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Abstract 

Background  This study aimed to investigate the interactions among three core elements of respiratory infection—
pathogen, lung microbiome, and host response—and their avocation with the severity and outcomes of Mycoplasma 
pneumoniae pneumonia (MPP) in children.

Methods  We prospectively collected bronchoalveolar lavage fluid from a cohort of 41 children with MPP, includ-
ing general MPP (GMPP) and complicated MPP (CMPP), followed by microbiome and transcriptomic analyses to char-
acterize the association among pathogen, lung microbiome, and host response and correlate it with the clinical 
features and outcomes.

Results  The lung microbiome of patients with CMPP had an increased relative abundance of Mycoplasma pneu-
moniae (MP) and reduced alpha diversity, with 76 differentially expressed species. Host gene analysis revealed a key 
module associated with neutrophil function and several inflammatory response pathways. Patients with a high rela-
tive abundance of MP, manifested by a specific lung microbiome and host response type, were more prone to CMPP 
and had a long imaging recovery time.

Conclusion  Patients with CMPP have a more disrupted lung microbiome than those with GMPP. MP, lung microbi-
ome, and host response interacts with each other and are closely related to disease severity and outcomes in children 
with MPP.
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Introduction
Mycoplasma pneumoniae (MP) is one of the main path-
ogens of community-acquired pneumonia (CAP) in 
children. Clinical manifestations of Mycoplasma pneu-
moniae pneumonia (MPP) vary and can be accompanied 
by multiple complications, ranging from local complica-
tions such as parapneumonic effusion [1], and necrotiz-
ing pneumonia [2], to systemic complications such as 
respiratory failure [3], which could be defined as compli-
cated CAP (CCAP) [4]. However, the exact mechanism 
of CCAP progression in patients with M. pneumoniae 
pneumonia (MPP) requires further investigation.

Host responses are essential in MPP development. 
Patients with CCAP in MPP are often characterized by 
persistent fever and high levels of inflammatory indi-
cators, implying a strong systemic inflammatory host 
response [1, 5]. Sequencing of MP-infected epithelial 
cells indicated MP’s inherent ability to modulate host 
immune pathways [6]. MP infection-mediated lung 
injury was significantly mitigated in immunosuppressed 
hosts [7]. Additionally, the improvement of clinical symp-
toms with proper treatment using glucocorticoids and 
immunoglobulins suggests a key role of host response in 
MPP [8].

The respiratory microbiome also contributes to pulmo-
nary immune response regulation [9]. Compositional and 
functional changes in this microbiome disrupt the overall 
host-microbiota balance, altering mechanisms of coloni-
zation resistance, which in turn affect infection outcomes 
[10]. Multiple studies have associated an altered airway 
microbiome with respiratory diseases, including venti-
lator-associated pneumonia, asthma, and bronchiectasis 
[11–13]. The airway microbiome in patients with MPP 
is imbalanced and related to disease severity [9, 14, 15]. 
Pathogens, lung microbiome, and host response are the 
three core elements of respiratory infections [2]. How-
ever, the correlation among MP, airway microbiome, and 
host response in MPP remains poorly understood.

We performed metagenomic next-generation sequenc-
ing (mNGS) and transcriptomic analysis of the bron-
choalveolar lavage fluid (BALF) from a cohort study of 
patients with MPP. One of our previous studies revealed 
that the lung microbiota in the BALF was not signifi-
cantly different between the severe and opposite sides 
[16]; however, we did not group the children according 
to the disease severity. In the present study, we investi-
gated the interactions among the three core elements of 
respiratory infection and their association with disease 
severity and outcome by analyzing the sequencing results 
for a better understanding of MPP development and 
progression.

Methods
Patients and clinical information
Our study included patients with MPP hospitalized in 
the Department of Respiratory Medicine at the Chil-
dren’s Hospital of Nanjing Medical University between 
January and December 2021. This study was approved 
by the research ethics committee of our institution 
(approval number: 202012089-1) and complied with 
the Declaration of Helsinki. The parents of all partici-
pating children provided informed consent before their 
inclusion in the study.

Inclusion criteria: (1) presence of fever and respira-
tory symptoms; (2) pneumonia confirmed by chest 
X-ray; and (3) positive serologic test (positive serum 
MP Immunoglobulin M, or seroconversion in paired 
sera) and positive MP polymerase chain reaction (DNA 
expansion increments ≥ 1 × 103 copies/mL) results for 
nasopharyngeal aspirates.

Exclusion criteria: patients (1) with bronchopul-
monary dysplasia, congenital heart disease, immuno-
deficiency, or hereditary neurological disorders, (2) 
coinfected with other pathogens, as determined by 
virus testing, nasopharyngeal aspirate culture, blood, 
alveolar lavage fluid, or pleural effusion culture, and (3) 
who did not agree to participate in this clinical study.

Persistent fever or poor chest imaging performance 
following adequate care and treatment with macrolide 
antibiotics indicated the need for Bronchoscopy, which 
was performed under intravenous-inhalation combi-
nation anesthesia. BALF samples were collected and 
stored at − 80℃.

Complicated MPP (CMPP) was defined as the pres-
ence of a combination of local (e.g., parapneumonic 
effusion, empyema, necrotizing pneumonia, and lung 
abscess) and systemic (e.g., bacteremia, metastatic 
infection, multi-organ failure, acute respiratory distress 
syndrome, disseminated intravascular coagulation, and 
rarely death) complications [4]. Otherwise, MPP was 
general MPP (GMPP).

Information was prospectively collected from 
patients’ medical records. The clinical information 
included age, sex, extrapulmonary complications, total 
fever duration, length of hospital stay, and hospitaliza-
tion expenses. Laboratory data included white blood 
cell (WBC) count, neutrophil percentage (N%), C-reac-
tive protein (CRP), alanine transaminase (ALT), aspar-
tate transaminase (AST), lactate dehydrogenase (LDH), 
and D-dimer levels.

Nucleic acid extraction of BALF samples, library 
preparation, and sequencing were described in our pre-
vious study [16].
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Lung microbiome analysis
Microbial reads were obtained by mapping the ID-seq 
database sequence data with host sequences removed 
using SNAP v1.0 beta.18. The primary abundance com-
positions of the microorganisms in the CMPP and 
GMPP groups at the species level were visualized. Total 
bacterial load, MP load, MP relative abundance were 
quantitative skewness data, presented as median (inter-
quartile range), and were analyzed using the Wilcoxon–
Mann–Whitney rank-sum test. Percent of MP as the 
most dominant was categorical data are expressed as fre-
quencies and examined using the chi-square test.

The vegan package in R software was used to analyze 
the microbiome’s alpha and beta diversity of the micro-
biome. Alpha diversity metrics (ACE, Chao1 estima-
tor, Shannon and Simpson Indices) presented as median 
(interquartile range), and were analyzed using the Wil-
coxon–Mann–Whitney rank-sum test. Beta diversity was 
measured by the Bray-Curtis distance test. Principal coor-
dinate analysis (PCoA) and nonmetric multidimensional 
scaling (NMDS) were used to visualize similar distances 
between samples. Relative abundance differences of the 
microorganisms ranked in the top 10 between the GMPP 
and CMPP groups at the species level were displayed. The 
samples were clustered based on the relative abundance of 
species in each sample and the Bray-Curtis distance.

The microbiome network was constructed using the 
CoNet plug-in in Cytoscape. Before constructing the net-
works, we removed all taxon in the sample that were less 
than the minimum occurrence value of 20 and converted 
the count to the relative abundance. Permutations and boot-
straps were performed 100 times each, and then the 2 dis-
tributions were compared using a z-test for each of the 4 
methods including 2 measures of correlation (Pearson and 
Spearman) and 2 measures of dissimilarity (Bray-Curtis dis-
similarity and Kullback-Leibler divergence) [17]. The associ-
ations between bacterial genera from each of the 4 methods 
were ranked by correlation coefficients or dissimilarity val-
ues and prefiltered so that, for each measure, the top 1000 
and bottom 1000 of associations were identified for input 
into the downstream network reconstruction algorithm. 
The detailed procedure was referred to the previous studies 
[17, 18]. Cytoscape 3.9.1 was used for network visualization.

The differentially expressed species (DES) of the 
microbiome ranked in the top 10 between the CMPP 
and GMPP groups were selected using linear discrimi-
nant analysis (LDA) effect size (LEfSe). The DESs were 
determined by an LDA score > 2.0, and a P < 0.05. The 
microbiomeMarker R package was used for LEfSe.

Transcriptomic evaluation
Read count normalization and differential expression 
analyses were performed using the DESeq2 package. 

Differentially expressed genes (DEGs) were determined 
with an adjusted P < 0.05 and an absolute Log2FC > 1. 
The clusterProfiler package was used for Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses. Benjamini-Hoch-
berg adjusted P < 0.05 showed significant enrichment.

Exploring immune cell infiltration
To infer the composition of immune cells, the CIBERSORT 
algorithm with the original CIBERSORT gene signature 
file LM22 and 1,000 permutations was used to examine the 
relative proportions of the 22 invasive immune cell types in 
each sample [19]. We also validated neutrophil infiltration 
using two other algorithms (Single-sample Gene Set Enrich-
ment Analysis (ssGSEA) and MCPcounter. All the data were 
presented as median (interquartile range), and were ana-
lyzed using the Wilcoxon–Mann–Whitney rank-sum test.

Weighted gene co‑expression network analysis (WGCNA)
Based on the gene expression profiling, the goodSam-
plesGenes method in WGCNA package of R software was 
used to remove the outliers of genes and samples [20]. 
Then the MAD (Medium Absolute Deviation) of each 
gene was calculated to retain the top 50% of the genes. The 
Euclidean distance between the samples was calculated to 
remove an abnormal sample by clustering. WGCNA was 
carried out by the WGCNA R package [20], with the fol-
lowing parameters: β = 10, minModuleSize = 100, and 
mergeCutHeight = 0.4. The correlation coefficients and 
corresponding P-values between the different modules 
and clinical traits were calculated and visualized using a 
heat map. The module showing the highest correlation 
with the clinical features was identified as the key module. 
The intersection of key genes in the key module and DEGs 
was selected to explore the module biological function 
through GO and KEGG enrichment analysis.

Protein–protein interaction (PPI) network construction 
and examination
The STRING database (http://​string-​db.​org) (version 
11.5) was used to construct the PPI network, which was 
visualized using Cytoscape software (version 3.9.1). The 
top 10 hub genes were identified using the cytoHubba 
plug-in in Cytoscape [18].

Examining interactions of pathogen, lung microbiome, 
and host responses and correlating them with disease 
severity and outcomes
To construct microbiome-transcriptome network, 
we used spearman correlation to assess associations 

http://string-db.org
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between the 76 DES and 1293 DEGs. Medium above 
correlations (P < 0 0.05 and |r| > 0.4) were visualized as 
an interactive network using Cytoscape version 3.9.1.

The linkET R package was used to calculate and 
visualize the associations among the clinical features, 
microbiome, and hub genes. Except for the correlation 
involving binary data using point-biserial correlation, 
all other data used Spearman correlation.

The patients were followed up weekly after discharge, 
and chest radiographs were reviewed according to the 
situation. Median values were used as cut-off values for 
continuous variables grouping studies. The follow-up time 
was defined from the date of BALF sampling to the last 
chest imaging assessment. The time to imaging recovery 
was defined as the time from BALF sampling to the appar-
ent disappearance of large infiltrates on chest radiographs.

Statistical analysis
Quantitatively normal or nearly normal data were 
expressed as the mean ± standard deviation and analyzed 

using the t-test. Quantitative skewness data were pre-
sented as the median (percentile: P25, P75) and analyzed 
using the Wilcoxon–Mann–Whitney rank-sum test. Cat-
egorical data are expressed as frequencies and examined 
using the chi-square test. Receiver operating character-
istic curves (ROCs) and the area under the curve (AUC) 
were used to assess the accuracy of the diagnostic model. 
Log-rank tests were used for the Kaplan–Meier curves of 
the imaging recovery time. All statistical tests were two-
sided, and P < 0.05 was considered statistically significant.

Results
Clinical characteristics
This study included 41 patients with MPP; twenty with 
various complications, including parapneumonic effu-
sion, necrotic pneumonia, and respiratory failure, were 
assigned to the CMPP group (n = 20), whereas the oth-
ers were assigned to the GMPP group (n = 21). The clin-
ical and laboratory data of the patients with GMPP and 
CMPP are presented in Table 1. The median age of the 

Table 1  Demographics and clinical characteristics

Quantitative normal or nearly normal data are expressed as the mean ± standard deviation. Quantitative skewness data are presented as the median (percentile: P25, 
P75), and categorical data are expressed as the frequency

ALT alanine transaminase, AST aspartate transaminase, APTT activated partial thrombin time, CRP C-reactive protein, CMPP complicated Mycoplasma pneumoniae 
pneumonia, GMPP general Mycoplasma pneumoniae pneumonia, LDH lactate dehydrogenase, N% neutrophil percentage, PT prothrombin time, WBC white blood cell

Characteristics Total
(N = 41)

GMPP
(N = 21)

CMPP
(N = 20)

 P

Sex, n (%)

  Male 25 (61.0) 10 (47.6) 15 (75.0) 0.072

  Female 16 (39.0) 11 (52.4) 5 (25.0)

Age, years 7.0 ± 2.8 6.6 ± 2.9 7.3 ± 2.7 0.450

WBC(×109/L) 9.7 ± 4.1 9.3 ± 3.5 10.1 ± 4.6 0.518

N% 66.8 ± 11.9 60.2 ± 11.7 73.8 ± 7.5 < 0.001

Hemoglobin (g/L) 125.3 ± 11.2 126.0 ± 11.8 124.6 ± 10.8 0.705

Platelets (×109/L) 292.3 ± 115.5 305.1 ± 144.7 278.9 ± 75.4 0.475

CRP (mg/L) 10.0 (2.8–29.5) 2.8 (2.8–12) 15.0 (4.37–35.5) 0.013

LDH (U/L) 419.0 (301.3–604.5) 313.5 (269.8–412.5) 547.0 (420.0–684.0) 0.001

ALT (U/L) 18.0 (12.3–26.0) 15.5 (10.5–18.8) 20.0 (15.0–38.3) 0.025

AST (U/L) 32.5 (24.5–44.0) 29.5 (23.3–36.0) 40.0 (26.5–49.3) 0.091

CK-MB (U/L) 20.0 (16.3–25.8) 20.0 (16.3–28.3) 20.0 (16.5–24.8) 0.892

PT (s) 12.8 (11.9–13.9) 12.1 (11.5–12.8) 13.5 (12.6–14.2) 0.001

APTT (s) 31.3 (27.4–34.5) 33.1 (29.7–34.9) 28.2 (25.7–32.7) 0.030

D-dimer (ng/ml) 564.5 (163.5–1870.5) 185.5 (116.0–548.8) 1827.0 (635.8–2686.0) < 0.001

Fibrinogen (g/L) 3.7 (3.3–4.0) 3.6 (3.3–3.7) 3.7 (3.4–4.0) 0.171

Parapneumonic effusion, n (%) 18 (43.9) 0 18 (90.0) < 0.001

Necrotizing pneumonia, n (%) 3 (7.3) 0 3 (15.0) 0.107

Respiratory failure, n (%) 3 (7.3) 0 3 (15.0) 0.107

Total fever duration (d) 9.0 (7.0–11.0) 8.0 (7.0–10.0) 10.0 (9.0–12.0) 0.013

Length of hospital stays (d) 10 (8.0–14.0) 9.0 (7.0 − 12.0) 12.5 (9.0–14.0) 0.032

Hospitalization expenses (CNY) 13,365.8 (11,714.9–17,107.33) 11,916.4 (10,719.3–13,288.6) 15,893.6 (14,231.0–25,034.4) 0.001

Duration of disease at sampling (d) 15.0 (13.0–18.0) 16.0 (13.0–19.0) 14.0 (13.0–17.0) 0.206
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patients with MPP was 7.0 years, and 25 (61.0%) were 
males. The levels of N%, CRP, ALT, LDH, PT, APTT, 
D-dimer, total fever duration, length of hospital stay, 
and hospital expenses were higher in the CMPP group 

than in the GMPP group (all P < 0.05). No significant 
differences were observed between the two groups in 
terms of age or sex distribution (P = 0.450 and 0.072, 
respectively).

Fig. 1   Pathogen load is associated with MPP severity. A The bacterial load in the CMPP and GMPP groups. B The MP load in the CMPP and GMPP 
groups. C The relative abundance of MP in the CMPP and GMPP groups. D The proportion of MP as the most dominant bacteria in CMPP 
and GMPP groups. E The diagnostic value of MP load for CMPP. F ROC curve constructed to study the diagnostic value of MP relative abundance 
for CMPP. AUC​ area under the curve, CMPP complicated Mycoplasma pneumoniae pneumonia, CI 95% confidence interval, GMPP general 
Mycoplasma pneumoniae pneumonia, MP Mycoplasma pneumoniae, MPP Mycoplasma pneumoniae pneumonia, ROC Receiver operating 
characteristic curve. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001

Fig. 2   Lung microbiome imbalance are associated with MPP severity.  A Alpha diversity evaluated by the Shannon index. B Alpha diversity 
evaluated by the Simpson index. C, D Beta diversity evaluated by the PCoA and NMDS analyses based on Bray-Curtis distance. E Relative 
abundance of lung microbiota at the species level. F Hierarchical clustering-based classification of samples into two clusters, M1 and M2. G 
Network of associations among the lung microbiota. Diamond nodes represented species. The larger and redder the node, the more nodes it 
was associated with. Edges indicated significant associations ( P  < 0.05) between species and were colored based on positive (green) and negative 
(red) associations between species abundances. H The top 10 DES between the CMPP and GMPP groups based on LEfSe analysis. I-J The 
diagnostic value of alpha diversity for GMPP. (K) ROC curve constructed to study the diagnostic value of the top 10 DES (except MP) for GMPP.  
AUC​ area under the curve, CI 95% confidence interval, DES differentially expressed species, LEfSe linear discriminant analysis (LDA) effect size, 
NMDS non-metric multidimensional scaling, PCoA principal coordinates analysis, ROC receiver operating characteristic curve

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Higher pathogen load in the CMPP group compared 
to the GMPP
A higher bacterial load was found in the CMPP than in 
the GMPP (median, 7.7 vs. 1.0 104 reads, P = 0.0003) 
(Fig. 1A). The MP load and relative abundance were also 
higher in the CMPP group (median, 77,333 vs. 2,357 
reads; P < 0.0001 and 99.07% vs. 62.50%, P < 0.0001, 
respectively) (Fig.  1B, C). Based on the percentage of 
species in each bacterial taxon, 33 (80.5%) of the 41 
patients were identified as having a microbiome in which 
MP was the most abundant. The proportion of MP, the 
most dominant bacterium, was much higher in the 
CMPP group than in the GMPP group (100% vs. 69.1%, 
P = 0.002) (Fig. 1D). The MP load and relative abundance 
had significant diagnostic value for CMPP (Fig. 1E, F).

Association of lung microbiota imbalance with MPP 
severity
NGS revealed the differences in the lung bacterial com-
munities in the CMPP and GMPP groups. No significant 
differences were observed between the two groups in the 
richness estimator, abundance-based coverage estimator 
(ACE), and Chao1 estimator (P = 0.12 and P = 0.27, respec-
tively) (Additional file 1: Fig. S1A, B). However, the alpha 
diversity, as determined by the Shannon and Simpson indi-
ces, indicated a significant decrease in the CMPP group 
compared to the GMPP group (P = 0.0003 and P = 0.0007, 
respectively) (Fig. 2A, B). Beta diversity analysis of PCoA 
and NMDS revealed that the lung microbiota from the dif-
ferent groups were largely separated (Fig. 2C, D).

MP was the dominant species in the lung microbiome 
of patients with MPP, followed by Prevotella melanino-
genica, Streptococcus salivarius, Rothia mucilaginosa, 
Streptococcus parasanguinis, and Streptococcus mitis 
(Fig.  2E). Hierarchical clustering analysis based on 
the Bray weighting method classified the samples into 
two clusters, M1 (n = 9) and M2 (n = 32) (Fig. 2F). The 
CMPP percentage in the M2 cluster was higher com-
pared to the M1 cluster (59.4% vs. 0; P = 0.002). The 
network of associations among lung microbiome 
showed that MP exhibited the highest number of asso-
ciations with other species and the associations were all 
negative.

Top 10 species of the 76 DES examined through LEfSe 
are shown in Fig. 2H. The Shannon and Simpson indices 
showed good predictive values for GMPP (AUC = 0.860, 
P < 0.0001 and AUC = 0.850, P = 0.0001, respectively; 
Fig.  2I, J). The relative abundance of DES (except for 
MP) also had a significant diagnostic value for GMPP 
(Fig. 2K).

Correlation of CMPP host transcriptional features 
with neutrophils functions and inflammatory response 
pathways
DEGs and associated pathways
Between CMPP and GMPP, 1,293 DEGs were detected, of 
which 355 were upregulated and 938 were downregulated 
(Fig. 3A, B). Hierarchical clustering classified the samples 
into two clusters: C1 (n = 21) and C2 (n = 20) (Fig.  3B). 
The CMPP percentage in the C2 cluster was higher than 
that in the C1 cluster (81.0% vs. 19.1%; P < 0.0001). GO 
enrichment analysis indicated that the upregulated DEGs 
were mainly concentrated in neutrophil degranulation 
and positive regulation of cytokine production (Fig. 3C). 
The KEGG pathways of the upregulated DEGs were 
mainly enriched in the cytokine-cytokine receptor inter-
action, NOD-like receptor signaling pathway, and IL-17 
signaling pathway (Fig. 3D).

Immune cells landscape
The differences in the distribution of 22 types of immune 
cells between the two groups are shown in Fig. 3E, with 
ten differentially expressed cells (DECs) identified: 
plasma cells (P < 0.001), memory activated CD4 T cells 
(P = 0.001), M1 Macrophages (P = 0.006), and Neutro-
phils (P = 0.007) were upregulated, whereas memory B 
cells (P < 0.001), M0 Macrophages (P < 0.001), and acti-
vated mast (P = 0.030), and dendritic (P = 0.002) cells 
were downregulated in the CMPP group. Using other 
algorithms, we confirmed the significantly higher abun-
dance of neutrophils in the CMPP group compared to the 
GMPP group (Fig. 3F, G).

CMPP‑related module genes
WGCNA, performed using the expression profiles of all 
genes to identify the co-expression modules related to 

(See figure on next page.)
Fig. 3   Host transcriptional features of CMPP are correlated with neutrophil functions and inflammatory response pathways.  A Volcano 
plot of DEGs in CMPP and GMPP. The horizontal line at adj  P  = 0.05; vertical line at |log 2 FC| = 1. Red and blue dots in volcano plot show 
upregulated and downregulated genes, respectively. B Heatmap showing the DEGs. The gradation of color represents the value of |lo g2 FC|. 
Hierarchical clustering classified samples into two clusters, namely the C1 cluster and the C2 cluster. C, D GO-Biological Process, KEGG enrichment 
analysis of the up regulated DEGs. E A violin plot showing the distribution of 22 types of immune cells in CMPP and GMPP. F, G Comparison 
of the infiltration of neutrophils between the two groups using other algorithms.  BP biological process, DEG differentially expressed gene, 
DEC differentially expressed cell, FC fold change, GO Gene Ontology, KEGG Kyoto Encyclopedia of Genes and Genomes, ssGSEA single-sample gene 
set enrichment analysis
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Fig. 3  (See legend on previous page.)
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CMPP, with a soft-threshold of 10 resulting in a scale-free 
network (Additional file 1: Fig. S2A, B), divided all genes 
into 12 modules, each with a unique color (Additional 
file 1: Fig. S2C). Among the 12 modules, the dark module 
was highly associated with clinical data (CMPP, length of 
hospital stay, and hospitalization expenses) (Fig. 4A). By 
integrating 1045 genes in the black module with the 1293 
DEGs between CMPP and GMPP, 174 DEGs (black) were 
obtained (Fig.  4B) and selected as clinically important 
modules for further analysis.

Functional enrichment analysis of key module
GO enrichment of the black-DEGs showed that they 
were mainly concentrated in neutrophil degranulation 
and neutrophil activation involved in immune response 
(Fig.  4C). KEGG pathways enrichment indicated their 
association with cytokine-cytokine receptor interaction, 
neutrophil extracellular trap formation, and cytokine 
receptor, IL-17 signaling pathway (Fig. 4D).

PPI network and hub genes
The PPI network for the 174 black DEGs constructed and 
visualized using the STRING database and Cytoscape 
software, respectively, is given in Fig. S3. The top 10 hub 
genes in the PPI network determined by cytoHubba were 
IL1B, CXCL8, CCL20, CXCR2, CXCL1, GNG2, TLR8, 
FCGR2A, CCRL2, and S100A8 (Fig. 4E), all of which were 
upregulated in the CMPP group.

Furthermore, the 10 hub genes were positively cor-
related with the most upregulated DECs, whereas they 
were negatively correlated with most downregulated 
DECs (Fig.  4F). In particular, the CIBERSORT immune 
score of neutrophils was positively correlated with all hub 
black DEGs.

The predictive effect of the joint indicator of the top 
10 hub genes in the diagnosis of CMPP was observed 
through a ROC curve. Figure  4G shows that the hub 
genes had high diagnostic ability for CMPP (AUC = 0.95; 
P < 0.001).

Association of interactions among pathogens, lung 
microbiome, and host response with disease severity 
and outcomes
To characterize associations between lung microbiome 
and the transcriptome in children with MPP, we con-
structed association network between DES and DEGs 
(Fig.  5A). The mean number of DEGs with each lung 
species in this network was 128.8. MP interacted with 
344 DEGs, 100 of which were black-DEGs, representing 
57.5% of the total number of black-DEGs.

A correlation matrix analysis of MP load, lung micro-
biome indicators (top 10 DES, except for MP), host 
response indicators (the expression of top 10 hub black 
DEGs), and clinical indicators, including N%, CRP, ALT, 
LDH, PT, APTT, and D-dimer, indicated the potential 
interactions among the three core elements of respira-
tory infection: pathogen, lung microbiome, and host 
response. Figure  5B shows that the interplay between 
MP, lung microbiome, and host response determines 
critical clinical outcomes.We classified these three core 
elements into modules. Patients were divided into two 
clinical groups (MP-high and MP-low) based on the 
median relative abundance of MP, two microbiome 
clusters (M1 and M2) depending on the lung micro-
biome clustering map, and two host gene clusters (C1 
and C2) based on the host gene expression clustering 
map. A Sankey diagram was used to visualize the rela-
tionships among the three core elements and clinical 
features (Fig. 5C). The MP-high group mapped almost 
entirely to the microbiome M2, host gene cluster C2, 
and clinical module CMPP. Patients in the MP-high 
group manifested a specific lung microbiome structure 
and host response type and were more prone to devel-
oping CMPP.

Ultimately, the imaging recovery time of children 
with MPP was estimated using a Kaplan–Meier sur-
vival curve. The MP load, lung microbiome (Shannon 
and Simpson indices and microbiome clusters), and 
host gene clusters were used as variables for survival 
analysis (Fig.  6A–F). High relative abundance of MP 

Fig. 4   CMPP-related module genes are correlated with neutrophil functions and inflammatory response pathways.  A The WGCNA used to analyze 
all the genes and identify the modules significantly related to traits. Heatmaps show the correlation between eigengenes and clinical traits. The cells 
are colored by the correlation according to the color legend. Each row corresponds to a module eigengene. Each cell contains the corresponding 
correlation and P value. B The Venn diagram displaying the black-DEGs overlapping in the black module and DEGs between CMPP and GMPP. C, 
D GO and KEGG enrichment of the black-DEGs genes. E CytoHubba-MCC was used to identify the top 10 hub genes in the network. The darker 
the orange color, the higher the score. F The relationship between DECs and hub black DEGs. G ROC curve constructed to study the predictive 
effect of the 10 hub genes on the diagnosis of CMPP.  AUC​ area under the curve, CI 95% confidence interval, ROC receiver operating characteristic 
curve, WGCNA weighted Gene Co-expression Network analysis. *P  < 0.05, ** P  < 0.01, *** P  < 0.001, **** P  < 0.0001

(See figure on next page.)
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(P = 0.012), low alpha diversity (Shannon: P = 0.025; 
Simpson: P = 0.011, respectively), microbiome cluster 
M2 (P = 0.004), host gene cluster C2 (P = 0.014), and 
the combination module of M2 and C2 (P = 0.031) were 
associated with long imaging recovery time.

Discussion
CMPP poses a challenge for the treatment of patients 
with MPP. It is associated with excessive host immunity 
activation, and studies have shown an essential role of 
the airway microbiome [14, 15, 21]. Therefore, a cohort 
study was conducted using BALF samples and integrated 
multi-omics analyses to investigate the interactions 
among pathogen, lung microbiome, and host response, 
and their relevance to severity and outcomes in children 
with MPP.

MP was the most abundant species in the lung microbi-
ome of 80.5% of patients with MPP and 100% of patients 
with CMPP. MP occupied almost all niches in most 
patients with CMPP, with the abundance of other species 
being very low [14, 21]. Children with MPP with mucus 
plugs had a higher abundance of Mycoplasma compared 
with those without mucus plugs [14]. Moreover, Chen 
et al. argued that MP-dominated microbial communities 
were a characteristic of the lower respiratory tract micro-
biome of children with refractory MPP [21].

Previous studies have demonstrated an unbalanced 
airway microbiome in patients with MPP, whether in the 
upper airway, represented by nasopharynx and orophar-
ynx swabs, or in the lower airway, represented by BALF 
samples [9, 22, 23]. MP directly competes with colonized 
bacterial commensals in the lungs, resulting in a simpler 
co-occurrence network in patients with MPP compared 
to healthy children [22, 23]. The indigenous microbi-
ota itself plays an essential role in excluding pathogenic 
expansion by modulating host responses to maintain 
homeostasis [10]. Disruptions of the airway microbiota 
can result in altered disease severity and outcomes.

Between the CMPP and GMPP groups, 87 DES were 
recovered. They were downregulated in the GMPP group 
and had a significant diagnostic value for GMPP, except 
for MP. Most of these were oral commensal bacteria, 
such as P. melaninogenica, S. salivarius, S. mitis, S. oralis, 
and S. parasanguinis, which may function as pathogen 

competitors. They have constant access to the lower air-
ways via micro aspiration [24]. Prevotella is consistently 
the core bacteria of the respiratory tract [25, 26]. Previ-
ous studies have demonstrated that commensal bacteria 
can interact with airway pathogens, such as Pseudomonas 
aeruginosa, to improve lung function and clinical sta-
bility [27, 28]. As a result, we assumed that the specific 
airway microbiome composed of these commensal bac-
teria could inhibit MP and maintain lung environmental 
homeostasis.

The etiology and pathogenesis of CMPP remain unclear, 
and excessive host immune responses have been reported 
to play an important role. Our previous work has con-
firmed that peripheral blood neutrophils levels are signifi-
cantly increased in children with refractory MPP [1, 29, 
30]. In this study, host gene analysis revealed a key module 
associated with neutrophil functions and many inflam-
matory response pathways, such as cytokine-cytokine 
receptor interaction, neutrophil extracellular trap for-
mation, and the IL-17 signaling pathway. Additionally, 
we observed increased neutrophils levels in the CMPP 
group, both in clinical blood sample tests and the decon-
volution of bulk RNA sequencing of immune cells in the 
BALF samples. Transcriptome sequencing of neutrophils 
from the peripheral blood of children with MPP further 
confirmed the role of neutrophils, particularly neutrophil 
extracellular trap formation, in MPP [16]. Cytokines play 
critical roles in the pathogenesis of MPP, and cytokine 
storms are associated with MPP severity [31, 32]. Most 
hub genes in the key module that expressed cytokines or 
chemokines and their receptors, such as IL1B, CXCL8, 
CCL20, CXCR2, CXCL1, and CCRL2, were increased in 
CMPP, and had a high predictive value for CMPP. Given 
that IL-17 induces the secretion of chemokines to recruit 
neutrophils for host defense, producing antimicrobial 
peptides to maintain lung barrier function, it can be pro-
tective; however, excessive IL-17 may result in persistent 
neutrophil recruitment, degranulation, and tissue dam-
age; however, excessive IL-17 may result in persistent 
neutrophil recruitment, degranulation, and tissue damage 
[33, 34]. Previous studies have reported the association 
of IL-17 with MPP progression and outcomes, including 
MP-associated asthma and bronchiolitis obliterans [35–
37]. Therefore, neutrophil function, cytokine storms and 

(See figure on next page.)
Fig. 5   Interactions among pathogens, lung microbiome, and host responses are associated with disease severity.  A Network of associations 
between the lung DES (n  = 76) and DEGs (n  = 1293) between CMPP and GMPP groups. Each diamond node represented a lung species. Each circle 
node represented a host gene. Edges showed medium above associations between microbial abundance and gene expression level (Spearman’s  
r  > 0.4,  P  < 0.05). The circular nodes labeled were black-DEGs. B A heatmap showing the correlation among lung microbiome (top 10 DES), 
host response (top 10 hub genes) and clinical indicators. C Sankey diagram showing the relationships among pathogen, lung microbiome, host 
response, and clinical features
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IL-17 signaling may become novel targets for treatment of 
MPP treatment.

The lung microbiota is essential in regulating pulmo-
nary immune responses; however, their role in host-spe-
cific immunity is yet to be evaluated comprehensively. 
Using combined multi-omics analysis, we found that the 
MP relative abundance was negatively correlated with 
other lung microflora and diversity indices and posi-
tively correlated with hub gene expression and clinical 
indicators of inflammation and organ damage. Patients 
in the MP-high relative abundance group, manifested by 
a specific microecological structure and host immune 
response type, were more likely to develop CMPP and 
had a long pneumonia recovery time. Nevertheless, 
whether airway microbial alterations are the cause or 
consequence of the host immune response requires fur-
ther investigation. Dickson et  al. proposed a compre-
hensive model: respiratory tract dysbiosis provokes a 
dysregulated host immune response, altering the growth 
conditions for microbes in the airways, promoting 

further dysbiosis and perpetuating a cycle of inflam-
mation and disordered microbiota [38]. As a result, any 
interruption in the treatment regimen aimed at disrupt-
ing this vicious cycle may alleviate the disease severity 
and improve the outcomes of patients with MPP.

However, the number of cases incorporated into this 
study was relatively small. Therefore, further large-size, 
prospective studies are required to provide advanced 
evidence for the interactions among the pathogen, lung 
microbiome, and host response in MPP.

Conclusion
We performed a cohort study and multi-omics integra-
tion analysis of BALF in 41 patients with MP to corre-
late pathogen, lung microbiome, and host response, and 
associate the findings with observed clinical features and 
outcomes. Our findings indicate that MP, the lung micro-
biome, and the host immune response interact with each 
other and are closely related to disease severity and out-
comes in children with MPP.

Fig. 6   Interactions among pathogens, lung microbiome, and host responses are associated with outcomes.  Kaplan–Meier survival curves for chest 
imaging recovery based on the relative abundance of MP (A), Shannon index (B), Simpson index (C), microbiome cluster (D), host gene cluster (E), 
combination module of microbiome cluster M2, and host gene cluster C2 (F)
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