) lung cancer and 35 
(55.6%) non lung cancer patients (including 10 healthy 
control and 25 diseased control) in the test cohort (S2).

In the training cohort, the smoking status were dif-
ferent between the lung cancer and control subjects. In 
the validation test, the demographic data were similar 
between the lung cancer and control subjects. In the test 
cohort, there is a slight female preponderance not reach-
ing statistical significance in the lung cancer subjects 
compared with the control subjects (Table 1).

For the lung cancer patients in training/validation 
cohort, 70 (77.8%) were adenocarcinoma, 12 (13.3%) 
were squamous cell carcinoma, 4 (4.4%) were small cell 
lung cancer while 4 (4.4%) were other histology type. 
In the test cohort, 15 (53.6%) were adenocarcinoma, 4 
(14.3%) were squamous cell carcinoma, 4 (14.3%) were 
small cell lung cancer while 5 (17.9%) were other his-
tology type. The distribution of histology type was dif-
ferent in the training/validation cohort and test cohort 
(p = 0.0165). For cancer stage, the two cohorts were not 
different (p = 0.5444) while the majority was stage IV can-
cer patients (Additional File 3: Table S1).

eNose breathprints PCA
Figure 2 illustrates the PCA plots of breathprints in this 
study. Breathprints from the two individual sites were 
distinct. Within each site, the breathprints of both the 
lung cancer and non-lung cancer groups were inter-
spersed and scattered.

Performance of eNose
In the validation cohort (S1), the performance of eNose 
achieved an AUC of 0.89 (95% CI:0.84─0.93) with sen-
sitivity of 0.90 (95% CI:0.85─0.95) and specificity of 
0.83 (95% CI:0.73─0.87). While applying to the test 
cohort (S2), the performance was suboptimal with an 
AUC of 0.61 (95% CI:0.47─0.76), sensitivity of 0.43 (95% 
CI:0.36─0.50), specificity 0.43 (95% CI:0.37─0.54). With 
SDA, the AUC improved to 0.89 (95% CI: 0.81─0.97) with 
sensitivity of 0.82 (95% CI: 0.75─0.86) and specificity of 
0.69 (95% CI: 0.60─0.80). With NSA, the AUC improved 
to 0.90 (95% CI: 0.83─0.98) with sensitivity of 0.82 (95% 
CI:0.75─0.86) and specificity of 0.69 (95% CI: 0.60─0.80). 
Applying fine-tuning, the AUC improved to 0.83 (95% 
CI: 0.72─0.94) and sensitivity of 0.78 (95% CI:0.70─0.83) 
and specificity of 0.6 (95% CI: 0.53─0.73). With SDA and 
fine-tuning, the performance further improved to AUC 
of 0.95 (95% CI: 0.89─1.00), sensitivity of 0.91 (95% CI: 
0.83─0.96) and specificity of 0.77 (95% CI: 0.67─0.90). 
With NSA and fine-tuning, the performance also 
improved to AUC of 0.95 (95% CI: 0.90─1.00), sensitivity 
of 0.91 (95% CI: 0.83─0.96) and specificity of 0.77 (95% 
CI: 0.67─0.90) (Table 2). The AU-ROC of the test cohort 
(S2) is illustrated in Fig. 3.

Reversing the training/validation and test cohort (the 
training/validation cohort (S1) then became the test 
cohort, while the test cohort (S2) became the train-
ing validation cohort), we found that the performance 
of eNose achieved an AUC of 0.91 (95% CI: 0.81─1.00) 
with sensitivity of 0.89 (95% CI: 0.80─1.00) and speci-
ficity of 0.80 (95% CI: 0.60─1.00) in the new validation 
cohort. Again, the performance was unsatisfactory in 
the test cohort with an AUC of 0.56 (95% CI: 0.44─0.73), 
sensitivity of 0.63 (95% CI: 0.52─0.76), specificity 0.54 
(95% CI: 0.48─0.60). SDA or NSA plus fine-tuning both 
achieved an AUC of 0.84 (95% CI: 0.78─0.90), sensitivity 
of 0.82 (95% CI: 0.73─0.90) and specificity of 0.79 (95% 
CI: 0.70─0.89) (Additional File 3: Table S2). The AU-ROC 
of the test cohort (S1) is illustrated in Additional File 6: 
Supplementary Fig. 4.

Subgroup analysis
In subgroup analysis (Fig.  4), we found that patients 
aged above 65-year-old had worse eNose performance 
compared with age less than 65-year-old (Accuracy: 
0.76, 0.64─0.92 vs. 0.89, 0.79─1.00). While female and 
male patients had similar performance, the eNose had 
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performed less satisfactory among those who ever or 
actively smoked than never smokers (Accuracy: 0.77, 
95% CI: 0.59─0.91 vs. 0.87, 95% CI: 0.74─0.97). The per-
formance was also best in the healthy control (accuracy: 
1.00, 95% CI:0.89─1.00), followed by lung cancer patients 
(accuracy: 0.91, 95% CI:0.64─1.00) and diseased control 
patients (accuracy: 0.67, 95% CI:0.57─0.80). Among dif-
ferent histology types of lung cancer, the eNOSE cor-
rectly identifies all adenocarcinoma, SCLC, SqCC but 
incorrectly identifies two of the four lung cancer patients 
with other histologic classification.

Two patients were in their early stage (stage I and II) 
in the test cohort and they were all correctly classified 
as lung cancer (100%, 2/2). Also, the accuracy rate was 
83.3% (5/6) for stage III lung cancer and 93.3% (14/15) for 
stage IV lung cancer in the test cohort.

Also, our model correctly identified 16 out of 17 
(94.1%) lung cancer patients under treatment and 5 out 
of 6 (83.3%) fresh lung cancer patients not yet receiving 
anti-cancer treatment.

Detailed subgroup analysis of age, smoking status and 
comorbidities were further described in Additional File 3: 
Table S3.

Discussion
In our study, we found that combining deep learning with 
transfer learning and data augmentation enables eNose to 
effectively tackle cross-site validation challenges. Using 
an eNose model trained at one site directly on another 
led to suboptimal results. Yet, by utilizing data augmen-
tation and transfer learning, the eNose’s performance 
notably improved, achieving an AUC exceeding 0.9. As 
a result, electronic noses can accurately differentiate 

Table 2 Diagnostic performance of eNose in the validation (S1) and test cohort (S2)
AUC 95% CI Sensitivity 95% CI Specificity 95%　CI Accuracy 95% CI

Validation cohort (S1) 0.89 0.84─0.93 0.90 0.85─0.95 0.83 0.73─0.87 0.86 0.78─0.90
Test cohort (S2) 0.61 0.47─0.76 0.43 0.36─0.50 0.43 0.37─0.54 0.43 0.33─0.52
Test cohort (S2) with fine-tuning (n = 10) 0.83 0.72─0.94 0.78 0.70─0.83 0.60 0.53─0.73 0.68 0.60─0.75
Test cohort (S2) with SDA in training cohort 
(S1)

0.89 0.81─0.97 0.82 0.75─0.86 0.69 0.60─0.80 0.75 0.68─0.81

Test cohort (S2) with NSA in training cohort 
(S1)

0.90 0.83─0.98 0.82 0.75─0.86 0.69 0.60─0.80 0.75 0.68─0.81

Test cohort (S2) with SDA in training cohort 
(S1) and fine-tuning (n = 10) in test cohort 
(S2)

0.95 0.89─1.00 0.91 0.83─0.96 0.77 0.67─0.90 0.83 0.75─0.91

Test cohort (S2) with NSA in training cohort 
(S1) and fine-tuning (n = 10) in test cohort 
(S2)

0.95 0.90─1.00 0.91 0.83─0.96 0.77 0.67─0.90 0.83 0.75─0.91

NSA, noise-shift augmentation; SDA, semi-supervised domain generalized augmentation

Fig. 2 Principal component analysis plots of eNose breathprints
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between lung cancer patients and those without the 
condition.

Breathomics has undergone extensive research for 
the purpose of detecting lung cancer. This approach is 
grounded in the theory that lung cancer patients may 
exhibit distinct metabolites and exhaled volatile organic 
compounds (VOCs) compared to persons without lung 
cancer [19]. In one prior investigation also conducted in 
the same participating hospital, the authors employed 
selected ion flow tube mass spectrometry (SIFT-MS) 
to identify and quantify 116 VOCs. Subsequently, the 
authors developed a predictive model for determining 
the likelihood of lung cancer based on quantitative VOC 
measurements. This approach yielded a commendable 
AUC and accuracy, with further enhancements achieved 
through the adjustment of confounding VOC effects 
[20]. It is worth noting, however, that this earlier study 
remained limited to a single-center setting and lacked 
external validation.

Cross-site validation of electronic nose has always 
been an important issue to be overcome. In earlier stud-
ies, the differentiation between lung cancer and non-lung 
cancer patients was performed without validation [4]. 
Some studies split one single cohort into training and 
validation part [5, 21, 22]. In one study, for instance, 199 
participants were randomly split into an 80% training 
cohort and 20% validation cohort. A classification accu-
racy of 79% was subsequently attained by using XGBoost 
method [22]. In another study, by including 60 patients 
with lung cancer and 107 controls and assigning partici-
pants either to training or blinded validation cohort, the 
blinded validation cohort yielded diagnostic accuracy of 
86%, sensitivity of 88% and specificity of 86%. For this 
approach, one may refer to the results of 86% accuracy 
obtained in our validation cohort.

Other studies used pooled data from multi-cohorts and 
then randomly split into training and validation cohort. 
In one study including multi-center cohorts with total of 

Fig. 3 Area under the receiver operating characteristic curve of the test cohort (S2). AUC, area under the receiver operating characteristic curve; NSA, 
noise-shift augmentation; SDA, semi-supervised domain generalized augmentation
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575 patients, 376 patients were assigned to the training 
cohort and 199 patients assigned to the validation cohort. 
The training model then achieved an AUC-ROC of 0.79 
(0.72–0.85) with a sensitivity of 88.2% and specificity of 
48.3% in the validation. The study further achieved a bet-
ter performance after integrating clinical data [6]. These 
approaches, however, do not really tackle with the issue 
of cross-site validation.

Cross-site validation is crucial due to several challenges 
associated with the generation of eNose breathprints. 
One significant challenge is the pervasive influence of 
environmental VOCs, which are constantly inhaled and 
participate in metabolic processes. This can modify the 
VOCs exhaled in human breath, subsequently affecting 
the generation of breathprints [20, 23]. Another chal-
lenge stems from the device itself, encompassing issues 
such as sensor drift and the complexities of achieving 
absolute calibration [24]. Although the PCA plot revealed 
a distinct breathprint distribution, it also highlighted 
the challenges of achieving cross-site validation. Our 
study indicated that using data-augmentation techniques 
could significantly reduce the load of data collection and 
improved model performance. With combination of fine-
tuning using data from individual sites, the performance 
of eNose further improved. Importantly, in our research, 
we only utilized a small portion of the test dataset for 
fine-tuning, making a clinical approach feasible.

The appropriate selection of a control group is para-
mount in ensuring the validity of research findings. 
Differentiating between healthy individuals and those 

diagnosed with lung cancer may seem straightforward. 
However, such differentiation may not encapsulate the 
complexities of real-world scenarios. To enhance the rep-
resentativeness of our study, we incorporated individuals 
with other pulmonary conditions into our control cohort. 
While smoking is predominantly identified as a primary 
risk factor for lung cancer among Caucasians, another 
distinct demographic—non-smoking Asian females with 
lung adenocarcinoma—emerges as notably susceptible 
[25]. In an effort to account for this, our control group 
integrated patients with structural lung disease primary 
consisting of bronchiectasis. Additionally, patients with 
COPD were incorporated into our cohort. By combining 
different groups with healthy people, we believe our con-
trol group more closely matches the variety of individuals 
with lung screenings in real life.

Subgroup analysis revealed that the eNose exhibited 
less satisfactory performance in elderly participants and 
smokers. This finding holds particular significance, as 
elderly participants often present with a higher preva-
lence of comorbidities compared to their younger coun-
terparts. These comorbidities may have introduced 
complexity into the eNose breathprint profiles [26]. It is 
noteworthy that elderly patients constitute an emerging 
demographic among lung cancer patients, and early lung 
cancer detection could enhance the feasibility of surgical 
interventions and further improvement of performance 
of eNose may be warranted [27]. Additionally, it’s worth 
highlighting that eNose demonstrated less satisfactory 
performance in the smoker subgroup. This finding was 

Fig. 4 Forest plot of subgroup analysis. OR, odds ratio
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consistent with our previous which also found infe-
rior performance in the smoker group [9]. Considering 
smoking remains a major risk factor for lung cancer [28], 
Detecting lung cancer in individuals who smoke or have 
chronic obstructive pulmonary disease is crucial for early 
intervention and treatment of lung cancer [29]. There-
fore, our findings highlight areas of weakness that need 
to be strengthened in our eNose device. eNose technol-
ogy simulates the human olfactory system.

In real environments, gas mixtures can be influenced 
by numerous factors, such as environmental vola-
tile organic compounds and humidity. Therefore, data 
enhancement methods are valuable as they can simulate 
these variations, making the model more adaptable and 
reducing the need for extensive data collection. Com-
mon data enhancement techniques for eNose encompass 
noise addition, data rotation and translation, and syn-
thetic data generation. For instance, a study with focus 
on eNose’s classification of alternative herbal medicines 
employed several data enhancement strategies to mini-
mize the heavy dependency on training materials [17]. 
One method involved augmenting the training dataset by 
adding Gaussian noise and data shifting [17]. In another 
study exploring the use of eNose to identify ripe toma-
toes, the collected gas’s concentration value was con-
verted into a grayscale value, synthesized into a grayscale 
image, and then augmented using methods such as crop-
ping and zooming [30]. These data augmentation tech-
niques successfully improved the performance of eNose.

There were studies utilizing data augmentation meth-
ods in human disease research to enhance domain gen-
eralization, bolster model robustness, and minimize 
overfitting risks. For instance, one study employed a con-
tinuous frequency domain spatial interpolation approach 
for data augmentation, achieving state-of-the-art results 
in retinal fundus and prostate magnetic resonance imag-
ing segmentations [31]. More recently, another study 
explored six data augmentation techniques for electro-
myography signals: trial averaging, time slice recombi-
nation, frequency slice recombination, noise addition, 
cropping, and the use of a variational autoencoder. This 
research aimed to enrich data diversity, enabling the 
model to better adapt to real-world variations, thereby 
boosting its robustness and domain generalization. Sub-
sequently, the model’s accuracy improved by 3% and 12% 
on two motor imagery datasets [32].

Fine-tuning was used in our study to improve the ver-
satility of our model. Fine-tuning is one of the domain 
adaptation techniques which can help the model better 
adapt to the features and distribution of new data and 
improve the performance of the model in new environ-
ments [33]. In one landscape study, a deep learning 
model was pre-trained on the ImageNet dataset, being 
fine-tuned and applied to different medical imaging data. 

The pre-trained model was successfully applied to retinal 
optical coherence tomography and pneumonia diagnosis 
[34]. In our previous studies, we also successfully demon-
strated the capability of fine-tuning in improving model 
performance on external cohort [10, 18].

We did not have information on potential confounding 
various such as BMI, alcohol intake, and dietary habits for 
our study participants. Although BMI is less frequently 
reported to affect the results of eNose breathprints, it can 
be associated with other diseases, such as diabetes, that 
may lead to distinct breathprints [35]. Dietary habits have 
previously been reported to influence VOC metabolites 
[36]. Lifestyle has also been noted to affect fecal VOCs 
[37]. On the other hand, one study investigating the 
impact of food intake on eNose breathprints suggested 
that the impact would be significant if the food intake 
occurred very recently, and two hours might be sufficient 
to avoid food-induced alterations in eNose breathprints 
[38]. In our study, we requested that participants fast for 
four hours prior to testing. However, the impact of the 
aforementioned factors may still warrant special atten-
tion and could be evaluated in future studies.

Our study has limitations. Firstly, the majority of lung 
cancer patients we studied in the study were in advanced 
stages, limiting the validation of eNose performance 
in early-stage lung cancer. Though the case number is 
limited, we have corrected identified two early stage 
lung cancer in our test cohort. Another limitation con-
cerns transfer learning, which still necessitates some 
samples from the test cohort, potentially leading to 
inconvenience. While using data augmentation without 
fine-tuning yielded satisfactory results, fine-tuning can 
be viewed as a means to further optimize these results. 
Also, the study was confined to a Taiwanese population 
and the generalizability of the findings to other ethnici-
ties remains uncertain. Finally, the reduced performance 
of eNose among elderly individuals and smokers also 
necessitates further investigation and strategies for 
improvement.

Conclusion
In conclusion, our study has shown that cross-site vali-
dation of the electronic nose for diagnosing lung cancer 
is attainable. Data augmentation and fine-tuning have 
demonstrated to be crucial methods for improving the 
performance when applying the eNose across different 
sites. Consequently, the electronic nose holds promise 
as a valuable tool for accurately identifying lung can-
cer patients in clinical practice. Future researches were 
warranted to further assess the generalization of eNose, 
minimize influence of confounding factors and validate 
eNose in early-stage lung cancer, diverse populations as 
well as high-risk groups.
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