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Machine‑learning developed an iron, 
copper, and sulfur‑metabolism associated 
signature predicts lung adenocarcinoma 
prognosis and therapy response
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Abstract 

Background  Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has com-
bine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures.

Methods  This study encompasses 1564 LUAD patients, 1249 NSCLC patients, and over 10,000 patients with various 
cancer types from diverse cohorts. We employed the R package ConsensusClusterPlus to separate patients into differ-
ent ICSM (Iron, Copper, and Sulfur-Metabolism) subtypes. Various machine-learning methods were utilized to develop 
the ICSMI. Enrichment analyses were conducted using ClusterProfiler and GSVA, while IOBR quantified immune cell 
infiltration. GISTIC2.0 and maftools were utilized for CNV and SNV data analysis. The Oncopredict package predicted 
drug information based on GDSC1. TIDE algorithm and cohorts GSE91061 and IMvigor210 evaluated patient response 
to immunotherapy. Single-cell data was processed using the Seurat package, AUCell package calculated cells gen-
eset activity scores, and the Scissor algorithm identified ICSMI-associated cells. In vitro experiments was conducted 
to explore the role of ICSMRGs in LUAD.

Results  Unsupervised clustering identified two distinct ICSM subtypes of LUAD, each with unique clinical character-
istics. The ICSMI, comprising 10 genes, was constructed using integrated machine-learning methods. Its prognostic 
power was validated in 10 independent datasets, revealing that LUAD patients with higher ICSMI levels had poorer 
prognoses. Furthermore, ICSMI demonstrated superior predictive abilities compared to 102 previously published 
signatures. A nomogram incorporating ICSMI and clinical features exhibited high predictive performance. ICSMI 
positively correlated with patients gene mutations, and integrated analysis of bulk and single-cell transcriptome data 
revealed its association with TME modulators. Cells representing the high-ICSMI phenotype exhibited more malignant 
features. LUAD patients with high ICSMI levels exhibited sensitivity to chemotherapy and targeted therapy but dis-
played resistance to immunotherapy. In a comprehensive analysis across various cancers, ICSMI retained significant 
prognostic value and emerged as a risk factor for the majority of cancer patients.
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Conclusions  ICSMI provides critical prognostic insights for LUAD patients, offering valuable insights into the tumor 
microenvironment and predicting treatment responsiveness.

Keywords  Iron/copper/sulfur, LUAD, Immune, Machine-learning, Prognosis

Introduction
Internationally, lung cancer continues to maintain its 
untoward status as the primary contributor to cancer-
related deaths [1], with lung adenocarcinoma (LUAD) 
representing the predominant histological subtype [2, 3]. 
Despite considerable progress in therapeutic approaches 
for LUAD, the discouraging 5-year overall survival rate 
remains stagnant at below 20% [4].

Iron, as an indispensable trace element, plays a crucial 
role in human physiology. A deficiency or excess of iron 
can significantly impact various biological processes [5]. 
Notably, cancer cells exhibit an augmented reliance on 
iron for proliferation, rendering them more vulnerable 
to iron depletion compared to normal cells. Conversely, 
elevated iron levels can lead to cytotoxicity via mem-
brane lipid peroxidation, a process referred to as ferrop-
tosis [6, 7]. This iron-dependent form of programmed 
cell death has been identified as a promising strategy for 
cancer treatment [8]. While some investigations have 
hinted at the possible involvement of ferroptosis and iron 
metabolism in the pathogenesis and suppression of lung 
cancer, the precise molecular mechanisms underlying 
these associations remain obscure. Further elucidation 
of these regulatory factors may provide valuable insights 
into the development of novel therapeutic strategies for 
this devastating disease. Copper, an essential micronutri-
ent, exercises a pivotal role in numerous biological pro-
cesses, including biocompound synthesis, mitochondrial 
respiration, and antioxidant defense. Disruption of cop-
per homeostasis can lead to oxidative stress and cytotox-
icity [9]. Recently, mounting evidence implicates copper 
in the progression of cancer, particularly in the realms 
of metastasis, angiogenesis, and proliferation [10]. As 
a critical cofactor of mitochondrial cytochrome C, cop-
per serves as a vital intermediary in energy metabolism. 
Consequently, cancer tissues exhibit elevated copper 
levels relative to healthy tissues, underscoring its inte-
gral role in sustaining malignant cellular activity [11]. 
The versatile element sulfur (S), present in two proteino-
genic amino acids – L-cysteine (Cys) and L-methionine 
(Met) – also comprises a wide array of other biologi-
cally significant organic and inorganic small molecules, 
contributing to the multifaceted nature of this essential 
nutrient. Sulfur residues participate in the constitu-
tion of complex disulfide bond architectures within and 
intercalated among proteins, thereby influencing crucial 
biological processes like protein conformation, stability, 

and catalytic competence [12]. Sulfur-bearing molecules 
play a multifaceted role in various physiologic processes, 
including enzyme catalysis, energy transduction, and 
redox homeostasis. Disruptions in these activities con-
tribute to a wide range of diseases, notably cancer [13]. 
Recently, Liu et al.’s groundbreaking study revealed a new 
form of programmed cell death, dubbed disulfidptosis. 
Characterized by the buildup of intracellular disulfides 
in glucose-deprived cells with heightened expression of 
SLC7A11, disulfidptosis differs from both ferroptosis and 
ferroptosis in its mechanism of execution [14]. Previous 
studies were predominantly explored genes involved in 
iron and copper metabolism, while neglecting the poten-
tial involvement of genes related to sulfur metabolism. In 
order to initiate an inquiry into the hitherto unexplored 
realm of sulfur metabolism in LUAD, and further explore 
the role of genes related to iron and copper metabo-
lism, we collected genes related to iron, copper and sul-
fur metabolism, as well as ferroptosis, cuproptosis and 
disulfidptosis, and conducted extensive research.

This research identified two distinct subtypes of LUAD 
based on patients’ metabolic profiles and developed an 
Iron, Copper, and Sulfur-Metabolism Index (ICSMI) to 
predict survival and immune response. Higher ICSMI 
levels correlated with worse prognosis and reduced 
immunotherapy effectiveness, suggesting ICSMI’s poten-
tial as a diagnostic and prognostic tool.

Methods & materials
Source data
The inclusion criteria for LUAD patients’ data are as fol-
lows: (a) diagnosed with histologically confirmed lung ade-
nocarcinoma, excluding other types of lung cancer such as 
lung squamous cell carcinoma, and so forth, (b) underwent 
surgical procedures, (c) possessed available overall survival 
(OS) data, and (d) technical replications were removed if 
deemed necessary. The datasets TCGA-LUAD, GSE72094, 
GSE68465, and GSE31210 fulfilled these criteria. For other 
cancer patients’ data, the inclusion criteria are as follows: 
(a) underlying surgical procedures, (b) probable available 
overall survival (OS) data, and (c) technical replicates were 
removed if necessary. Data on LUAD patients’ clinical 
information, transcriptomic data, as well as CNV and SNV 
data were downloaded from the TCGA database (https://​
portal.​gdc.​cancer.​gov/) [15]. The TCGA-Pancancer data-
set contains data on more than 10,000 patients with 33 
different cancers, also obtained from the TCGA website. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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The SNV data was processed by the R package Maftools, 
and the CNV data was analyzed using GISTIC2.0 [16]. 
Nine GEO datasets for lung cancer patients were obtained 
from the GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/)[17], namely GSE68465, GSE72094, GSE31210, 
GSE37745, GSE41271, GSE3141, GSE30219, GSE42127, 
and GSE81089. GSE31210, GSE72094, and GSE68465 
are cohorts exclusively comprise of LUAD patients; while 
GSE30219, GSE37745, GSE41271, GSE42127, GSE3141, 
and GSE81089 are cohorts consisted of patients with vari-
ety of NSCLC type. Besides, GSE91061, a dataset includes 
information for cancer patients receiving immunotherapy, 
and GSE34228, which contains LUAD cell lines’ sensitivity 
to gefitinib, were also downloaded from GEO. Additionally, 
we gathered transcriptomic and clinical data from cancer 
patients who underwent anti-PD-L1 treatment within the 
IMvigor210 cohort. This information was sourced from the 
following reference: http://​resea​rch-​pub.​gene.​com/​IMvig​
or210​CoreB​iolog​ies [18]. The single-cell RNA-sequencing 
dataset GSE127465 was acquired from the TISCH data-
base [19] and processed in accordance with previously out-
lined procedures [20]. The genes associated with iron and 
copper metabolism were compiled from previously pub-
lished research [21–24]. From the MsigDB database [25], 
we obtained genes associated with sulfur matabolism from 
GO_SULFUR_COMPOUND_METABOLIC_PROCESS, 
GO_SULFUR_COMPOUND_BIOSYNTHETIC_PRO-
CESS, and KEGG_SULFUR_METABOLISM genesets. 
Considering that iron is involved in ferroptosis, copper is 
involved in cuproptosis, and sulfur is involved in disulfidp-
tosis, we also included genes associated with these three 
cell death modes for research [14]. As a result, we identi-
fied 839 Iron, Copper, and Sulfur Metabolism Related 
Genes (ICSMRGs, Table S1). LUAD patients’ TIDE scores, 
which predict ICB response, were calculated on the TIDE 
website (http://​tide.​dfci.​harva​rd.​edu) [26].

Consensus clustering
Following the application of a powerful clustering method 
using the ConsensusClusterPlus package [27], we effec-
tively identified two subgroups within the LUAD patient 
population based on the genetic characteristics of 24 
prognostic ICSMIGs. LUAD patients in these two sub-
groups displayed significant differences in clinical and 
prognostic attributes across four separate cohorts.

Construction of the iron, copper and sulfur‑metabolism 
index
Leveraging ten machine learning algorithms (GBM, RSF, 
SuperPC, Survival-SVM, Lasso, stepwise Cox, Ridge, Enet, 
CoxBoost, and plsRcox), we developed an integrative Iron, 
Copper, and Sulfur-Metabolism Index (ICSMI) via the 

CoxBoost + GBM combination. After conducting a thor-
ough evaluation of 114 varied permutations, we opted for 
this selection, which mirrored our previous approach [20]. 
The detailed introduce of each algorithm and the specific 
implementations of various combinations were illustrated 
in Supplementary Methods. To validate the predictive effi-
cacy of ICSMI, we calculated the area under the receiver 
operating characteristic curve (AUC) utilizing the tim-
eROC package. Moreover, we performed Cox regression 
analysis using the survival package in R to affirm the inde-
pendent prognostic significance of ICSMI. Additionally, 
we retrospectively compiled 102 signatures established 
by prior researchers and contrasted ICSMI’s hazard ratio 
(HR) value and C-index with these markers.

Batch effect mitigation and integration: creating unified 
meta cohorts
We employed the "combat" function from the sva pack-
age to mitigate batch effects present in the TCGA, 
GSE72094, GSE68465, and GSE31210 datasets, integrat-
ing them into a unified dataset termed Meta. Principal 
component analysis (PCA) highlighted notable batch 
effects across the four datasets before applying batch 
effect removal (Supplementary Fig.  1C), which were 
successfully alleviated post-integration (Supplementary 
Fig. 1D).

Functional enrichment analysis
To uncover the biological pathways linked with ICSM-
RGs and ICSMI, we conducted enrichment analyses 
including GO, KEGG, and GSEA using the R package 
ClusterProfiler [28]. Moreover, we utilized the GSVA 
package [29] to perform GSVA analysis, further uncover-
ing the potential mechanisms involved.

Quantifying patients’ immune infiltration level
Seven different algorithms were used to assess LUAD 
patients’ immune cell infiltration in the TCGA dataset. 
These algorithms included quantTIseq, TIMER, EPIC, 
MCP-counter, ESTIMATE, and xCell were implemented 
using the R package ’IOBR’ [30]. Besides, ssGSEA was 
performed by GSVA package. Additionally, the correla-
tion of immune-related molecules’ expression and ICSMI 
were analyzed.

The scissor algorithm
To identify the particular cell populations responsible 
for the noticed variances in ICSMI status, we utilized 
the Scissor algorithm available in the ’Scissor’ pack-
age [31]. By harnessing both bulk data and phenotypic 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
http://tide.dfci.harvard.edu
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information, this methodology facilitates the automated 
selection of cell subpopulations from single-cell datasets 
that predominantly contribute to divergent phenotypes. 
In our study, we compared high-ICSMI patients and low-
ICSMI patients within the TCGA cohort, treating these 
groups as distinct phenotypes. Utilizing transcriptom-
ics data of the high- and low-ICSMI phenotypes across 
all patients, we applied the ’Scissor’ function to associ-
ate each cell in the GSE127465 dataset with its corre-
sponding phenotype. By designating Scissor + cells as 
those most relevant to the high-ICSMI phenotype and 
Scissor- cells as those most pertinent to the low-ICSMI 
phenotype, we identified differentially expressed genes 
(DEGs) between these cell populations using Seurat’s 
’FindAllMarkers’ function. Specifically, genes displaying a 
fold change exceeding |log2 (fold change)|> 0.25 with an 
adjusted p-value (Padj) below 0.05 were considered sig-
nificant DEGs.

Analysis of cell–cell communication in the TME
Using the ’CellChat’ package [32], we explored intercel-
lular interaction within the TME, identifying various 
ligand–receptor pairs that facilitate cross-talk between 
different cell types.

Finding potential drugs targeting ICSMI
By combining the data from the GDSC1 database 
(https://​www.​cance​rrxge​ne.​org/) [33] and the ’onco-
Predict’ package [34], we evaluated the susceptibility of 
LUAD samples to diverse therapeutics, as reflected by 
their IC50 values. The IC50 value represents the con-
centration at which a drug achieves 50% inhibition of 
biological processes, typically measured in in vitro exper-
iments. In cancer research, it is commonly used to assess 
the degree of inhibition a drug exerts on tumor cells. A 
lower IC50 value indicates greater sensitivity, meaning 
the drug achieves a significant inhibitory effect at a lower 
concentration. This enabled us to identify potential tar-
gets for personalized medicine strategies.

Cell culture and transfection
The BEAS-2B normal bronchial epithelial cell line and 
three LUAD cell lines (A549, PC9, H1975) were obtained 
from the Cell Bank of the Chinese Academy of Sci-
ences. These cells were cultured at 37 °C with 5% CO2 in 
DMEM medium (Bioscience, China) supplemented with 
10% FBS (Gibco, USA). Small interfering RNA (siRNA), 
specifically si-GCDH and its corresponding negative 
control, si-NC, were procured from Hanheng Biology 
(Shanghai, China). Utilizing Lipofectamine 3000 (Invit-
rogen, Carlsbad, CA, USA), transfection of siRNA into 

cells was conducted according to the manufacturer’s 
instructions.

qRT‑PCR
Total RNA extraction was performed using an RNA 
extraction kit (Vazyme, China) following the manu-
facturer’s instructions. The extracted RNA was reverse 
transcribed into cDNA using the All-in-One First-Strand 
Synthesis MasterMix kit (iScience, China). Subsequently, 
triplicate aliquots of each cDNA sample were prepared 
using the Taq SYBR® Green qPCR Premix (iScience, 
China). In this study, the internal reference gene utilized 
was β-Actin, and the primers for the five ICSMRGs and 
β-Actin are listed in Table S5.

Western blotting
Total protein extraction from cells was achieved using 
RIPA lysis buffer (Meilun Biotechnology, China). Pro-
tein concentration was determined using a bicinchoninic 
acid protein assay kit (#23,227, Thermo Fisher Scientific, 
Waltham, USA). Denatured proteins were separated 
by 10% SDS-PAGE and transferred onto nitrocellulose 
membranes (Millipore in Bedford, USA). Following a 2-h 
blocking step with 5% skimmed dry milk, the membranes 
were incubated overnight at 4 °C with primary antibod-
ies, namely anti-GCDH (1:1000, Immunoway), and anti-
β-Actin (1:1000, Immunoway), followed by incubation 
with horseradish peroxidase labeled secondary antibod-
ies (ab7090, 1:5000; Abcam). β-Actin served as a normal-
ization control for the expression of target proteins.

Wound healing assays
A549 and PC9 LUAD cells, post-transfection, were plated 
at a density of 105 cells per well in 6-well plates. After 24 
h of incubation, when cells reached approximately 80% 
confluence, a 10-μl pipette tip was employed to create 
uniform scratches on the cell monolayers. Subsequently, 
detached cells were gently washed away using PBS, and 
the bottom of the dish was marked for reference. The 
wound area of each sample was documented at both 
0-h and 24-h time points, with quantitative analysis per-
formed using ImageJ software.

Transwell assays
Invasion and migration assays were conducted using 
Transwell chambers (Scipu002872; Corning Inc., Corn-
ing, USA). For the cell invasion assay, the Transwell 
chamber inserts were precoated with 10 μg Matrigel 
before the experiment. In the upper chamber, 10,000 
cells with 200 μl FBS-free DMEM medium were 
seeded, while 600 μl of culture medium containing 10% 

https://www.cancerrxgene.org/
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FBS was added to the lower chamber. Following a 24-h 
incubation period at 37 °C, the cells remaining attached 
to the membrane were fixed with polyformaldehyde 
and subsequently stained with hematoxylin. Finally, the 
cells in the lower chamber were photographed under a 
high-powered microscope.

Statistic analysis
All statistical analyses were conducted using R (ver-
sion 4.1.1). Group disparities were assessed using either 
the Wilcoxon test or t-test, while correlations were 
examined through Pearson or Spearman correlation 
coefficients. The log-rank test was utilized for overall 
survival comparisons. To assess the prognostic impact 
of ICSMI and clinicopathological factors, multivariate 
Cox regression analysis was performed. Comparison of 
multiple signatures’ C-Index was carried out using the 

CompareC package. For P values, ’Ns’ denotes P ≥ 0.05, 
’’ signifies P < 0.05, ’’ indicates P < 0.01, and ’’ represents 
P < 0.001.

Results
Identification of 24 hub ICSMRGs
After acquiring 839 Iron, Copper, and Sulfur-Metabolic 
Related Genes (ICSMRGs), we conducted enrichment 
analysis on them, and divulged that these genes partici-
pate in biological processes pertinent to iron, copper, and 
sulfur metabolism, including ’response to copper ion’, 
’ferroptosis’, ’iron ion homeostasis’, ’copper ion homeo-
stasis’, ’sulfur compound metabolic process’, and ’sul-
fur amino acid metabolic process’(Fig.  1A). This means 
that we have successfully identified a series of genes 
highly correlated with iron, copper, and sulfur metabo-
lism. To identify genes with reliable prognostic value, 
we employed univariate Cox regression analysis in the 

Fig. 1  Identification of 24 key ICSMRGs. A GO and KEGG analyses demonstrated that these 839 genes we collected were primarily involved 
in processes related to iron, copper, and sulfur metabolism. B 24 ICSMRGs exhibited consensus prognostic value across three cohorts. C Differential 
expression analysis revealed most ICSMRGs exhibiting altered expression patterns between normal and LUAD tissues. D, F These ICSMRGs 
harbored both SNVs (D) and CNVs (F), indicating their potential role in driving tumorigenesis. E Correlation heatmap illustrated the interconnected 
relationships among the 24 genes, highlighting their complex regulatory interactions
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TCGA, GSE72094, and GSE68465 cohorts based on their 
largest sample size, and setting the threshold at 0.05. Sub-
sequently, we intersected the prognostic genes from the 
three cohorts with 839 ICSMRGs, resulting in 24 ICSM-
RGs with consistent prognostic significance (Fig.  1B, 
Table  S2). Then we conducted a comparative analysis 
of the differential expression patterns of these 24 genes 
between normal and tumor tissues in TCGA, revealing 
that the majority of them exhibited significant differen-
tial expression (Fig. 1C). In TCGA cohort, 22 ICSMRGs 
were found to harbor varying levels of mutational activ-
ity, with the majority comprising missense mutations; 
the overall mutation frequency was recorded at 15.08% 
(Fig. 1D). Notably, KIF14 displayed the highest mutation 
frequency among these ICSMRGs. Concomitantly, we 
observed diverse degrees of DNA copy number variation 
in these ICSMRGs, with the majority exhibiting variable 
CNVs; KIF14 also displayed highset CNV amplifications 
(Fig.  1F). Correlation analyses disclosed intricate rela-
tionship amidst the 24 ICSMRGs, encompassing both 
positive and adverse associations (Fig. 1E).

Consensus clustering classifying LUAD patients into two 
Clusters
Utilizing unsupervised clustering on the 24 ICSMRGs, 
we aimed to uncover previously unidentified subtypes 
associated with iron, copper, and sulfur metabolism in 
LUAD. The selection of the optimal number of clus-
ters (k = 2) revealed a notable divergence among groups, 
indicating a clear classification of LUAD patients into 
two distinct groups (Fig.  2A, B). Across four cohorts, 
the differential expression of these 24 ICSMRGs in two 
Clusters maintained homogeneity (Fig.  2C). Besides, we 
found that patients assigned to Cluster 1 exhibited sig-
nificantly better prognoses compared to those in Cluster 
2 (Fig.  2D), with individuals in Cluster 2 demonstrating 
more advanced clinical characteristics (Fig. 2E). Thus, our 
findings reveal two distinct molecular subtypes associ-
ated with iron, copper, and sulfur metabolism, potentially 
unveiling underlying biological heterogeneity in LUAD.

The iron, copper and sulfur‑metabolic index (ICSMI) 
was constructed
The construction of the Iron, Copper, and Sulfur-Meta-
bolic Index (ICSMI) was initiated by utilizing a machine 

learning-driven approach based on the 24 prognostic 
ICSMRGs. Using the TCGA dataset as training set, we 
developed 114 prediction models and assessed their 
performance on three independent validation sets 
(GSE68465, GSE72094, and GSE31210). While cer-
tain models, such as ’RSF,’ ’Stepcox [forward] + RSF,’ 
and ’Lasso + RSF,’ exhibited high C-Index values in the 
TCGA dataset, their performance diminished in the 
validation sets, indicating overfitting. To ensure con-
sistent predictive power across all datasets, we selected 
the ’CoxBoost + GBM’ composition, which yielded a 
model with an average C-Index of 0.7 across all four 
datasets (C-Index: TCGA-0.740; GSE72094-0.689, 
GSE31210-0.726; GSE68465-0.644; Fig.  3A). The Cox-
Boost algorithm selected 10 ICSMRGs (Supplementary 
Fig.  1A), and the GBM algorithm evaluated their rela-
tive influence within the model (Supplementary Fig. 1B, 
Table S3), resulting in a GBM model comprising these 
10 ICSMRGs (Fig. 3A). Kaplan–Meier analysis demon-
strated a significant impact of all 10 ICSMRGs on the 
prognosis of LUAD patients (Supplementary Fig.  1E). 
Using the expression of these 10 ICSMRGs weighted by 
their relative influence, the model computed a riskscore 
for each individual, termed as ICSMI.

The median ICSMI was utilized to stratify patients 
into two distinct groups. Patients in the high-ICSMI 
group exhibited significantly poorer prognoses com-
pared to those in the low-ICSMI group, not only within 
the TCGA training set (Fig. 3B) but also in three exter-
nal validation cohorts, namely GSE68465 (Fig.  3C), 
GSE72094 (Fig.  3D), GSE31210 (Fig.  3E), and Meta 
(Fig.  3F). Additionally, PCA analysis revealed notice-
able differences between individuals with high or low 
ICSMI across all datasets, and time-ROC curves illus-
trate the commendable predictive capabilities of ICSMI 
for predicting patients’ prognosis, with high AUC val-
ues (Fig. 3B-F).

A significant correlation is evident between ICSMI 
and clinical features of LUAD patients
Heatmaps depict the transcriptional profiles of the 10 
ICSMRGs comprising ICSMI across four distinct datasets: 
TCGA, GSE72094, GSE31210, and GSE68465 (Fig. 4A-D). 
In the TCGA cohort, ICSMI in LUAD patients increases 
with the progression of T (Fig. 4E), N (Fig. 4F), and clinical 

Fig. 2  Identification of Two Distinct ICSM Clusters through Consensus Clustering. A LUAD patients were grouped into two molecular clusters (k = 2) 
based on 24 ICSMRGs. B The empirical cumulative distribution function plot depicts the consensus distribution for each k value. C A heatmap 
illustrates the expression profiles of the 24 ICSMRGs across the two clusters. D Survival analysis reveals significant differences in prognosis 
between the two clusters. E An alluvial diagram showcases the relationship between cluster affiliation, survival status, and clinical stage in LUAD 
patients

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Integrated machine-learning for developing ICSMI. A A pragmatic evaluation of 114 distinct models was carried out through C-Index 
assessment across four independent cohorts. B-F Comparative analyses of prognostic variations, PCA, and time-ROC analysis were conducted 
between high- and low-ICSMI groups in TCGA (B), GSE68465 (C), GSE31210 (D), GSE72094 (E), and Meta (F) cohorts
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stage (Fig.  4G). Similarly, in the GSE72094 (Fig.  4H) and 
GSE31210 (Fig. 4I) cohorts, ICSMI increases with clini-
cal stage progression. In the GSE68465 cohort, ICSMI 
elevates with advanced T (Fig.  4J) and N (Fig.  4K) stage, 
with a significant association observed with LUAD histol-
ogy (Fig.  4L). Particularly, in poorly differentiated LUAD 
tissues, ICSMI is highest, followed by moderately differ-
entiated tissues, and lowest in highly differentiated tissues. 
Furthermore, our investigation unveils a negative correla-
tion between ICSMI and patients’ Relapse-Free Survival 
(RFS) in the GSE31210 cohort (Fig. 4M), accompanied by a 
parallel decrease in patients’ Progress-Free Survival (PFS) 
within the TCGA cohort (Fig. 4N). These findings under-
score the potential utility of ICSMI as a prognostic bio-
marker in LUAD. Lastly, across all four cohorts, patients 
assigned to Cluster 2 exhibit markedly higher ICSMI val-
ues compared to those allocated to Cluster 1 (Fig.  4O), 
indicating a notable association between Iron, Copper, and 
Sulfur-Metabolism (ICSM) related molecular subtypes 
and ICSMI.

Comparison the predictive efficacy of ICSMI with existing 
characteristics
To assess the predictive efficacy of ICSMI compared to 
traditional clinical variables in LUAD patients, we con-
ducted an analysis of C-index and AUC values for each 
factor (Fig.  5A-D). Notably, ICSMI exhibited superior 
predictive performance compared to most clinical mark-
ers, indicating its enhanced efficiency. Additionally, we 
evaluated the prognostic potential of ICSMI against 
established LUAD models by integrating data from 102 
prior studies incorporating various biologically relevant 
features like apoptosis, EMT, ferroptosis, cuproptosis, 
necroptosis, and ICD (Table  S6). Impressively, ICSMI 
consistently displayed the highest C-index (Fig.  5E) and 
HR value (Fig. 5F) across multiple cohorts, surpassing the 
majority of existing models. These findings collectively 
highlight ICSMI as a more effective prognostic model for 
LUAD.

Nomogram’s development and validation
To validate the independent predictive value of ICSMI, 
we conducted univariate and multivariate Cox regres-
sion analyses. After excluding the influence of clinical 

variables, our analysis unequivocally established ICSMI 
as a significant predictor of LUAD patient prognosis, 
confirming its status as an independent prognosticator 
not only within the TCGA cohort (Fig.  5A, B), but also 
within the GSE68465, GSE72094, and GSE31210 cohorts 
(Tables 1, 2 and 3). Integrating ICSMI with clinical mark-
ers such as age, gender, and clinical stage, we developed 
a nomogram for forecasting LUAD patient prognosis 
(Fig. 6C). Our model achieved a C-index value of 0.768, 
with calibration plots confirming its accuracy in esti-
mating 1-, 3-, and 5-year survival probabilities (Fig. 6D). 
Additionally, employing decision curve analysis (DCA), 
our nomogram model demonstrated superiority over 
alternative predictors (Fig.  6E). Notably, significant sur-
vival differences were observed between high- and low-
nomogram score groups (Fig.  6F). Furthermore, AUC 
values across four cohorts revealed the remarkable pre-
cision of our nomogram in predicting 1-, 3-, and 5-year 
survival prospects for LUAD patients (Fig. 6G).

ICSMI has significantly relationships with TME
Next, we performed investigations into the underlying 
mechanism behind the remarkable predictive capability 
of ICSMI, particularly its relationships with the Tumor 
Microenvironment (TME). In the TCGA cohort, differ-
ential analysis highlighted genes with differing expression 
levels between groups with high and low ICSMI levels 
(Table S4). The top 50 genes, showing the most significant 
expression differences, were visually depicted (Fig.  7A). 
Additionally, we delved into the impact of the two most 
up-regulated genes in the high-ICSMI group (SLC2A1, 
ANLN) and the two most up-regulated genes in the 
low-ICSMI group (SFTA3, ACSS1) on LUAD patient 
prognosis. Elevated expression of ANLN and SLC2A1 
was associated with poorer prognosis, while increased 
expression of SFTA3 and ACSS1 indicated better prog-
nosis (Fig.  7B, C). This suggests that ICSMI serves as a 
risk factor for LUAD, with high expression correlating 
with adverse outcomes. GSEA analysis unveiled that 
genes positively correlated with ICSMI were predomi-
nantly involved in malignant features, while genes nega-
tively correlated with ICSMI were associated with benign 
features (Fig.  7D, E). GSVA analysis further supported 
these findings, with gene sets linked to malignant features 

Fig. 4  A robust correlation is evident between ICSMI and clinical attributes among LUAD patients. A-D Heatmaps illustrate expression profiles of 10 
ICSMRGs across four datasets. E–G Individuals with high ICSMI in the TCGA Cohort exhibit increased prevalence of advanced T (E), N (F), and clinical 
stage (G). (H-I) ICSMI in LUAD patients escalates with clinical stage advancement in GSE72094 (H) and GSE31210 (I) cohorts. J-L In the GSE68465 
cohort, patients’ ICSMI elevates with T (J) and N (K) stage progression, alongside poorer differentiation (L). M In the GSE31210 cohort, patients’ RFS 
declines with increasing ICSMI. N In the TCGA cohort, patients’ PFS diminishes with rising ICSMI. O Significantly, all four cohorts demonstrate higher 
levels of ICSMI among patients assigned to Cluster 2

(See figure on next page.)
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Fig. 4  (See legend on previous page.)



Page 11 of 26Zhang et al. Respiratory Research          (2024) 25:206 	

Fig. 5  Assessing the predictive capability of ICSMI. A-D Contrasting the C-Index and AUC value of ICSMI with clinical factors in the TCGA (A), 
GSE72094 (B), GSE31210 (C), and GSE68465 (D) cohorts. E Comparing the C-Index of ICSMI with 102 previously published signatures. F Comparing 
the HR-Value of ICSMI with 102 previously published signatures
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showing higher activity in the high-ICSMI group, while 
those related to benign phenotypes exhibited greater 
activity in the low-ICSMI group (Fig. 7F).

Analysis across seven algorithms revealed a negative 
correlation between ICSMI and the majority of immune 
cells, while it correlated positively with epithelial cells 
and CAFs (Fig. 7G). Moreover, ICSMI displayed a nega-
tive correlation with several immune checkpoint mol-
ecules (Fig.  7H). Notably, individuals in the low-ICSMI 
group exhibited more pronounced ’immuno-hot’ fea-
tures, suggesting potential responsiveness to immuno-
therapeutic interventions. This was supported by lower 
TIDE scores in the low-ICSMI group (Fig.  7I), indicat-
ing improved response to immunotherapy. Furthermore, 
analysis of GSE91061 and IMvigor210 datasets showed 
that responders to ICB therapy had lower ICSMI values 
compared to non-responders, and patients in the low-
ICSMI group undergoing immunotherapy demonstrated 
significantly better clinical outcomes (Fig. 7J).

Exploring ICSMI at single‑cell level
In the Bulk-dataset, ICSMI was an independent risk 
factor for LUAD patients. We were also very inter-
ested in the effects of ICSMI at the cellular level, so 
we analyzed the single-cell RNA-sequencing dataset. 
In the GSE127465 dataset, we identified 12 distinct 
cell populations (Fig. 8A) and computed the ICSMI for 
each cell. Remarkably, malignant cells exhibited the 
highest ICSMI values (Fig.  8B), with the high-ICSMI 
group showing a higher proportion of malignant cells 
(Fig.  8C). To pinpoint the cellular sources underlying 
the clinical manifestation associated with high-ICSMI, 
we utilized the "scissor" package to correlate bulk 
RNA-sequencing data with single-cell RNA-sequenc-
ing data. This algorithm autonomously selected cells 
exhibiting extraordinary concordance with the tar-
geted phenotype. We designated high-ICSMI and 
low-ICSMI patient states as primary phenotypes, facil-
itating the identification of a comprehensive collection 

Table 1  Uni- and Multi- variate Cox analysis performed in GSE68465 cohort

Factors Univariate analysis Multivariate analysis

HR value (95% CI) P HR value (95% CI) P

ICSMI 2.018 (1.544—2.637)  < 0.001 1.758 (1.342—2.304)  < 0.001
Age 0.653 (0.501—0.851) 0.002 0.608 (0.465—0.795)  < 0.001
Gender 0.688 (0.528—0.897) 0.006 0.754 (0.572—0.992) 0.044
T Stage 2.770 (1.890—4.058)  < 0.001 2.208 (1.494—3.261)  < 0.001
N Stage 2.814 (2.155—3.675)  < 0.001 2.678 (2.031—3.533)  < 0.001
Chemotherapy 1.677 (1.254—2.244)  < 0.001 1.428 (1.048—1.946) 0.024

Table 2  Uni- and Multi- variate Cox analysis performed in GSE72094 
cohort

Factors Univariate analysis Multivariate analysis

HR value  
(95% CI)

P HR value  
(95% CI)

P

ICSMI 3.385 (2.246—
5.103)

 < 0.001 2.861 (1.860—
4.399)

 < 0.001

Age 0.702 (0.458—
1.076)

0.105 0.729 (0.472—
1.126)

0.154

Gender 1.552 (1.072—
2.246)

0.020 1.542 (1.037—
2.292)

0.033

Clinical Stage 2.562 (1.720—
3.816)

 < 0.001 2.332 (1.540—
3.532)

 < 0.001

Smoking 1.377 (0.601—
3.157)

0.450 0.911 (0.384—
2.164)

0.833

KRAS 1.456 (1.001—
2.118)

0.049 1.026 (0.691—
1.521)

0.900

TP53 1.235 (0.820—
1.860)

0.313 0.892 (0.584—
1.364)

0.599

EGFR 0.262 (0.096—
0.710)

0.008 0.451 (0.159—
1.280)

0.135

Table 3  Uni- and Multi- variate Cox analysis performed in 
GSE31210 cohort

Factors Univariate analysis Multivariate analysis

HR value  
(95% CI)

P HR value  
(95% CI)

P

ICSMI 4.503 (1.965—
10.319)

 < 0.001 3.330 (1.382—
8.026)

0.007

Age 1.025 (0.977—
1.075)

0.306 1.042 (0.993—
1.092)

0.091

Gender 0.658 (0.338—
1.281)

0.219 0.922 (0.360—
2.362)

0.866

Clinical Stage 4.232 (2.175—
8.236)

 < 0.001 2.850 (1.409—
5.765)

0.004

Smoking 0.611 (0.312—
1.195)

0.150 0.834 (0.321—
2.168)

0.710
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Fig. 6  Developing a nomogram. A-B Uni- (A) and multi- (B) vadiate cox regression affirm ICSMI as an independent prognostic determinant. 
C, D Creation of the nomogram (C) and its calibration curve (D) showcase its predictive accuracy. E Decision curve analysis (DCA) curves indicate 
the superior prognostic performance of the nomogram for LUAD patients. F Patients with elevated nomogram scores exhibit poorer prognoses. 
G ROC curves across four cohorts underscore the remarkable predictive prowess of the nomogram



Page 14 of 26Zhang et al. Respiratory Research          (2024) 25:206 

of 1566 high-ICSMI cells (Scissor +) and 2151 low-
ICSMI cells (Scissor-, Fig. 8D). Notably, Scissor + cells 
exhibited significantly higher ICSMI values compared 
to Scissor- cells (Fig.  8E), with Scissor + cells display-
ing the highest ICSMI among all cell types, while 
Scissor- cells had the lowest (Fig.  8F). These findings 
indicate our success in identifying cells in the single-
cell dataset that represent different ICSMI states.The 
AUCell algorithm[35] was used to calculate enrich-
ment scores for multiple gene sets, and we compare 
them between Scissor + and Scissor-. Scissor + scored 
significantly higher than Scissor- for four malignant 
phenotype including ’Lung Cancer Poor Survival’, 
‘Melanoma Metastasis UP’, ‘Cell Cycle’, and ’Epithelial 
Mesenchymal Transition UP’ (Fig.  8G); while Scis-
sor- scored significantly higher that Scissor + for four 
benign phenotypes including ‘Lung Cancer Good Sur-
vival’, ‘Melanoma Metastasis DN’, ‘Differentiating T 
Lymphocyte’, and ’Epithelial Mesenchymal Transition 
DN’ (Fig. 8H). This result is consistent with the GSEA 
analysis performed in the Bulk-data set.

Following this, we delved into the intercellular com-
munication dynamics. The communication network 
among all cells is depicted in Fig.  8I. Interestingly, 
compared to Scissor + cells, Scissor- cells exhibited 
higher effectiveness in transmitting signals to other 
cells (Fig. 8J). Furthermore, when comparing the ability 
of Scissor + and Scissor- to both receive and transmit 
signals, Scissor- demonstrated greater activity in com-
municating with other cells within the TME (Fig. 8 K). 
We observed that Scissor- specifically expressed vari-
ous receptors/ligands to interact with ligands/receptors 
from other cells, a capability not shared by Scissor + . 
Notably, Scissor- expressed TNFSF13, HLA-DRB5, 
CD4, and PECAM1 specifically (Fig.  8L) to exchange 
signals with cells such as CD4Tconv, DC, Monocytes, 
and Fibroblasts. Analysis of bulk TCGA data revealed 
that the expression of these four molecules, specifically 
expressed by Scissor-, was significantly higher in the 
low-ICSMI group (Fig. 8M), and all of them are protec-
tive factors for LUAD (Fig. 8N).

In summary, the characteristics of Scissor ± in the 
single-cell dataset align with those of ICSMI-high/low 

in the bulk dataset, thus corroborating our conclusions 
from different perspectives.

Comparing the different SNV and CNV event between two 
ICSMI groups
We also conducted multi-omics analyses to compare 
the genetic landscape between the high-ICSMI and low-
ICSMI groups. Initially focusing on the top 20 genes with 
the highest mutation frequency, we visually depicted the 
disparities between these groups (Fig.  9A, B). The fol-
lowed examination showed that the top 15 genes with the 
most notable differences in mutation frequency between 
the high- and low-ICSMI groups exhibited higher fre-
quencies within the former (Fig.  9C). Additionally, we 
identified co-mutation relationships among these genes 
(Fig. 9D). A detailed investigation was conducted on the 
most significant mutation differences between the two 
groups, particularly in the genes COL22A1 and TP53. 
We investigated the prognostic implications of muta-
tions in these genes and discovered that such muta-
tions were linked to adverse outcomes for patients with 
LUAD (Fig.  9E). Moreover, ICSMI exhibited a strong 
positive correlation with various forms of gene mutations 
(Fig.  9F), and significantly correlated with aneuploidy 
score (Fig. 9G) and SNV neoantigen (Fig. 9H).

Furthermore, our analysis revealed considerable diver-
gence in CNV events between the two ICSMI groups 
(Fig.  9I, J). Patients in the high-ICSMI group displayed 
a higher frequency and more complex array of CNV 
events, whereas those in the low-ICSMI group exhibited 
fewer and less elaborate CNV events. ChromPlots fur-
ther demonstrated that patients in the high ICSMI group 
had higher G-scores compared to those in the low ICSMI 
group (Fig. 9 K, L), suggesting a propensity for malignant 
features among high-ICSMI patients with LUAD.

Exploration of latent agents targeting ICSMI
To uncover potential therapeutic avenues against ICSMI, 
we examined the connection between ICSMI and com-
monly used drugs for treating LUAD. Among the twelve 
medications analyzed, their IC50 values were nota-
bly lower in the high-ICSMI cohort compared to the 

(See figure on next page.)
Fig. 7  Uncover the potential involvement of ICSMI in the TME. A To identify the most highly correlated genes with ICSMI, a heatmap of the top 50 
genes was generated. B, C Elevated expression of SLC2A1 and ANLN adversely affected the prognosis for LUAD patients, while elevated expression 
of SFTA3 and ACSS1 improved the prognosis for LUAD patients. D, E GSEA analysis unveiled the functional enrichment of genes positively (D) 
or negatively (E) correlated with ICSMI. F GSVA analysis disclosed the gene sets with heightened activity in high- and low- ICSMI groups. G 
An inverse correlation was observed between ICSMI and the infiltration of most immune cells. H ICSMI was found to be negatively correlated 
with the expression of TME modulators. I Patients in the low-ICSMI group exhibited lower TIDE scores. J, K Responders to immunotherapy were 
found to have lower ICSMI levels, and patients receiving immunotherapy with lower ICSMI tended to have better overall survival outcomes 
in the GSE91061 (J) and IMvigor210 (K) cohorts
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Fig. 7  (See legend on previous page.)
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low-ICSMI subset (Fig.  10A). Additionally, correlation 
analysis indicated a negative correlation between ICSMI 
and the IC50 values of these drugs (Fig. 10B), suggesting 
that these medications may be more effective in patients 
with higher ICSMI levels. Particularly noteworthy was 
the observation that LUAD cell lines sensitive to gefitinib 
exhibited significantly higher ICSMI levels compared to 
gefitinib-resistant cell lines (Fig. 10C), providing further 
support for our findings.

Exploring the prognostic value of ICSMI in other cancers 
besides LUAD
Given the impressive performance of ICSMI in predict-
ing the prognosis of LUAD patients, we are highly inter-
ested in exploring its value in predicting the prognosis of 
other types of cancer. First, we investigated the prognos-
tic value of ICSMI in patients with other types of NSCLC. 
We selected six GEO datasets containing information on 
various types of NSCLC patients and calculated ICSMI 
for each patient. The results indicate that, across the six 
independent datasets, patients with high ICSMI have a 
worse prognosis compared to those with low ICSMI, and 
ROC curves showed that ICSMI also had good predic-
tive power (Fig. 11A). Next, we obtained the TCGA-Pan-
cancer dataset, which contains information about over 
11,000 patients with 33 different types of cancer. PCA 
analysis shows that patients between high and low ICSMI 
groups exhibit distinct features (Fig.  11B). Notably, 
patients in the high ICSMI group have significantly lower 
OS than those in the low ICSMI group (Fig.  11C). Fur-
thermore, as the clinical stage advances, ICSMI displays 
a gradually increasing trend (Fig. 11D). We then analyzed 
the prognostic value of ICSMI in each cancer individu-
ally. The HR value of ICSMI was found to be greater than 
1 in most cancers, indicating that ICSMI is a risk factor 
for most cancer patients (Fig. 11E), specifically for those 
patients with ACC, CESC, HNSC, KICH, KIRC, KIRP, 
LGG, LIHC, MESO, PAAD, UCEC, SARC (Fig. 11F).

Validation of hub ICSMRGs’ expression by qRT‑PCR
To improve the credibility of our study, we opted to verify 
the expression of hub ICSMRGs. Our analysis revealed 

that within the GBM model comprising 10 ICSMRGs, 
five exhibited a relative influence exceeding 10 in the for-
mation of ICSMI. Therefore, we defining these 5 ICSM-
RGs, namely GCDH, ST3GAL4, LDHA, FKBP4, and 
PEBP1 as hub ICSMRGs. In comparison with BEAS-2B, 
the expression of GCDH, LDHA, and FKBP4 shows an 
increasing trend in LUAD cell lines, while the expres-
sion of PEBP1 exhibits a decreasing trend. However, the 
expression of ST3GAL4 does not display significant dif-
ferences between normal lung epithelial cells and LUAD 
cells. In summary, the expression trends of these five 
key ICSMRGs are generally consistent with the results 
analyzed in the TCGA dataset, laying the foundation 
for future functional experiments targeting these genes 
(Fig. 12).

Knockdown of GCDH promoted LUAD cells’ migration 
and invasion
Among the 10 ICSMRGs utilized in constructing ICSMI, 
GCDH exerts the most significant influence (Supplemen-
tary Fig. 1B). Furthermore, it’s noteworthy that no study 
has yet explored the impact of GCDH on LUAD. There-
fore, we decided to further explore the role of GCDH in 
LUAD. In our bioinformatics analysis, GCDH is a pro-
tective factor, which indicates that patients with higher 
expression of GCDH have a better prognosis (Fig.  13A). 
Next, we performed in  vitro experiments to explore the 
potential phenotypes associated with GCDH. The expres-
sion of GCDH was significantly reduced by siRNA’s 
knockdown in both A549 (Fig.  13B) and PC9 (Fig.  13C) 
cells. Wound healing assay showed that knockdown of 
GCDH improved the migration abilities of both A549 
(Fig. 13D) and PC9 (Fig. 13E) cells. In addition, the tran-
swell assay also demonstrated that knocking out GCDH 
can promote the migration and invasion of A549 (Fig. 13F) 
and PC9 (Fig. 13G) cells. The results of the wound heal-
ing experiment (Fig.  13H) and the transwell experiment 
(Fig. 13I, J) both demonstrate statistical significance, indi-
cating that knocking down GCDH significantly promotes 
the migration and invasion ability of A549 and PC9 cells. 
Epithelial-Mesenchymal Transition (EMT) is also a malig-
nant phenotype closely associated with migration and 

Fig. 8  Utilizing the Scissor algorithm to segregate high- and low- ICSMI characteristics within the single-cell dataset. A Mapping the distribution 
of 12 cell populations within the tumor microenvironment (TME) using the UMAP plot. B Violin plot illustrating the spectrum of ICSMI levels 
across diverse cell types. C The high-ICSMI group showed an elevated proportion of malignant cells. D Identified 1566 high-ICSMI cells (Scissor +) 
and 2151 low-ICSMI cells (Scissor-). E Notably, Scissor + cells exhibited substantially higher ICSMI levels compared to Scissor-. F Among all cell 
types, Scissor ± displayed the most varied ICSMI levels. G, H Scissor + demonstrated heightened scores indicative of a malignant phenotype (G), 
while Scissor- scored higher for a benign phenotype (H). I Comprehensive depiction of cellular communication networks. J Scissor- showed robust 
signaling transmission capabilities within the TME. K Comparison of Scissor ± cells’ proficiency in signal reception and transmission within the TME. L 
Scissor- exhibited specific molecule expression tailored to pair with ligands from other cells. M These molecules exhibited elevated expression levels 
in low-ICSMI patients. N The four molecules specifically expressed by Scissor- are identified as protective factors for LUAD

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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Fig. 9  The genetic landscape displayed significant differences between the two ICSMI groups. A, B Comparison of somatic mutation frequencies 
in high- (A) and low- (B) ICSMI patient cohorts. (C, D) Identification of the top 15 differentially mutated genes between the two groups (C), 
accompanied by significant co-occurrences among them (D). E Mutations in COL22A1 and TP53 are associated with poorer prognosis. F, H 
Positive correlation of ICSMI with two forms of gene mutation (F), aneuploidy score (G), and SNV neoantigen (H). (I-J) Analysis of the top 20 copy 
number variations (CNVs) in the high- (I) and low- (J) ICSMI groups. K, L Visualization of patients’ G-scores using chromosomal plots in the high- (K) 
and low- (L) ICSMI groups
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invasion. Tumor cells undergoing EMT exhibit higher 
malignancy and are more prone to metastasis. There-
fore, we investigated the relationship between GCDH 
and EMT. We downloaded the GSE114761 dataset from 
the GEO database, which includes EMT data from lung 

adenocarcinoma cell lines. We found that the expression 
of GCDH was significantly lower in cells undergoing EMT 
compared to those not undergoing EMT, and the propor-
tion of cells undergoing EMT in the low-GCDH group is 
significantly higher than that in the high-GCDH group 

Fig. 10  Chemotherapy and targeted therapy might exhibit heightened efficacy in high-ICSMI patients. A Variations in IC50 values of 12 frequently 
prescribed drugs between high- and low- ICSMI cohorts are evident. B Correlation between ICSMI levels and drugs’ IC50 values is observed. C 
Differences in ICSMI are apparent between cell lines sensitive versus resistant to gefitinib
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Fig. 11  ICSMI’s value in pan-cancer cohort. A 6 independent cohorts affirmed that NSCLC patients with higher ICSMI had poorer prognosis. B 
The PCA plot uncovering distinct characteristics of different ICSMI group patients. C Patients with higher ICSMI had poorer OS. D ICSMI increased 
with Stage progressed. E ICSMI is a risk factor for most cancer patients. F High ICSMI leads to poorer prognosis in 12 types of cancer patients
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(Fig. 13K). Thus, low expression of GCDH may also pro-
mote EMT in LUAD cells.

Therefore, knocking out GCDH can promote the 
malignant phenotype of LUAD cells, and LUAD cells 
undergoing EMT exhibit lower GCDH expression, sug-
gesting a protective role of GCDH in LUAD. This finding 
aligns with our bioinformatics analysis, indicating that 
patients with high GCDH expression have better progno-
ses. It further validates the conclusion of our study and 
the reliability of ICSMI.

Discussion
The labyrinthine biology and varied clinical manifes-
tations of lung cancer present significant hurdles for 
medical professionals. Yet, recent progress in high-
throughput sequencing have paved the way for the dis-
covery of new prognostic markers. These advancements 
empower healthcare providers to predict patient out-
comes more precisely and tailor therapeutic approaches 
accordingly. Disruptions in the regulation of iron, cop-
per, and sulfur metabolism can predispose individuals to 
various diseases. Precedent research has elucidated the 

function of genes implicated in iron and copper metab-
olism on LUAD TME, unequivocally establishing their 
impact upon treatment efficacy [22, 24, 36]. Conversely, 
the investigation of sulfur metabolism’s involvement 
in LUAD pathogenesis remains relatively unexplored, 
and iron, copper, and sulfur-metabolism genes have not 
been combined together to create prognostic signatures. 
With an eye toward unveiling the heretofore mysterious 
realm of sulfur metabolism in LUAD and deepening our 
understanding of iron and copper metabolism within this 
context, we comprehensively compiled iron, copper, and 
sulfur-metabolism related genes for studying.

This study marks the inaugural comprehensive analy-
sis of iron, copper, and sulfur metabolism in the context 
of LUAD. We delineate two distinct subtypes of LUAD 
characterized by aberrations in iron, copper, and sul-
fur metabolism (ICSM), and introduce an ICSM-based 
predictive signature, termed ICSMI, through integrated 
machine learning. Across multiple independent cohorts, 
ICSMI demonstrates significant prognostic value, sur-
passing the predictive power of 102 previously published 
LUAD prognostic models. A nomogram incorporating 

Fig. 12  Validation of five hub ICSMRGs’ expression at cell lines. A-E The expression of GCDH (A), ST3GAL4 (B), LDHA (C), FKBP4 (D), and PEBP1 (E) 
in normal lung epithelial cell lines and three LUAD cell lines
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Fig. 13  Knockdown of GCDH promotes LUAD cells’ malignant phenotype. A High expression of GCDH confers better prognosis in the TCGA cohort. 
B, C The expression of GCDH was significantly reduced by siRNA’s knockdown in both A549 (B) and PC9 (C) cells. D, E Wound healing experiment 
performed in A549 (D) and PC9 (E) cells. F, G Transwell experiment performed in A549 (F) and PC9 (G) cells. H The result of the wound healing 
experiment was statistically significant. I, J Transwell experiment showed that knockdown of GCDH promotes LUAD cells’ migration (I) and invasion 
(J) ability. K Lung adenocarcinoma cells undergoing EMT had lower GCDH expression
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clinical features and ICSMI achieves commendable 
performance. Single-cell analyses reveal that ICSMI is 
most elevated in malignant cells, while cells identified as 
ICSMI-high phenotype via the Scissor algorithm exhibit 
prominent malignant attributes. Furthermore, a signifi-
cant correlation is uncovered between ICSMI and TME 
regulators and therapeutic responsiveness, with prognos-
tic significance extending to other cancer types. ICSMI 
comprises 10 ICSM-related genes (ICSMRGs), includ-
ing GCDH, ST3GAL4, LDHA, FKBP4, PEBP1, DDIT4, 
KIF14, RRM2, SERPINB5, and ST3GAL6. Among these, 
ST3GAL4, LDHA, FKBP4, DDIT4, KIF14, RRM2, and 
SERPINB5 emerge as risk factors for LUAD, while 
GCDH, PEBP1, and ST3GAL6 are identified as protec-
tive factors. Previous studies have shown that LDHA can 
interact with APOL3 to regulate TME and ferroptosis 
[37, 38], meaning it’s an important TME and ferroptosis 
regulator. In addition, studies have shown that histone 
demethylated LDHA promotes lung metastasis of osteo-
sarcoma [39], which further elucidated its risky role. In 
studies by Zong et al. and Meng et al., FKBP4 has been 
demonstrated to facilitate LUAD progression through 
distinct pathways, including NF-κB and mTOR [40, 41]. 
RRM2 was identified as a factor influencing the advance-
ment of lung cancer and impacting the infiltration of 
immune cells within tumors. Inhibition of RRM2 effec-
tively induced polarization towards M1 macrophages 
while suppressing M2 macrophage polarization. Addi-
tionally, treatment with the ferroptosis inhibitor ferro-
statin-1 efficiently restored the balance of macrophage 
polarization disrupted by RRM2 inhibition [42]. Further-
more, the significant correlation between two ICSMRGs, 
namely KIF14 and PEBP1, and GPX4—a lipid peroxidase 
known for its ability to trigger ferroptosis—suggests a 
clear association between these genes and the ferroptotic 
process [43, 44]. The effects of some ICSMRGs on iron, 
copper, and sulfur metabolism have not been determined, 
but some studies suggest that they may be involved in the 
development of LUAD, such as SERPINB5 stimulates 
proliferation, metastasis, and EMT in LUAD, while ele-
vated DDIT4 expression correlates with an unfavorable 
prognosis in LUAD [45, 46]. However, studies on the role 
of GCDH, ST3GAL4, and ST3GAL6 in LUAD and their 
effects on iron, copper, and sulfur metabolism are lack-
ing. Therefore, our future research aims to explore the 
function of these genes in depth.

Immunotherapy presents additional chances to pro-
long life for LUAD patients with malignancies, thus pro-
viding a glimmer of hope for individuals grappling with 
this challenging illness [47]. Through the analysis of the 
interaction between ICSMI and the tumor microen-
vironment (TME), we uncovered an inverse relation-
ship between ICSMI and the majority of immunocytes 

and immunomodulators. Enrichment analysis further 
underscored a prevalence of immunologically significant 
functions within low-ICSMI cohorts. Consequently, indi-
viduals exhibiting decreased ICSMI levels demonstrate 
"immune hot" traits characterized by intensified immu-
nocyte infiltration. It’s worth noting that prior studies 
have hinted at the beneficial association between height-
ened infiltration of most immune cells in the TME and 
improved prognosis for LUAD, hinting their potential 
role in tumor growth suppression [48]. Therefore, this 
observation may partly elucidate why patients with high 
ICSMI levels tend to have poorer prognoses. Notably, 
individuals with low ICSMI levels exhibited significantly 
lower TIDE scores, suggesting that the TIDE algorithm 
predicts augmented sensitivity to immunotherapy in 
this group. This supposition was substantiated in the 
GSE91061 and IMvigor210 immunotherapy cohorts, 
underscoring the pivotal role of ICSMI as a predictive 
biomarker for immunotherapeutic efficacy. Moreover, 
leveraging single-cell datasets, we delved into the cellular 
expression of ICSMI. Our findings revealed that malig-
nant cells displayed the highest ICSMI. Subsequently, 
using bulk datasets, we segregated high- and low-ICSMI 
samples into distinct phenotypes and utilized the Scissor 
algorithm to project these phenotypes onto single-cell 
data, identifying cells closely associated with each ICSMI 
status. The resulting Scissor- and Scissor + phenotypes 
corresponded to low and high ICSMI statuses, respec-
tively. Scissor + exhibited more aggressive features, such 
as reduced interaction with the TME and a significant 
positive correlation with poor prognosis in lung can-
cer patients. In contrast, Scissor- displayed enhanced 
interaction with the TME, bolstering immune-related 
functional activity and correlating with improved prog-
nosis in lung cancer patients. Furthermore, Scissor- cells 
exhibited specific expression of receptors/ligands for 
signaling with immune cells in the TME, including CD40, 
TNFSF13, HLA-DRB5, and PECAM1. Notably, Scis-
sor- exhibited higher expression levels of these molecules 
compared to Scissor + , and patients from the low-ICSMI 
group showed even higher expression in bulk data, rein-
forcing the concordance between Scissor ± and ICSMI-
High/Low statuses and validating our conclusions.

The Oncopredict package was also used to forecast 
patient responsiveness to drug therapy. The findings 
revealed that the IC50 values of both chemotherapeu-
tic and targeted drugs commonly employed in treating 
NSCLC were lower in the High-ICSMI group. This sug-
gests that patients with lower ICSMI levels may derive 
greater benefits from treatment with these drugs. Addi-
tionally, in the GSE34228 dataset, we corroborated 
the oncopredict prediction: gefitinib-sensitive LUAD 
cell lines exhibited elevated ICSMI levels. Hence, 
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immunotherapy may be a viable option for patients with 
low ICSMI, whereas chemotherapy and targeted therapy 
may be more suitable for those with high ICSMI. Moreo-
ver, in our pan-cancer analysis, we discovered that ICSMI 
serves as a risk factor for most cancer patients, positively 
associated with malignant phenotypes while inversely 
correlated with immune activity. This indicates that the 
prognostic utility of ICSMI may extend beyond LUAD 
patients, potentially encompassing individuals with other 
cancer types.

In fact, this study’s idea was inspired to some extent 
by Zou et  al.’s research [49], which systematically incor-
porated genes associated with 12 different programmed 
cell death, and constructed a 12-gene CDI for predicting 
the prognosis of breast cancer patients. However, there is 
currently a lack of systematic studies on genes related to 
iron, copper, and sulfur-metabolism in cancer. In order to 
create a prognostic signature composed of ICSM-related 
genes for the first time to predict the prognosis of LUAD 
patients, and to provide inspiration for future research 
on the role of ICSM-related genes in other cancers, we 
designed and completed this study. After constructing the 
ICSMI using machine-learning methods, we found that it 
has higher C-Index and AUC values compared to existing 
clinical features such as age, gender, smoking, and clini-
cal stage (Fig.  13A-D), and it has shown higher C-Index 
and HR values in almost all four independent cohorts 
compared to 102 previously published prognostic models. 
This indicates the significant value of ICSMI in predict-
ing the prognosis of LUAD patients. Furthermore, there 
have been no prior studies investigating GCDH in LUAD. 
Therefore, our study is the first to reveal the potential 
role of GCDH in LUAD progression, highlighting it as a 
potential protective factor. Through in vitro experiments, 
we found that knockdown GCDH enhances the migration 
and invasion capabilities of two LUAD cell lines (A549 and 
PC9). However, the underlying mechanism behind why 
downregulating GCDH enhances the migration and inva-
sion capabilities of LUAD cells remains unclear. Epithelial-
Mesenchymal Transition (EMT) is a biological process 
during which epithelial cells undergo molecular changes 
that enable them to acquire mesenchymal-like character-
istics. This transition involves the loss of epithelial fea-
tures such as cell–cell adhesion and apical-basal polarity, 
accompanied by the acquisition of mesenchymal traits 
including increased motility, invasiveness, and resistance 
to apoptosis [50, 51]. EMT is a critical event in embry-
onic development, tissue remodeling, wound healing, 
and cancer progression, including lung adenocarcinoma. 
Therefore, we hypothesized that GCDH might promote 
the migration and invasion of LUAD cells through the 
potential mechanism of EMT. To preliminarily validate 
our hypothesis, we downloaded the dataset GSE114761 

containing EMT information of LUAD cells and found 
that the expression of GCDH was significantly lower in 
cells undergoing EMT compared to those not undergoing 
EMT, and the proportion of cells undergoing EMT in the 
low-GCDH group is significantly higher than that in the 
high-GCDH groups, which suggesting that low expression 
of GCDH might promote EMT of LUAD cells. This is con-
sistent with the results of our in  vitro experiments (low 
expression of GCDH promotes migration and invasion of 
LUAD cells). Therefore, we speculate that EMT could be a 
potential mechanism by which GCDH promotes invasion 
and migration of LUAD cells. Although the study exhib-
ited ICSMI’s impressive potential in predicting prognosis 
and assessing treatment response in LUAD patients, and 
uncover a new protective factor—GCDH of LUAD for the 
first time, there exist several limitations. Firstly, the major-
ity data employed in this research were sourced from 
publicly available databases. Furthermore, we did not vali-
date the predictive efficacy of ICSMI in our own clinical 
cohort. The practical application of ICSMI in clinical set-
tings requires confirmation through large-sample clinical 
studies. Besides, we have yet to comprehensively explore 
the function of specific ICSMI-associated ICSMRGs in 
LUAD. This study primarily relies on in vitro experiments 
to investigate the role of GCDH in LUAD progression. 
While these experiments provide valuable insights into 
cellular mechanisms, they fail to fully capture the com-
plexity of tumor behavior in  vivo. Therefore, the lack of 
in  vivo validation represents a significant limitation of 
this study. In vivo models would allow for a more compre-
hensive understanding of the impact of GCDH on tumor 
growth, metastasis, and treatment response. Without 
such validation, the clinical relevance of GCDH knockout 
in vitro remains limit. In addition, regarding GCDH, we 
only investigated its correlation with migration and inva-
sion, speculating on the potential mechanism of EMT. 
However, we did not validate other phenotypes possibly 
associated with GCDH, such as proliferation, apoptosis, 
etc. This is also a limitation of our study. Furthermore, we 
only validated the most influential ICSMRGs — GCDH’s 
role in the progression of LUAD. Similar validation for 
other ICSMRGs would further enhance the robustness of 
the model. Finally, a more detailed analysis of the molecu-
lar mechanisms underlying the phenotypic effects of gene 
expression changes would further elucidate the signifi-
cance of this study. While this study has made preliminary 
inferences about the potential role of GCDH in influenc-
ing invasion and migration of LUAD cells through EMT, 
deeper mechanisms (such as which signaling pathways 
are affected, upstream transcription factors involved, and 
potential epigenetic mechanisms like methylation, phos-
phorylation, etc.) have not been thoroughly explored, rep-
resenting further limitations of this study.
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To address these limitations, future research will 
focus on continued follow-up and the establishment of 
our own cohorts to validate the performance of ICSMI 
in larger samples. Furthermore, we will conduct deeper 
investigations into GCDH, exploring its relationship 
with phenotypes such as proliferation and apoptosis, 
and committed to perform in vivo experiments to estab-
lish animal models for a more in-depth study of GCDH 
mechanisms in LUAD. Finally, we will employ similar 
methods to explore the roles of other ICSMRGs that 
have not been validated yet in LUAD, aiming for a more 
comprehensive validation of ICSMI’ reliability.

In essence, our present research introduces a novel 
Iron, Copper, and Sulfur-Metabolism Index (ICSMI) 
with exceptional accuracy in forecasting the clinical 
trajectories of Lung Adenocarcinoma (LUAD) patients. 
This pioneering index not only offers profound insights 
into the pivotal involvement of iron, copper, and sul-
fur metabolisms in cancer advancement but also initi-
ates fresh avenues for probing gene expression patterns, 
employing single-cell RNA-sequencing methodologies, 
and harnessing machine learning algorithms to refine 
model enhancement.
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