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Machine-learning developed an iron, G

copper, and sulfur-metabolism associated
signature predicts lung adenocarcinoma
prognosis and therapy response

Liangyu Zhang'?", Xun Zhang'?, Maohao Guan'?, Jianshen Zeng'?, Fenggiang Yu'?" and Fancai Lai*"

Abstract

Background Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has com-
bine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures.

Methods This study encompasses 1564 LUAD patients, 1249 NSCLC patients, and over 10,000 patients with various
cancer types from diverse cohorts. We employed the R package ConsensusClusterPlus to separate patients into differ-
ent ICSM (Iron, Copper, and Sulfur-Metabolism) subtypes. Various machine-learning methods were utilized to develop
the ICSMI. Enrichment analyses were conducted using ClusterProfiler and GSVA, while IOBR quantified immune cell
infiltration. GISTIC2.0 and maftools were utilized for CNV and SNV data analysis. The Oncopredict package predicted
drug information based on GDSC1. TIDE algorithm and cohorts GSE91061 and IMvigor210 evaluated patient response
to immunotherapy. Single-cell data was processed using the Seurat package, AUCell package calculated cells gen-
eset activity scores, and the Scissor algorithm identified ICSMI-associated cells. In vitro experiments was conducted

to explore the role of ICSMRGs in LUAD.

Results Unsupervised clustering identified two distinct ICSM subtypes of LUAD, each with unique clinical character-
istics. The ICSMI, comprising 10 genes, was constructed using integrated machine-learning methods. Its prognostic
power was validated in 10 independent datasets, revealing that LUAD patients with higher ICSMI levels had poorer
prognoses. Furthermore, ICSMI demonstrated superior predictive abilities compared to 102 previously published
signatures. A nomogram incorporating ICSMl and clinical features exhibited high predictive performance. ICSMI
positively correlated with patients gene mutations, and integrated analysis of bulk and single-cell transcriptome data
revealed its association with TME modulators. Cells representing the high-ICSMI phenotype exhibited more malignant
features. LUAD patients with high ICSMI levels exhibited sensitivity to chemotherapy and targeted therapy but dis-
played resistance to immunotherapy. In a comprehensive analysis across various cancers, ICSMI retained significant
prognostic value and emerged as a risk factor for the majority of cancer patients.
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Conclusions ICSMI provides critical prognostic insights for LUAD patients, offering valuable insights into the tumor
microenvironment and predicting treatment responsiveness.

Keywords Iron/copper/sulfur, LUAD, Immune, Machine-learning, Prognosis

Introduction

Internationally, lung cancer continues to maintain its
untoward status as the primary contributor to cancer-
related deaths [1], with lung adenocarcinoma (LUAD)
representing the predominant histological subtype [2, 3].
Despite considerable progress in therapeutic approaches
for LUAD, the discouraging 5-year overall survival rate
remains stagnant at below 20% [4].

Iron, as an indispensable trace element, plays a crucial
role in human physiology. A deficiency or excess of iron
can significantly impact various biological processes [5].
Notably, cancer cells exhibit an augmented reliance on
iron for proliferation, rendering them more vulnerable
to iron depletion compared to normal cells. Conversely,
elevated iron levels can lead to cytotoxicity via mem-
brane lipid peroxidation, a process referred to as ferrop-
tosis [6, 7]. This iron-dependent form of programmed
cell death has been identified as a promising strategy for
cancer treatment [8]. While some investigations have
hinted at the possible involvement of ferroptosis and iron
metabolism in the pathogenesis and suppression of lung
cancer, the precise molecular mechanisms underlying
these associations remain obscure. Further elucidation
of these regulatory factors may provide valuable insights
into the development of novel therapeutic strategies for
this devastating disease. Copper, an essential micronutri-
ent, exercises a pivotal role in numerous biological pro-
cesses, including biocompound synthesis, mitochondrial
respiration, and antioxidant defense. Disruption of cop-
per homeostasis can lead to oxidative stress and cytotox-
icity [9]. Recently, mounting evidence implicates copper
in the progression of cancer, particularly in the realms
of metastasis, angiogenesis, and proliferation [10]. As
a critical cofactor of mitochondrial cytochrome C, cop-
per serves as a vital intermediary in energy metabolism.
Consequently, cancer tissues exhibit elevated copper
levels relative to healthy tissues, underscoring its inte-
gral role in sustaining malignant cellular activity [11].
The versatile element sulfur (S), present in two proteino-
genic amino acids — L-cysteine (Cys) and L-methionine
(Met) — also comprises a wide array of other biologi-
cally significant organic and inorganic small molecules,
contributing to the multifaceted nature of this essential
nutrient. Sulfur residues participate in the constitu-
tion of complex disulfide bond architectures within and
intercalated among proteins, thereby influencing crucial
biological processes like protein conformation, stability,

and catalytic competence [12]. Sulfur-bearing molecules
play a multifaceted role in various physiologic processes,
including enzyme catalysis, energy transduction, and
redox homeostasis. Disruptions in these activities con-
tribute to a wide range of diseases, notably cancer [13].
Recently, Liu et al’s groundbreaking study revealed a new
form of programmed cell death, dubbed disulfidptosis.
Characterized by the buildup of intracellular disulfides
in glucose-deprived cells with heightened expression of
SLC7A11, disulfidptosis differs from both ferroptosis and
ferroptosis in its mechanism of execution [14]. Previous
studies were predominantly explored genes involved in
iron and copper metabolism, while neglecting the poten-
tial involvement of genes related to sulfur metabolism. In
order to initiate an inquiry into the hitherto unexplored
realm of sulfur metabolism in LUAD, and further explore
the role of genes related to iron and copper metabo-
lism, we collected genes related to iron, copper and sul-
fur metabolism, as well as ferroptosis, cuproptosis and
disulfidptosis, and conducted extensive research.

This research identified two distinct subtypes of LUAD
based on patients’ metabolic profiles and developed an
Iron, Copper, and Sulfur-Metabolism Index (ICSMI) to
predict survival and immune response. Higher ICSMI
levels correlated with worse prognosis and reduced
immunotherapy effectiveness, suggesting ICSMI’s poten-
tial as a diagnostic and prognostic tool.

Methods & materials

Source data

The inclusion criteria for LUAD patients’ data are as fol-
lows: (a) diagnosed with histologically confirmed lung ade-
nocarcinoma, excluding other types of lung cancer such as
lung squamous cell carcinoma, and so forth, (b) underwent
surgical procedures, (c) possessed available overall survival
(OS) data, and (d) technical replications were removed if
deemed necessary. The datasets TCGA-LUAD, GSE72094,
GSE68465, and GSE31210 fulfilled these criteria. For other
cancer patients’ data, the inclusion criteria are as follows:
(a) underlying surgical procedures, (b) probable available
overall survival (OS) data, and (c) technical replicates were
removed if necessary. Data on LUAD patients’ clinical
information, transcriptomic data, as well as CNV and SNV
data were downloaded from the TCGA database (https://
portal.gdc.cancer.gov/) [15]. The TCGA-Pancancer data-
set contains data on more than 10,000 patients with 33
different cancers, also obtained from the TCGA website.
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The SNV data was processed by the R package Maftools,
and the CNV data was analyzed using GISTIC2.0 [16].
Nine GEO datasets for lung cancer patients were obtained
from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/)[17], namely GSE68465, GSE72094, GSE31210,
GSE37745, GSE41271, GSE3141, GSE30219, GSE42127,
and GSE81089. GSE31210, GSE72094, and GSE68465
are cohorts exclusively comprise of LUAD patients; while
GSE30219, GSE37745, GSE41271, GSE42127, GSE3141,
and GSE81089 are cohorts consisted of patients with vari-
ety of NSCLC type. Besides, GSE91061, a dataset includes
information for cancer patients receiving immunotherapy,
and GSE34228, which contains LUAD cell lines’ sensitivity
to gefitinib, were also downloaded from GEO. Additionally,
we gathered transcriptomic and clinical data from cancer
patients who underwent anti-PD-L1 treatment within the
IMvigor210 cohort. This information was sourced from the
following reference: http://research-pub.gene.com/IMvig
or210CoreBiologies [18]. The single-cell RNA-sequencing
dataset GSE127465 was acquired from the TISCH data-
base [19] and processed in accordance with previously out-
lined procedures [20]. The genes associated with iron and
copper metabolism were compiled from previously pub-
lished research [21-24]. From the MsigDB database [25],
we obtained genes associated with sulfur matabolism from
GO_SULFUR_COMPOUND_METABOLIC_PROCESS,
GO_SULFUR_COMPOUND_BIOSYNTHETIC_PRO-
CESS, and KEGG_SULFUR_METABOLISM genesets.
Considering that iron is involved in ferroptosis, copper is
involved in cuproptosis, and sulfur is involved in disulfidp-
tosis, we also included genes associated with these three
cell death modes for research [14]. As a result, we identi-
fied 839 Iron, Copper, and Sulfur Metabolism Related
Genes (ICSMRGs, Table S1). LUAD patients’ TIDE scores,
which predict ICB response, were calculated on the TIDE
website (http://tide.dfci.harvard.edu) [26].

Consensus clustering

Following the application of a powerful clustering method
using the ConsensusClusterPlus package [27], we effec-
tively identified two subgroups within the LUAD patient
population based on the genetic characteristics of 24
prognostic ICSMIGs. LUAD patients in these two sub-
groups displayed significant differences in clinical and
prognostic attributes across four separate cohorts.

Construction of the iron, copper and sulfur-metabolism
index

Leveraging ten machine learning algorithms (GBM, RSF,
SuperPC, Survival-SVM, Lasso, stepwise Cox, Ridge, Enet,
CoxBoost, and plsRcox), we developed an integrative Iron,
Copper, and Sulfur-Metabolism Index (ICSMI) via the
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CoxBoost+GBM combination. After conducting a thor-
ough evaluation of 114 varied permutations, we opted for
this selection, which mirrored our previous approach [20].
The detailed introduce of each algorithm and the specific
implementations of various combinations were illustrated
in Supplementary Methods. To validate the predictive effi-
cacy of ICSMI, we calculated the area under the receiver
operating characteristic curve (AUC) utilizing the tim-
eROC package. Moreover, we performed Cox regression
analysis using the survival package in R to affirm the inde-
pendent prognostic significance of ICSMI. Additionally,
we retrospectively compiled 102 signatures established
by prior researchers and contrasted ICSMI's hazard ratio
(HR) value and C-index with these markers.

Batch effect mitigation and integration: creating unified
meta cohorts

We employed the "combat” function from the sva pack-
age to mitigate batch effects present in the TCGA,
GSE72094, GSE68465, and GSE31210 datasets, integrat-
ing them into a unified dataset termed Meta. Principal
component analysis (PCA) highlighted notable batch
effects across the four datasets before applying batch
effect removal (Supplementary Fig. 1C), which were
successfully alleviated post-integration (Supplementary
Fig. 1D).

Functional enrichment analysis

To uncover the biological pathways linked with ICSM-
RGs and ICSMI, we conducted enrichment analyses
including GO, KEGG, and GSEA using the R package
ClusterProfiler [28]. Moreover, we utilized the GSVA
package [29] to perform GSVA analysis, further uncover-
ing the potential mechanisms involved.

Quantifying patients’immune infiltration level

Seven different algorithms were used to assess LUAD
patients’ immune cell infiltration in the TCGA dataset.
These algorithms included quantTIseq, TIMER, EPIC,
MCP-counter, ESTIMATE, and xCell were implemented
using the R package 'IOBR’ [30]. Besides, ssGSEA was
performed by GSVA package. Additionally, the correla-
tion of immune-related molecules’ expression and ICSMI
were analyzed.

The scissor algorithm

To identify the particular cell populations responsible
for the noticed variances in ICSMI status, we utilized
the Scissor algorithm available in the ’Scissor’ pack-
age [31]. By harnessing both bulk data and phenotypic
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information, this methodology facilitates the automated
selection of cell subpopulations from single-cell datasets
that predominantly contribute to divergent phenotypes.
In our study, we compared high-ICSMI patients and low-
ICSMI patients within the TCGA cohort, treating these
groups as distinct phenotypes. Utilizing transcriptom-
ics data of the high- and low-ICSMI phenotypes across
all patients, we applied the ’Scissor’ function to associ-
ate each cell in the GSE127465 dataset with its corre-
sponding phenotype. By designating Scissor+cells as
those most relevant to the high-ICSMI phenotype and
Scissor- cells as those most pertinent to the low-ICSMI
phenotype, we identified differentially expressed genes
(DEGs) between these cell populations using Seurat’s
"FindAllMarkers’ function. Specifically, genes displaying a
fold change exceeding |log2 (fold change)|>0.25 with an
adjusted p-value (Padj) below 0.05 were considered sig-
nificant DEGs.

Analysis of cell-cell communication in the TME

Using the ’CellChat’ package [32], we explored intercel-
lular interaction within the TME, identifying various
ligand—receptor pairs that facilitate cross-talk between
different cell types.

Finding potential drugs targeting ICSMI

By combining the data from the GDSC1 database
(https://www.cancerrxgene.org/) [33] and the ’‘onco-
Predict’ package [34], we evaluated the susceptibility of
LUAD samples to diverse therapeutics, as reflected by
their IC50 values. The IC50 value represents the con-
centration at which a drug achieves 50% inhibition of
biological processes, typically measured in in vitro exper-
iments. In cancer research, it is commonly used to assess
the degree of inhibition a drug exerts on tumor cells. A
lower IC50 value indicates greater sensitivity, meaning
the drug achieves a significant inhibitory effect at a lower
concentration. This enabled us to identify potential tar-
gets for personalized medicine strategies.

Cell culture and transfection

The BEAS-2B normal bronchial epithelial cell line and
three LUAD cell lines (A549, PC9, H1975) were obtained
from the Cell Bank of the Chinese Academy of Sci-
ences. These cells were cultured at 37 °C with 5% CO2 in
DMEM medium (Bioscience, China) supplemented with
10% FBS (Gibco, USA). Small interfering RNA (siRNA),
specifically si-GCDH and its corresponding negative
control, si-NC, were procured from Hanheng Biology
(Shanghai, China). Utilizing Lipofectamine 3000 (Invit-
rogen, Carlsbad, CA, USA), transfection of siRNA into
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cells was conducted according to the manufacturer’s
instructions.

gRT-PCR
Total RNA extraction was performed using an RNA
extraction kit (Vazyme, China) following the manu-
facturer’s instructions. The extracted RNA was reverse
transcribed into cDNA using the All-in-One First-Strand
Synthesis MasterMix kit (iScience, China). Subsequently,
triplicate aliquots of each ¢cDNA sample were prepared
using the Taq SYBR® Green qPCR Premix (iScience,
China). In this study, the internal reference gene utilized
was -Actin, and the primers for the five ICSMRGs and
B-Actin are listed in Table S5.

Western blotting

Total protein extraction from cells was achieved using
RIPA lysis buffer (Meilun Biotechnology, China). Pro-
tein concentration was determined using a bicinchoninic
acid protein assay kit (#23,227, Thermo Fisher Scientific,
Waltham, USA). Denatured proteins were separated
by 10% SDS-PAGE and transferred onto nitrocellulose
membranes (Millipore in Bedford, USA). Following a 2-h
blocking step with 5% skimmed dry milk, the membranes
were incubated overnight at 4 °C with primary antibod-
ies, namely anti-GCDH (1:1000, Immunoway), and anti-
B-Actin (1:1000, Immunoway), followed by incubation
with horseradish peroxidase labeled secondary antibod-
ies (ab7090, 1:5000; Abcam). 3-Actin served as a normal-
ization control for the expression of target proteins.

Wound healing assays

A549 and PC9 LUAD cells, post-transfection, were plated
at a density of 10° cells per well in 6-well plates. After 24
h of incubation, when cells reached approximately 80%
confluence, a 10-pl pipette tip was employed to create
uniform scratches on the cell monolayers. Subsequently,
detached cells were gently washed away using PBS, and
the bottom of the dish was marked for reference. The
wound area of each sample was documented at both
0-h and 24-h time points, with quantitative analysis per-
formed using Image] software.

Transwell assays

Invasion and migration assays were conducted using
Transwell chambers (Scipu002872; Corning Inc., Corn-
ing, USA). For the cell invasion assay, the Transwell
chamber inserts were precoated with 10 pg Matrigel
before the experiment. In the upper chamber, 10,000
cells with 200 pl FBS-free DMEM medium were
seeded, while 600 pl of culture medium containing 10%
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FBS was added to the lower chamber. Following a 24-h
incubation period at 37 °C, the cells remaining attached
to the membrane were fixed with polyformaldehyde
and subsequently stained with hematoxylin. Finally, the
cells in the lower chamber were photographed under a
high-powered microscope.

Statistic analysis

All statistical analyses were conducted using R (ver-
sion 4.1.1). Group disparities were assessed using either
the Wilcoxon test or t-test, while correlations were
examined through Pearson or Spearman correlation
coefficients. The log-rank test was utilized for overall
survival comparisons. To assess the prognostic impact
of ICSMI and clinicopathological factors, multivariate
Cox regression analysis was performed. Comparison of
multiple signatures’ C-Index was carried out using the
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CompareC package. For P values, 'Ns’ denotes P>0.05,
” signifies P<0.05, ” indicates P<0.01, and ” represents
P<0.001.

Results

Identification of 24 hub ICSMRGs

After acquiring 839 Iron, Copper, and Sulfur-Metabolic
Related Genes (ICSMRGs), we conducted enrichment
analysis on them, and divulged that these genes partici-
pate in biological processes pertinent to iron, copper, and
sulfur metabolism, including ’response to copper ion,
‘ferroptosis, ’iron ion homeostasis, copper ion homeo-
stasis, ‘sulfur compound metabolic process;, and ’sul-
fur amino acid metabolic process’(Fig. 1A). This means
that we have successfully identified a series of genes
highly correlated with iron, copper, and sulfur metabo-
lism. To identify genes with reliable prognostic value,
we employed univariate Cox regression analysis in the
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Fig. 1

Identification of 24 key ICSMRGs. A GO and KEGG analyses demonstrated that these 839 genes we collected were primarily involved

in processes related to iron, copper, and sulfur metabolism. B 24 ICSMRGs exhibited consensus prognostic value across three cohorts. C Differential
expression analysis revealed most ICSMRGs exhibiting altered expression patterns between normal and LUAD tissues. D, F These ICSMRGs
harbored both SNVs (D) and CNVs (F), indicating their potential role in driving tumorigenesis. E Correlation heatmap illustrated the interconnected
relationships among the 24 genes, highlighting their complex regulatory interactions
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TCGA, GSE72094, and GSE68465 cohorts based on their
largest sample size, and setting the threshold at 0.05. Sub-
sequently, we intersected the prognostic genes from the
three cohorts with 839 ICSMRGs, resulting in 24 ICSM-
RGs with consistent prognostic significance (Fig. 1B,
Table S2). Then we conducted a comparative analysis
of the differential expression patterns of these 24 genes
between normal and tumor tissues in TCGA, revealing
that the majority of them exhibited significant differen-
tial expression (Fig. 1C). In TCGA cohort, 22 ICSMRGs
were found to harbor varying levels of mutational activ-
ity, with the majority comprising missense mutations;
the overall mutation frequency was recorded at 15.08%
(Fig. 1D). Notably, KIF14 displayed the highest mutation
frequency among these ICSMRGs. Concomitantly, we
observed diverse degrees of DNA copy number variation
in these ICSMRGs, with the majority exhibiting variable
CNVs; KIF14 also displayed highset CNV amplifications
(Fig. 1F). Correlation analyses disclosed intricate rela-
tionship amidst the 24 ICSMRGs, encompassing both
positive and adverse associations (Fig. 1E).

Consensus clustering classifying LUAD patients into two
Clusters

Utilizing unsupervised clustering on the 24 ICSMRGs,
we aimed to uncover previously unidentified subtypes
associated with iron, copper, and sulfur metabolism in
LUAD. The selection of the optimal number of clus-
ters (k=2) revealed a notable divergence among groups,
indicating a clear classification of LUAD patients into
two distinct groups (Fig. 2A, B). Across four cohorts,
the differential expression of these 24 ICSMRGs in two
Clusters maintained homogeneity (Fig. 2C). Besides, we
found that patients assigned to Cluster 1 exhibited sig-
nificantly better prognoses compared to those in Cluster
2 (Fig. 2D), with individuals in Cluster 2 demonstrating
more advanced clinical characteristics (Fig. 2E). Thus, our
findings reveal two distinct molecular subtypes associ-
ated with iron, copper, and sulfur metabolism, potentially
unveiling underlying biological heterogeneity in LUAD.

The iron, copper and sulfur-metabolic index (ICSMI)

was constructed

The construction of the Iron, Copper, and Sulfur-Meta-
bolic Index (ICSMI) was initiated by utilizing a machine

(See figure on next page.)
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learning-driven approach based on the 24 prognostic
ICSMRGs. Using the TCGA dataset as training set, we
developed 114 prediction models and assessed their
performance on three independent validation sets
(GSE68465, GSE72094, and GSE31210). While cer-
tain models, such as 'RSF ’Stepcox [forward]+ RSF
and 'Lasso + RSF, exhibited high C-Index values in the
TCGA dataset, their performance diminished in the
validation sets, indicating overfitting. To ensure con-
sistent predictive power across all datasets, we selected
the ’CoxBoost+GBM’ composition, which yielded a
model with an average C-Index of 0.7 across all four
datasets (C-Index: TCGA-0.740; GSE72094-0.689,
GSE31210-0.726; GSE68465-0.644; Fig. 3A). The Cox-
Boost algorithm selected 10 ICSMRGs (Supplementary
Fig. 1A), and the GBM algorithm evaluated their rela-
tive influence within the model (Supplementary Fig. 1B,
Table S3), resulting in a GBM model comprising these
10 ICSMRGs (Fig. 3A). Kaplan—Meier analysis demon-
strated a significant impact of all 10 ICSMRGs on the
prognosis of LUAD patients (Supplementary Fig. 1E).
Using the expression of these 10 ICSMRGs weighted by
their relative influence, the model computed a riskscore
for each individual, termed as ICSMI.

The median ICSMI was utilized to stratify patients
into two distinct groups. Patients in the high-ICSMI
group exhibited significantly poorer prognoses com-
pared to those in the low-ICSMI group, not only within
the TCGA training set (Fig. 3B) but also in three exter-
nal validation cohorts, namely GSE68465 (Fig. 3C),
GSE72094 (Fig. 3D), GSE31210 (Fig. 3E), and Meta
(Fig. 3F). Additionally, PCA analysis revealed notice-
able differences between individuals with high or low
ICSMI across all datasets, and time-ROC curves illus-
trate the commendable predictive capabilities of ICSMI
for predicting patients’ prognosis, with high AUC val-
ues (Fig. 3B-F).

A significant correlation is evident between ICSMI

and clinical features of LUAD patients

Heatmaps depict the transcriptional profiles of the 10
ICSMRGs comprising ICSMI across four distinct datasets:
TCGA, GSE72094, GSE31210, and GSE68465 (Fig. 4A-D).
In the TCGA cohort, ICSMI in LUAD patients increases
with the progression of T (Fig. 4E), N (Fig. 4F), and clinical

Fig. 2 Identification of Two Distinct ICSM Clusters through Consensus Clustering. A LUAD patients were grouped into two molecular clusters (k=2)
based on 24 ICSMRGs. B The empirical cumulative distribution function plot depicts the consensus distribution for each k value. C A heatmap
illustrates the expression profiles of the 24 ICSMRGs across the two clusters. D Survival analysis reveals significant differences in prognosis

between the two clusters. E An alluvial diagram showcases the relationship between cluster affiliation, survival status, and clinical stage in LUAD

patients
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stage (Fig. 4G). Similarly, in the GSE72094 (Fig. 4H) and
GSE31210 (Fig. 4I) cohorts, ICSMI increases with clini-
cal stage progression. In the GSE68465 cohort, ICSMI
elevates with advanced T (Fig. 4]) and N (Fig. 4K) stage,
with a significant association observed with LUAD histol-
ogy (Fig. 4L). Particularly, in poorly differentiated LUAD
tissues, ICSMI is highest, followed by moderately differ-
entiated tissues, and lowest in highly differentiated tissues.
Furthermore, our investigation unveils a negative correla-
tion between ICSMI and patients’ Relapse-Free Survival
(RES) in the GSE31210 cohort (Fig. 4M), accompanied by a
parallel decrease in patients’ Progress-Free Survival (PES)
within the TCGA cohort (Fig. 4N). These findings under-
score the potential utility of ICSMI as a prognostic bio-
marker in LUAD. Lastly, across all four cohorts, patients
assigned to Cluster 2 exhibit markedly higher ICSMI val-
ues compared to those allocated to Cluster 1 (Fig. 40),
indicating a notable association between Iron, Copper, and
Sulfur-Metabolism (ICSM) related molecular subtypes
and ICSML

Comparison the predictive efficacy of ICSMI with existing
characteristics

To assess the predictive efficacy of ICSMI compared to
traditional clinical variables in LUAD patients, we con-
ducted an analysis of C-index and AUC values for each
factor (Fig. 5A-D). Notably, ICSMI exhibited superior
predictive performance compared to most clinical mark-
ers, indicating its enhanced efficiency. Additionally, we
evaluated the prognostic potential of ICSMI against
established LUAD models by integrating data from 102
prior studies incorporating various biologically relevant
features like apoptosis, EMT, ferroptosis, cuproptosis,
necroptosis, and ICD (Table S6). Impressively, ICSMI
consistently displayed the highest C-index (Fig. 5E) and
HR value (Fig. 5F) across multiple cohorts, surpassing the
majority of existing models. These findings collectively
highlight ICSMI as a more effective prognostic model for
LUAD.

Nomogram'’s development and validation

To validate the independent predictive value of ICSMI,
we conducted univariate and multivariate Cox regres-
sion analyses. After excluding the influence of clinical

(See figure on next page.)
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variables, our analysis unequivocally established ICSMI
as a significant predictor of LUAD patient prognosis,
confirming its status as an independent prognosticator
not only within the TCGA cohort (Fig. 5A, B), but also
within the GSE68465, GSE72094, and GSE31210 cohorts
(Tables 1, 2 and 3). Integrating ICSMI with clinical mark-
ers such as age, gender, and clinical stage, we developed
a nomogram for forecasting LUAD patient prognosis
(Fig. 6C). Our model achieved a C-index value of 0.768,
with calibration plots confirming its accuracy in esti-
mating 1-, 3-, and 5-year survival probabilities (Fig. 6D).
Additionally, employing decision curve analysis (DCA),
our nomogram model demonstrated superiority over
alternative predictors (Fig. 6E). Notably, significant sur-
vival differences were observed between high- and low-
nomogram score groups (Fig. 6F). Furthermore, AUC
values across four cohorts revealed the remarkable pre-
cision of our nomogram in predicting 1-, 3-, and 5-year
survival prospects for LUAD patients (Fig. 6G).

ICSMI has significantly relationships with TME

Next, we performed investigations into the underlying
mechanism behind the remarkable predictive capability
of ICSMI, particularly its relationships with the Tumor
Microenvironment (TME). In the TCGA cohort, differ-
ential analysis highlighted genes with differing expression
levels between groups with high and low ICSMI levels
(Table S4). The top 50 genes, showing the most significant
expression differences, were visually depicted (Fig. 7A).
Additionally, we delved into the impact of the two most
up-regulated genes in the high-ICSMI group (SLC2A1,
ANLN) and the two most up-regulated genes in the
low-ICSMI group (SFTA3, ACSS1) on LUAD patient
prognosis. Elevated expression of ANLN and SLC2A1
was associated with poorer prognosis, while increased
expression of SFTA3 and ACSS1 indicated better prog-
nosis (Fig. 7B, C). This suggests that ICSMI serves as a
risk factor for LUAD, with high expression correlating
with adverse outcomes. GSEA analysis unveiled that
genes positively correlated with ICSMI were predomi-
nantly involved in malignant features, while genes nega-
tively correlated with ICSMI were associated with benign
features (Fig. 7D, E). GSVA analysis further supported
these findings, with gene sets linked to malignant features

Fig. 4 A robust correlation is evident between ICSMI and clinical attributes among LUAD patients. A-D Heatmaps illustrate expression profiles of 10
ICSMRGs across four datasets. E-G Individuals with high ICSMI in the TCGA Cohort exhibit increased prevalence of advanced T (E), N (F), and clinical
stage (@). (H-1) ICSMIin LUAD patients escalates with clinical stage advancement in GSE72094 (H) and GSE31210 (I) cohorts. J-L In the GSE68465
cohort, patients'ICSMI elevates with T (J) and N (K) stage progression, alongside poorer differentiation (L). M In the GSE31210 cohort, patients'RFS
declines with increasing ICSMI. N In the TCGA cohort, patients' PFS diminishes with rising ICSMI. O Significantly, all four cohorts demonstrate higher

levels of ICSMI among patients assigned to Cluster 2
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Table 1 Uni- and Multi- variate Cox analysis performed in GSE68465 cohort
Factors Univariate analysis Multivariate analysis

HR value (95% Cl) P HR value (95% Cl) P
ICSMI 2.018(1.544—2.637) <0.001 1.758 (1.342—2.304) <0.001
Age 0.653 (0.501—0.851) 0.002 0.608 (0.465—0.795) <0.001
Gender 0.688 (0.528—0.897) 0.006 0.754 (0.572—0.992) 0.044
T Stage 2.770 (1.890—4.058) <0.001 2.208 (1.494—3.261) <0.001
N Stage 2.814(2.155—3.675) <0.001 2.678(2.031—3.533) <0.001
Chemotherapy 1.677 (1.254—2.244) <0.001 1428 (1.048—1.946) 0.024

Table 2 Uni- and Multi- variate Cox analysis performed in GSE72094

cohort

Factors Univariate analysis Multivariate analysis
HR value P HR value P
(95% CI) (95% ClI)

ICSMI 3.385 (2.246— <0.001 2.861 (1.860— <0.001
5.103) 4.399)

Age 0.702 (0.458— 0.105 0.729 (0.472— 0.154
1.076) 1.126)

Gender 1.552 (1.072— 0.020 1.542 (1.037— 0.033
2.246) 2.292)

Clinical Stage 2.562 (1.720— <0.001 2332 (1.540— <0.001
3.816) 3.532)

Smoking 1.377 (0.601— 0450 0911 (0.384— 0.833
3.157) 2.164)

KRAS 1456 (1.001— 0.049 1.026 (0.691— 0.900
2.118) 1.521)

TP53 1.235(0.820— 0313 0.892 (0.584— 0.599
1.860) 1.364)

EGFR 0.262 (0.096— 0.008 0451 (0.159— 0.135
0.710) 1.280)

Table 3 Uni- and Multi- variate Cox analysis performed in

GSE31210 cohort

Factors Univariate analysis Multivariate analysis
HR value P HR value P
(95% CI) (95% CI)

ICSMI 4.503 (1.965— <0.001 3330 (1.382— 0.007
10.319) 8.026)

Age 1.025(0.977— 0.306 1.042 (0.993— 0.091
1.075) 1.092)

Gender 0.658 (0.338— 0219 0.922 (0.360— 0.866
1.281) 2.362)

Clinical Stage 4.232 (2.175— <0.001 2850 (1.409— 0.004
8.236) 5.765)

Smoking 0611 (0.312— 0.150 0.834 (0.321— 0.710
1.195) 2.168)

showing higher activity in the high-ICSMI group, while
those related to benign phenotypes exhibited greater
activity in the low-ICSMI group (Fig. 7F).

Analysis across seven algorithms revealed a negative
correlation between ICSMI and the majority of immune
cells, while it correlated positively with epithelial cells
and CAFs (Fig. 7G). Moreover, ICSMI displayed a nega-
tive correlation with several immune checkpoint mol-
ecules (Fig. 7H). Notably, individuals in the low-ICSMI
group exhibited more pronounced ‘immuno-hot’ fea-
tures, suggesting potential responsiveness to immuno-
therapeutic interventions. This was supported by lower
TIDE scores in the low-ICSMI group (Fig. 7I), indicat-
ing improved response to immunotherapy. Furthermore,
analysis of GSE91061 and IMvigor210 datasets showed
that responders to ICB therapy had lower ICSMI values
compared to non-responders, and patients in the low-
ICSMI group undergoing immunotherapy demonstrated
significantly better clinical outcomes (Fig. 7]).

Exploring ICSMI at single-cell level

In the Bulk-dataset, ICSMI was an independent risk
factor for LUAD patients. We were also very inter-
ested in the effects of ICSMI at the cellular level, so
we analyzed the single-cell RNA-sequencing dataset.
In the GSE127465 dataset, we identified 12 distinct
cell populations (Fig. 8A) and computed the ICSMI for
each cell. Remarkably, malignant cells exhibited the
highest ICSMI values (Fig. 8B), with the high-ICSMI
group showing a higher proportion of malignant cells
(Fig. 8C). To pinpoint the cellular sources underlying
the clinical manifestation associated with high-ICSMI,
we utilized the "scissor" package to correlate bulk
RNA-sequencing data with single-cell RNA-sequenc-
ing data. This algorithm autonomously selected cells
exhibiting extraordinary concordance with the tar-
geted phenotype. We designated high-ICSMI and
low-ICSMI patient states as primary phenotypes, facil-
itating the identification of a comprehensive collection
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Fig. 6 Developing a nomogram. A-B Uni- (A) and multi- (B) vadiate cox regression affirm ICSMI as an independent prognostic determinant.

C, D Creation of the nomogram (C) and its calibration curve (D) showcase its predictive accuracy. E Decision curve analysis (DCA) curves indicate
the superior prognostic performance of the nomogram for LUAD patients. F Patients with elevated nomogram scores exhibit poorer prognoses.
G ROC curves across four cohorts underscore the remarkable predictive prowess of the nomogram
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of 1566 high-ICSMI cells (Scissor+) and 2151 low-
ICSMI cells (Scissor-, Fig. 8D). Notably, Scissor + cells
exhibited significantly higher ICSMI values compared
to Scissor- cells (Fig. 8E), with Scissor + cells display-
ing the highest ICSMI among all cell types, while
Scissor- cells had the lowest (Fig. 8F). These findings
indicate our success in identifying cells in the single-
cell dataset that represent different ICSMI states.The
AUCell algorithm[35] was used to calculate enrich-
ment scores for multiple gene sets, and we compare
them between Scissor+and Scissor-. Scissor +scored
significantly higher than Scissor- for four malignant
phenotype including 'Lung Cancer Poor Survival,
‘Melanoma Metastasis UP;, ‘Cell Cycle, and ’Epithelial
Mesenchymal Transition UP’ (Fig. 8G); while Scis-
sor- scored significantly higher that Scissor + for four
benign phenotypes including ‘Lung Cancer Good Sur-
vival, ‘Melanoma Metastasis DN, ‘Differentiating T
Lymphocyte, and ’Epithelial Mesenchymal Transition
DN’ (Fig. 8H). This result is consistent with the GSEA
analysis performed in the Bulk-data set.

Following this, we delved into the intercellular com-
munication dynamics. The communication network
among all cells is depicted in Fig. 8I. Interestingly,
compared to Scissor+cells, Scissor- cells exhibited
higher effectiveness in transmitting signals to other
cells (Fig. 8]). Furthermore, when comparing the ability
of Scissor+and Scissor- to both receive and transmit
signals, Scissor- demonstrated greater activity in com-
municating with other cells within the TME (Fig. 8 K).
We observed that Scissor- specifically expressed vari-
ous receptors/ligands to interact with ligands/receptors
from other cells, a capability not shared by Scissor+.
Notably, Scissor- expressed TNFSF13, HLA-DRBS5,
CD4, and PECAMI specifically (Fig. 8L) to exchange
signals with cells such as CD4Tconv, DC, Monocytes,
and Fibroblasts. Analysis of bulk TCGA data revealed
that the expression of these four molecules, specifically
expressed by Scissor-, was significantly higher in the
low-ICSMI group (Fig. 8M), and all of them are protec-
tive factors for LUAD (Fig. 8N).

In summary, the characteristics of Scissortin the
single-cell dataset align with those of ICSMI-high/low

(See figure on next page.)
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in the bulk dataset, thus corroborating our conclusions
from different perspectives.

Comparing the different SNV and CNV event between two
ICSMI groups
We also conducted multi-omics analyses to compare
the genetic landscape between the high-ICSMI and low-
ICSMI groups. Initially focusing on the top 20 genes with
the highest mutation frequency, we visually depicted the
disparities between these groups (Fig. 9A, B). The fol-
lowed examination showed that the top 15 genes with the
most notable differences in mutation frequency between
the high- and low-ICSMI groups exhibited higher fre-
quencies within the former (Fig. 9C). Additionally, we
identified co-mutation relationships among these genes
(Fig. 9D). A detailed investigation was conducted on the
most significant mutation differences between the two
groups, particularly in the genes COL22A1 and TP53.
We investigated the prognostic implications of muta-
tions in these genes and discovered that such muta-
tions were linked to adverse outcomes for patients with
LUAD (Fig. 9E). Moreover, ICSMI exhibited a strong
positive correlation with various forms of gene mutations
(Fig. 9F), and significantly correlated with aneuploidy
score (Fig. 9G) and SNV neoantigen (Fig. 9H).
Furthermore, our analysis revealed considerable diver-
gence in CNV events between the two ICSMI groups
(Fig. 91, J). Patients in the high-ICSMI group displayed
a higher frequency and more complex array of CNV
events, whereas those in the low-ICSMI group exhibited
fewer and less elaborate CNV events. ChromPlots fur-
ther demonstrated that patients in the high ICSMI group
had higher G-scores compared to those in the low ICSMI
group (Fig. 9 K, L), suggesting a propensity for malignant
features among high-ICSMI patients with LUAD.

Exploration of latent agents targeting ICSMI

To uncover potential therapeutic avenues against ICSMI,
we examined the connection between ICSMI and com-
monly used drugs for treating LUAD. Among the twelve
medications analyzed, their IC50 values were nota-
bly lower in the high-ICSMI cohort compared to the

Fig. 7 Uncover the potential involvement of ICSMI in the TME. A To identify the most highly correlated genes with ICSMI, a heatmap of the top 50
genes was generated. B, C Elevated expression of SLC2A1 and ANLN adversely affected the prognosis for LUAD patients, while elevated expression
of SFTA3 and ACSST improved the prognosis for LUAD patients. D, E GSEA analysis unveiled the functional enrichment of genes positively (D)

or negatively (E) correlated with ICSMI. F GSVA analysis disclosed the gene sets with heightened activity in high- and low- ICSMI groups. G

An inverse correlation was observed between ICSMI and the infiltration of most immune cells. H ICSMI was found to be negatively correlated

with the expression of TME modulators. | Patients in the low-ICSMI group exhibited lower TIDE scores. J, K Responders to immunotherapy were
found to have lower ICSMI levels, and patients receiving immunotherapy with lower ICSMI tended to have better overall survival outcomes

in the GSE91061 (J) and IMvigor210 (K) cohorts
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low-ICSMI subset (Fig. 10A). Additionally, correlation
analysis indicated a negative correlation between ICSMI
and the IC50 values of these drugs (Fig. 10B), suggesting
that these medications may be more effective in patients
with higher ICSMI levels. Particularly noteworthy was
the observation that LUAD cell lines sensitive to gefitinib
exhibited significantly higher ICSMI levels compared to
gefitinib-resistant cell lines (Fig. 10C), providing further
support for our findings.

Exploring the prognostic value of ICSMI in other cancers
besides LUAD

Given the impressive performance of ICSMI in predict-
ing the prognosis of LUAD patients, we are highly inter-
ested in exploring its value in predicting the prognosis of
other types of cancer. First, we investigated the prognos-
tic value of ICSMI in patients with other types of NSCLC.
We selected six GEO datasets containing information on
various types of NSCLC patients and calculated ICSMI
for each patient. The results indicate that, across the six
independent datasets, patients with high ICSMI have a
worse prognosis compared to those with low ICSMI, and
ROC curves showed that ICSMI also had good predic-
tive power (Fig. 11A). Next, we obtained the TCGA-Pan-
cancer dataset, which contains information about over
11,000 patients with 33 different types of cancer. PCA
analysis shows that patients between high and low ICSMI
groups exhibit distinct features (Fig. 11B). Notably,
patients in the high ICSMI group have significantly lower
OS than those in the low ICSMI group (Fig. 11C). Fur-
thermore, as the clinical stage advances, ICSMI displays
a gradually increasing trend (Fig. 11D). We then analyzed
the prognostic value of ICSMI in each cancer individu-
ally. The HR value of ICSMI was found to be greater than
1 in most cancers, indicating that ICSMI is a risk factor
for most cancer patients (Fig. 11E), specifically for those
patients with ACC, CESC, HNSC, KICH, KIRC, KIRP,
LGG, LIHC, MESO, PAAD, UCEC, SARC (Fig. 11F).

Validation of hub ICSMRGs' expression by qRT-PCR

To improve the credibility of our study, we opted to verify
the expression of hub ICSMRGs. Our analysis revealed

(See figure on next page.)
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that within the GBM model comprising 10 ICSMRGs,
five exhibited a relative influence exceeding 10 in the for-
mation of ICSMI. Therefore, we defining these 5 ICSM-
RGs, namely GCDH, ST3GAL4, LDHA, FKBP4, and
PEBP1 as hub ICSMRGs. In comparison with BEAS-2B,
the expression of GCDH, LDHA, and FKBP4 shows an
increasing trend in LUAD cell lines, while the expres-
sion of PEBP1 exhibits a decreasing trend. However, the
expression of ST3GAL4 does not display significant dif-
ferences between normal lung epithelial cells and LUAD
cells. In summary, the expression trends of these five
key ICSMRGs are generally consistent with the results
analyzed in the TCGA dataset, laying the foundation
for future functional experiments targeting these genes
(Fig. 12).

Knockdown of GCDH promoted LUAD cells’ migration

and invasion

Among the 10 ICSMRGs utilized in constructing ICSMI,
GCDH exerts the most significant influence (Supplemen-
tary Fig. 1B). Furthermore, it’s noteworthy that no study
has yet explored the impact of GCDH on LUAD. There-
fore, we decided to further explore the role of GCDH in
LUAD. In our bioinformatics analysis, GCDH is a pro-
tective factor, which indicates that patients with higher
expression of GCDH have a better prognosis (Fig. 13A).
Next, we performed in vitro experiments to explore the
potential phenotypes associated with GCDH. The expres-
sion of GCDH was significantly reduced by siRNA’s
knockdown in both A549 (Fig. 13B) and PC9 (Fig. 13C)
cells. Wound healing assay showed that knockdown of
GCDH improved the migration abilities of both A549
(Fig. 13D) and PC9 (Fig. 13E) cells. In addition, the tran-
swell assay also demonstrated that knocking out GCDH
can promote the migration and invasion of A549 (Fig. 13F)
and PC9 (Fig. 13G) cells. The results of the wound heal-
ing experiment (Fig. 13H) and the transwell experiment
(Fig. 131, J) both demonstrate statistical significance, indi-
cating that knocking down GCDH significantly promotes
the migration and invasion ability of A549 and PC9 cells.
Epithelial-Mesenchymal Transition (EMT) is also a malig-
nant phenotype closely associated with migration and

Fig. 8 Utilizing the Scissor algorithm to segregate high- and low- ICSMI characteristics within the single-cell dataset. A Mapping the distribution

of 12 cell populations within the tumor microenvironment (TME) using the UMAP plot. B Violin plot illustrating the spectrum of ICSMI levels

across diverse cell types. C The high-ICSMI group showed an elevated proportion of malignant cells. D Identified 1566 high-ICSMI cells (Scissor +)
and 2151 low-ICSMI cells (Scissor-). E Notably, Scissor + cells exhibited substantially higher ICSMI levels compared to Scissor-. F Among all cell

types, Scissor + displayed the most varied ICSMI levels. G, H Scissor + demonstrated heightened scores indicative of a malignant phenotype (G),
while Scissor- scored higher for a benign phenotype (H). | Comprehensive depiction of cellular communication networks. J Scissor- showed robust
signaling transmission capabilities within the TME. K Comparison of Scissor + cells’ proficiency in signal reception and transmission within the TME. L
Scissor- exhibited specific molecule expression tailored to pair with ligands from other cells. M These molecules exhibited elevated expression levels
in low-ICSMI patients. N The four molecules specifically expressed by Scissor- are identified as protective factors for LUAD
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Fig.9 The genetic landscape displayed significant differences between the two ICSMI groups. A, B Comparison of somatic mutation frequencies
in high- (A) and low- (B) ICSMI patient cohorts. (C, D) Identification of the top 15 differentially mutated genes between the two groups (C),
accompanied by significant co-occurrences among them (D). E Mutations in COL22A1 and TP53 are associated with poorer prognosis. F, H
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number variations (CNVs) in the high- (1) and low- (J) ICSMI groups. K, L Visualization of patients’ G-scores using chromosomal plots in the high- (K)
and low- (L) ICSMI groups



Zhang et al. Respiratory Research (2024) 25:206

Gefitinib_1010 Docetaxel_1007

Page 19 of 26

Vinorelbine_140 Cisplatin_1496

Ak 34 Aok =254 Ak Ak
f s N
1541 3.0
-4
1.0 4 | 3.5
(=3 (=3 =3 =3
e e} " n o,
a 21 o0 o0 -4.0 0
B 2 = =
(=) A =) =]
0.0 4 . -6 454
. 14
-0.5 4 -5.0 4 i
274 .
-1.0 T T T T 5.5 T T T T
Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI
Vinblastine_1004 Paclitaxel 11 Gemcitabine_135 Etoposide_134
sk sk ek ok
— — 04 — —
2.0 4 B
. 34
3 -1
2.5
2 2 8 27 2 21
S 41 EE S 201 8 S
on = = =
2 2 354 g -3 2 4
=] =) () A
1 40 1
4 0.
54
-6 . -4.54
i 1
T T T T T T T T
Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI
Methotrexate_1008 Mitomycin-C_136 Doxorubicin_133 Axitinib_1021
sk x sk sk
14 . — 0.5 — .
14 @ :
34
-1.0
04 04
=3 (=3 =3 =3
ey " w -1.54 Py
Q © © Q2
= =] =1 =
= 2 -1 £ 2.0 =
A -1 A (=] ]
2.5 " :
24 S :
24 -3.04
0 -
r T 3 T T T T T T
Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI Low-ICSMI High-ICSMI
GSE34228
s 9 S x A Q A 5 &
S « o S « A N « u N N i ok
B NN AN N N N C e
7 7 7 7 7 “ // 7 z 7 7 7
S S 3 3 3 3 3 3 3 3 3 3 0.0 4
0.0 '
P value /-\
= 6e-06 -0.2 =
@ 0.1 — 4 \
9 [ 4e-06 =
o0 8 -0.4 +
2 -0.24 2e-06 = I
A 0.6
2 034 0¢+00
o [Cor] =
= 0.8 4
2 O 03
Q U4 O 04 16 °
051 @ e Oo : -
S o
N T S S A = S
RS AN O AT U s N SR P CORPop SN = o
9B O (i 5 T 0 T e 9 o e o o
o ¥ O @ @ e o ﬂ\e.;@‘ o g&x‘& pF o &

Fig. 10 Chemotherapy and targeted therapy might exhibit heightened efficacy in high-ICSMI patients. A Variations in IC50 values of 12 frequently
prescribed drugs between high- and low- ICSMI cohorts are evident. B Correlation between ICSMI levels and drugs'IC50 values is observed. C
Differences in ICSMI are apparent between cell lines sensitive versus resistant to gefitinib

invasion. Tumor cells undergoing EMT exhibit higher
malignancy and are more prone to metastasis. There-
fore, we investigated the relationship between GCDH
and EMT. We downloaded the GSE114761 dataset from
the GEO database, which includes EMT data from lung

adenocarcinoma cell lines. We found that the expression
of GCDH was significantly lower in cells undergoing EMT
compared to those not undergoing EMT, and the propor-
tion of cells undergoing EMT in the low-GCDH group is
significantly higher than that in the high-GCDH group
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Fig. 11 ICSMI's value in pan-cancer cohort. A 6 independent cohorts affirmed that NSCLC patients with higher ICSMI had poorer prognosis. B
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with Stage progressed. E ICSMI is a risk factor for most cancer patients. F High ICSMI leads to poorer prognosis in 12 types of cancer patients



Zhang et al. Respiratory Research (2024) 25:206

Page 21 of 26

* =] ns C _ sk
Ead e ' 5204 —ms ' & > —_— '
S ns < ns S 5k
& Q A 2.5 '|'
e s e
3 2 151 3
2 2 2 2.0 -
227 el 2
3 T = g
8 ‘B 1.0 4 § 157
2 I g 2
g & g
% 14 5 % 1.0 -
o <t 5]
as = 057 <
8 &) jan 0.5
@) g a0
&) —~ —
wn
0 . ' 00 - — 0.0 - . '
BEAS-2B  A549  HI975  PC9 BEAS-2B  A549  HI975  PC9 BEAS-2B  A549  HI975  PC9
EEEd ok
.8 ) ns ' g 121 i o 1
- e | =y mreeeee
2 ns é) Kk
Q3 '|' <@ 1.0
8 8
3 3
% ‘g 0.8 -
B 54 3
£ § 06
v w
5 g
= S
3 S 0.4
o 1 (5} T
) Iy
m m 0.2 4
e &
o I 00 T

T T
BEAS-2B  A549 H1975 PC9

T T
BEAS-2B  A549 H1975 PC9

Fig. 12 Validation of five hub ICSMRGs' expression at cell lines. A-E The expression of GCDH (A), ST3GAL4 (B), LDHA (C), FKBP4 (D), and PEBP1 (E)

in normal lung epithelial cell lines and three LUAD cell lines

(Fig. 13K). Thus, low expression of GCDH may also pro-
mote EMT in LUAD cells.

Therefore, knocking out GCDH can promote the
malignant phenotype of LUAD cells, and LUAD cells
undergoing EMT exhibit lower GCDH expression, sug-
gesting a protective role of GCDH in LUAD. This finding
aligns with our bioinformatics analysis, indicating that
patients with high GCDH expression have better progno-
ses. It further validates the conclusion of our study and
the reliability of ICSML

Discussion

The labyrinthine biology and varied clinical manifes-
tations of lung cancer present significant hurdles for
medical professionals. Yet, recent progress in high-
throughput sequencing have paved the way for the dis-
covery of new prognostic markers. These advancements
empower healthcare providers to predict patient out-
comes more precisely and tailor therapeutic approaches
accordingly. Disruptions in the regulation of iron, cop-
per, and sulfur metabolism can predispose individuals to
various diseases. Precedent research has elucidated the

function of genes implicated in iron and copper metab-
olism on LUAD TME, unequivocally establishing their
impact upon treatment efficacy [22, 24, 36]. Conversely,
the investigation of sulfur metabolism’s involvement
in LUAD pathogenesis remains relatively unexplored,
and iron, copper, and sulfur-metabolism genes have not
been combined together to create prognostic signatures.
With an eye toward unveiling the heretofore mysterious
realm of sulfur metabolism in LUAD and deepening our
understanding of iron and copper metabolism within this
context, we comprehensively compiled iron, copper, and
sulfur-metabolism related genes for studying.

This study marks the inaugural comprehensive analy-
sis of iron, copper, and sulfur metabolism in the context
of LUAD. We delineate two distinct subtypes of LUAD
characterized by aberrations in iron, copper, and sul-
fur metabolism (ICSM), and introduce an ICSM-based
predictive signature, termed ICSMI, through integrated
machine learning. Across multiple independent cohorts,
ICSMI demonstrates significant prognostic value, sur-
passing the predictive power of 102 previously published
LUAD prognostic models. A nomogram incorporating
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clinical features and ICSMI achieves commendable
performance. Single-cell analyses reveal that ICSMI is
most elevated in malignant cells, while cells identified as
ICSMI-high phenotype via the Scissor algorithm exhibit
prominent malignant attributes. Furthermore, a signifi-
cant correlation is uncovered between ICSMI and TME
regulators and therapeutic responsiveness, with prognos-
tic significance extending to other cancer types. ICSMI
comprises 10 ICSM-related genes (ICSMRGs), includ-
ing GCDH, ST3GAL4, LDHA, FKBP4, PEBP1, DDIT4,
KIF14, RRM2, SERPINBS5, and ST3GAL6. Among these,
ST3GAL4, LDHA, FKBP4, DDIT4, KIF14, RRM2, and
SERPINB5 emerge as risk factors for LUAD, while
GCDH, PEBP1, and ST3GALG6 are identified as protec-
tive factors. Previous studies have shown that LDHA can
interact with APOL3 to regulate TME and ferroptosis
[37, 38], meaning it’s an important TME and ferroptosis
regulator. In addition, studies have shown that histone
demethylated LDHA promotes lung metastasis of osteo-
sarcoma [39], which further elucidated its risky role. In
studies by Zong et al. and Meng et al., FKBP4 has been
demonstrated to facilitate LUAD progression through
distinct pathways, including NF-kB and mTOR [40, 41].
RRM2 was identified as a factor influencing the advance-
ment of lung cancer and impacting the infiltration of
immune cells within tumors. Inhibition of RRM2 effec-
tively induced polarization towards M1 macrophages
while suppressing M2 macrophage polarization. Addi-
tionally, treatment with the ferroptosis inhibitor ferro-
statin-1 efficiently restored the balance of macrophage
polarization disrupted by RRM2 inhibition [42]. Further-
more, the significant correlation between two ICSMRGs,
namely KIF14 and PEBP1, and GPX4—a lipid peroxidase
known for its ability to trigger ferroptosis—suggests a
clear association between these genes and the ferroptotic
process [43, 44]. The effects of some ICSMRGs on iron,
copper, and sulfur metabolism have not been determined,
but some studies suggest that they may be involved in the
development of LUAD, such as SERPINB5 stimulates
proliferation, metastasis, and EMT in LUAD, while ele-
vated DDIT4 expression correlates with an unfavorable
prognosis in LUAD [45, 46]. However, studies on the role
of GCDH, ST3GAL4, and ST3GAL6 in LUAD and their
effects on iron, copper, and sulfur metabolism are lack-
ing. Therefore, our future research aims to explore the
function of these genes in depth.

Immunotherapy presents additional chances to pro-
long life for LUAD patients with malignancies, thus pro-
viding a glimmer of hope for individuals grappling with
this challenging illness [47]. Through the analysis of the
interaction between ICSMI and the tumor microen-
vironment (TME), we uncovered an inverse relation-
ship between ICSMI and the majority of immunocytes
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and immunomodulators. Enrichment analysis further
underscored a prevalence of immunologically significant
functions within low-ICSMI cohorts. Consequently, indi-
viduals exhibiting decreased ICSMI levels demonstrate
"immune hot" traits characterized by intensified immu-
nocyte infiltration. It's worth noting that prior studies
have hinted at the beneficial association between height-
ened infiltration of most immune cells in the TME and
improved prognosis for LUAD, hinting their potential
role in tumor growth suppression [48]. Therefore, this
observation may partly elucidate why patients with high
ICSMI levels tend to have poorer prognoses. Notably,
individuals with low ICSMI levels exhibited significantly
lower TIDE scores, suggesting that the TIDE algorithm
predicts augmented sensitivity to immunotherapy in
this group. This supposition was substantiated in the
GSE91061 and IMvigor210 immunotherapy cohorts,
underscoring the pivotal role of ICSMI as a predictive
biomarker for immunotherapeutic efficacy. Moreover,
leveraging single-cell datasets, we delved into the cellular
expression of ICSMI. Our findings revealed that malig-
nant cells displayed the highest ICSMI. Subsequently,
using bulk datasets, we segregated high- and low-ICSMI
samples into distinct phenotypes and utilized the Scissor
algorithm to project these phenotypes onto single-cell
data, identifying cells closely associated with each ICSMI
status. The resulting Scissor- and Scissor+phenotypes
corresponded to low and high ICSMI statuses, respec-
tively. Scissor +exhibited more aggressive features, such
as reduced interaction with the TME and a significant
positive correlation with poor prognosis in lung can-
cer patients. In contrast, Scissor- displayed enhanced
interaction with the TME, bolstering immune-related
functional activity and correlating with improved prog-
nosis in lung cancer patients. Furthermore, Scissor- cells
exhibited specific expression of receptors/ligands for
signaling with immune cells in the TME, including CD40,
TNESF13, HLA-DRB5, and PECAMI1. Notably, Scis-
sor- exhibited higher expression levels of these molecules
compared to Scissor +, and patients from the low-ICSMI
group showed even higher expression in bulk data, rein-
forcing the concordance between Scissor+and ICSMI-
High/Low statuses and validating our conclusions.

The Oncopredict package was also used to forecast
patient responsiveness to drug therapy. The findings
revealed that the IC50 values of both chemotherapeu-
tic and targeted drugs commonly employed in treating
NSCLC were lower in the High-ICSMI group. This sug-
gests that patients with lower ICSMI levels may derive
greater benefits from treatment with these drugs. Addi-
tionally, in the GSE34228 dataset, we corroborated
the oncopredict prediction: gefitinib-sensitive LUAD
cell lines exhibited elevated ICSMI levels. Hence,
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immunotherapy may be a viable option for patients with
low ICSMI, whereas chemotherapy and targeted therapy
may be more suitable for those with high ICSMI. Moreo-
ver, in our pan-cancer analysis, we discovered that ICSMI
serves as a risk factor for most cancer patients, positively
associated with malignant phenotypes while inversely
correlated with immune activity. This indicates that the
prognostic utility of ICSMI may extend beyond LUAD
patients, potentially encompassing individuals with other
cancer types.

In fact, this study’s idea was inspired to some extent
by Zou et al’s research [49], which systematically incor-
porated genes associated with 12 different programmed
cell death, and constructed a 12-gene CDI for predicting
the prognosis of breast cancer patients. However, there is
currently a lack of systematic studies on genes related to
iron, copper, and sulfur-metabolism in cancer. In order to
create a prognostic signature composed of ICSM-related
genes for the first time to predict the prognosis of LUAD
patients, and to provide inspiration for future research
on the role of ICSM-related genes in other cancers, we
designed and completed this study. After constructing the
ICSMI using machine-learning methods, we found that it
has higher C-Index and AUC values compared to existing
clinical features such as age, gender, smoking, and clini-
cal stage (Fig. 13A-D), and it has shown higher C-Index
and HR values in almost all four independent cohorts
compared to 102 previously published prognostic models.
This indicates the significant value of ICSMI in predict-
ing the prognosis of LUAD patients. Furthermore, there
have been no prior studies investigating GCDH in LUAD.
Therefore, our study is the first to reveal the potential
role of GCDH in LUAD progression, highlighting it as a
potential protective factor. Through in vitro experiments,
we found that knockdown GCDH enhances the migration
and invasion capabilities of two LUAD cell lines (A549 and
PC9). However, the underlying mechanism behind why
downregulating GCDH enhances the migration and inva-
sion capabilities of LUAD cells remains unclear. Epithelial-
Mesenchymal Transition (EMT) is a biological process
during which epithelial cells undergo molecular changes
that enable them to acquire mesenchymal-like character-
istics. This transition involves the loss of epithelial fea-
tures such as cell-cell adhesion and apical-basal polarity,
accompanied by the acquisition of mesenchymal traits
including increased motility, invasiveness, and resistance
to apoptosis [50, 51]. EMT is a critical event in embry-
onic development, tissue remodeling, wound healing,
and cancer progression, including lung adenocarcinoma.
Therefore, we hypothesized that GCDH might promote
the migration and invasion of LUAD cells through the
potential mechanism of EMT. To preliminarily validate
our hypothesis, we downloaded the dataset GSE114761
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containing EMT information of LUAD cells and found
that the expression of GCDH was significantly lower in
cells undergoing EMT compared to those not undergoing
EMT, and the proportion of cells undergoing EMT in the
low-GCDH group is significantly higher than that in the
high-GCDH groups, which suggesting that low expression
of GCDH might promote EMT of LUAD cells. This is con-
sistent with the results of our in vitro experiments (low
expression of GCDH promotes migration and invasion of
LUAD cells). Therefore, we speculate that EMT could be a
potential mechanism by which GCDH promotes invasion
and migration of LUAD cells. Although the study exhib-
ited ICSMI'’s impressive potential in predicting prognosis
and assessing treatment response in LUAD patients, and
uncover a new protective factor—GCDH of LUAD for the
first time, there exist several limitations. Firstly, the major-
ity data employed in this research were sourced from
publicly available databases. Furthermore, we did not vali-
date the predictive efficacy of ICSMI in our own clinical
cohort. The practical application of ICSMI in clinical set-
tings requires confirmation through large-sample clinical
studies. Besides, we have yet to comprehensively explore
the function of specific ICSMI-associated ICSMRGs in
LUAD. This study primarily relies on in vitro experiments
to investigate the role of GCDH in LUAD progression.
While these experiments provide valuable insights into
cellular mechanisms, they fail to fully capture the com-
plexity of tumor behavior in vivo. Therefore, the lack of
in vivo validation represents a significant limitation of
this study. In vivo models would allow for a more compre-
hensive understanding of the impact of GCDH on tumor
growth, metastasis, and treatment response. Without
such validation, the clinical relevance of GCDH knockout
in vitro remains limit. In addition, regarding GCDH, we
only investigated its correlation with migration and inva-
sion, speculating on the potential mechanism of EMT.
However, we did not validate other phenotypes possibly
associated with GCDH, such as proliferation, apoptosis,
etc. This is also a limitation of our study. Furthermore, we
only validated the most influential ICSMRGs — GCDH’s
role in the progression of LUAD. Similar validation for
other ICSMRGs would further enhance the robustness of
the model. Finally, a more detailed analysis of the molecu-
lar mechanisms underlying the phenotypic effects of gene
expression changes would further elucidate the signifi-
cance of this study. While this study has made preliminary
inferences about the potential role of GCDH in influenc-
ing invasion and migration of LUAD cells through EMT,
deeper mechanisms (such as which signaling pathways
are affected, upstream transcription factors involved, and
potential epigenetic mechanisms like methylation, phos-
phorylation, etc.) have not been thoroughly explored, rep-
resenting further limitations of this study.
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To address these limitations, future research will
focus on continued follow-up and the establishment of
our own cohorts to validate the performance of ICSMI
in larger samples. Furthermore, we will conduct deeper
investigations into GCDH, exploring its relationship
with phenotypes such as proliferation and apoptosis,
and committed to perform in vivo experiments to estab-
lish animal models for a more in-depth study of GCDH
mechanisms in LUAD. Finally, we will employ similar
methods to explore the roles of other ICSMRGs that
have not been validated yet in LUAD, aiming for a more
comprehensive validation of ICSMI reliability.

In essence, our present research introduces a novel
Iron, Copper, and Sulfur-Metabolism Index (ICSMI)
with exceptional accuracy in forecasting the clinical
trajectories of Lung Adenocarcinoma (LUAD) patients.
This pioneering index not only offers profound insights
into the pivotal involvement of iron, copper, and sul-
fur metabolisms in cancer advancement but also initi-
ates fresh avenues for probing gene expression patterns,
employing single-cell RNA-sequencing methodologies,
and harnessing machine learning algorithms to refine
model enhancement.
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