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Abstract
Background  To build prediction models with radiomics features, clinical/conventional radiographic signs 
and combined scores for the discrimination of micropapillary or solid subtypes (high-risk subtypes) of lung 
adenocarcinoma.

Methods  This retrospective study enrolled 351 patients with and without high-risk subtypes. Least Absolute 
Shrinkage and Selection Operator (LASSO) regression with cross-validation was performed to determine the optimal 
features of radiomics model. Missing clinical data were imputed by Multiple Imputation with Chain Equations (MICE). 
Clinical model with radiographic signs was built and scores of both models were integrated to establish combined 
model. Receiver operating characteristics (ROC) curves, area under ROC curves and decision curve analysis (DCA) 
were plotted to evaluate the model performance and clinical application.

Results  Stratified splitting allocated 246 patients into training set. MICE for missing values obtained complete and 
unbiased data for the following analysis. Ninety radiomic features and four clinical/conventional radiographic signs 
were used to predict the high-risk subtypes. The radiomic model, clinical model and combined model achieved AUCs 
of 0.863 (95%CI: 0.817–0.909), 0.771 (95%CI: 0.713–0.713) and 0.872 (95%CI: 0.829–0.916) in the training set, and 0.849 
(95%CI: 0.774–0.924), 0.778 (95%CI: 0.687–0.868) and 0.853 (95%CI: 0.782–0.925) in the test set. Decision curve showed 
that the radiomic and combined models were more clinically useful when the threshold reached 37.5%.

Conclusions  Radiomics features could facilitate the prediction of subtypes of lung adenocarcinoma. A simple 
combination of radiomics and clinical scores generated a robust model with high performance for the discrimination 
of micropapillary or solid subtype of lung adenocarcinoma.
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Background
Lung adenocarcinoma is the most common type of lung 
cancer [1]. According to the new IASLC/ATS/ERS Lung 
Adenocarcinoma Classification, it is classified as six sub-
types: lepidic, acinar, papillary, micropapillary, solid and 
invasive mucinous [2, 3]. Among them, micropapillary 
and solid pattern showed distinctively worse prognosis 
than others [4, 5]. Reports revealed that the 5-year overall 
survival for micropapillary or solid pattern presented in 
lung adenocarcinoma was 67% in stage IA patients, while 
that of non- micropapillary or solid pattern patients 
could reach 94% [6]. Thus, micropapillary and solid sub-
types are often classified as “high-risk” patterns, and 
worth further investigation [7].

Surgery for early-stage lung cancer is resecting “as 
less lung tissue as possible”. For small-sized, peripheral 
lung cancer, researchers recommend segmentectomy or 
wedge resection instead of lobectomy as standard surgi-
cal treatment [8, 9]. However, these sub-lobar resection 
seems to be insufficient for micropapillary and solid 
subtypes [10], as regional and mediastinal lymph nodes 
metastasis, blood vessel invasion and STAS (Spread 
Through Air Space) are often observed in such subtypes 
[11]. This is particularly confusing in bilateral lung lesion 
patients, who often receive sub-lobectomy to preserve 
more pulmonary function. Insufficient resection for 
high-risk lesion brings higher recurrence and worse sur-
vival, which cancel-out the benefit from sub-lobectomy. 
Hence, extensive resection plus systematic mediastinal 
may still be necessary for them, thereby raising the need 
for preoperatively diagnosis of the micropapillary or solid 
components. In addition, no lung adenocarcinoma sub-
type diagnosis can be made from preoperative or intro-
operative biopsy. High-risk subtypes are determined only 
from paraffin embedding tissue pathology examination, 
which is often 7 days after surgery. Currently, there is a 
lack of investigation on the relationship between clini-
cal and radiographic signs and high-risk subtypes of lung 
adenocarcinoma. Some study might show that tumor 
size, solid mass and maximal standardized uptake value 
could possibly be independent predictors for the two 
high-risk subtypes [5]. However, a validated predicting 
model is yet to be determined.

Radiomics is emerging as a novel quantitative analysis 
with abundant features extracted from CT images and 
served as “big data” in further machine learning [12]. It 
has been widely engaged in the prediction for the differ-
ential of benign and malignant tumour, survival of cancer 
and treatment reaction of immune checkpoints [13–15]. 
For example, Kinahan et al. compared the diagnosis of 
lung cancer with semantic and quantitative texture fea-
tures in 238 individuals. They achieved an AUC of 0.85 
to 0.88 with these radiomics features [16]. In addition, 
Tian and his colleagues incorporated radiomics features 

to build prediction model for the epidermal growth fac-
tor receptor (EGFR) mutation status in lung cancer. 
Their AUCs for the training and validation cohort were 
0.8618 and 0.8725, demonstrating the excellent capabil-
ity of radiomics features in lung cancer prediction [17]. A 
recent systematic review and meta-analysis also showed 
that radiomics signatures combined with deep learning 
algorithms could serve as a novel tool for the prediction 
of EGFR in non-small cell lung cancer [18]. These find-
ings all strengthened the use of radiomics research in the 
field of cancer.

Thus, in our study, we aimed to establish a robust pre-
diction model on the presence of micropapillary or solid 
pattern of lung adenocarcinoma based on the radiomics 
features. Moreover, we will also compare the prediction 
value of radiomics model with conventional clinical and 
radiographic variables.

Methods
Study cohort
This study was approved by the institutional ethnic com-
mittee and informed consent was waived due to the ret-
rospective nature. Study procedure is demonstrated by 
the flowchart (Fig. 1).

Patients diagnosed with lung adenocarcinoma from 
January 1 2018 to December 31 2018 were recruited 
firstly. Then the patients were selected according to the 
inclusion criteria as follows: (1) patients receiving sur-
gical resection of the tumour; (2) pathological report 
including subtypes of adenocarcinoma; (3) patients with 
major clinical data; (4) patients CT images taken 2 weeks 
before surgery; (5) availability of CT images in DICOM. 
The exclusion criteria were as follows: (1) malignant 
tumour other than lung adenocarcinoma; (2) incomplete 
clinical and radiological data. In addition, to balance 
the sample size of high-risk group and low-risk group, 
patients of low-risk group were enrolled consequently 
until the sample size reach the high-risk group. We met 
unknow problems when extracting radiomics features 
from 3 patients in the low-risk group (extracting time was 
abnormally long). Finally, 351 patients were enrolled in 
this study. Patients were randomly allocated to the train-
ing set or test set. This was perfomed by the “createData-
Partition” function in R package “caret”. This function 
creates indices of the training and test set according to 
the set ratio. The recruiting process was shown in Fig. 2.

CT imaging
CT scanners used in the study were: SIEMENS 
SOMATOM Definition Flash, SIEMENS Sensation 
Open, GE MEDICAL SYSTEMS LightSpeed Pro 32, Phil-
ips iCT 256. During scanning, patients were instructed to 
hold their breath until the scanning finished. The scan-
ning parameters were as follows: tube voltage 120  kV, 
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tube current automatic, matrix 512*512, slice thickness 1, 
1.25 or 1.5 mm. Contract enhanced chest CT was taken 
with a bolus dose of (70–90 mL) nonionic contrast agent 
iohexol or ioversol (300  mg·I/mL) injecting through the 
cubital vein by a high-pressure syringe with 20  s scan 
delay. The scanning range from the inlet of the thoracic 
cavity to the base of the lungs.

Conventional radiological features collection, ROI 
segmentation and radiomics feature extraction
CT images were analyzed by a thoracic radiologist and 
a thoracic surgeon (NZ and ZW) with 8 and 10 years of 
experience respectively. Both doctors were blinded to 
the pathological report of the patients. Report on the CT 
images were performed independently by both doctors. 
Any discrepancies on the description and measurement 
of the lesion on the CT images were resolved through 
discussion. The following conventional features were 
reported: (1) nodule type: pure-ground glass opacity, 
sub-solid opacity with CTR (consolidation tumor ratio) 
less than 50%, sub-solid opacity with CTR (consolida-
tion tumor ratio) more than 50%, pure solid nodule; (2) 

lobulated sign presented; (3) spiculated sign presented; 
(4) pleural traction presented; (5) bronchograms pre-
sented; (6) vessel retraction presented; (7) vacuole sign 
presented; (8) tumour edge smooth or blur; (9) adjacent 
to pleura (distance between tumour and pleural was less 
than 1 cm); (10) maximum tumour diameter.

The region of interest (ROI) was delineated by the two 
doctors independently without knowing the informa-
tion of pathological results. Lung window was set to 1200 
HU width and − 600 HU in level, while mediastinal win-
dow was 350 HU in width and 40 HU in level. Syngo.via 
platform (SIEMENS Heathineers, Erlangen Germany) 
was used for the ROI segmentation and radiomics fea-
tures extraction. A built-in PyRadiomics based module 
in Syngo.via was used to extract the radiomics features. 
Extraction parameters following the PyRadimics package 
were also set before extraction to normalize the image 
heterogeneity: ResampledVoxelSize = 1*1*1, Resampled-
PixelSpacing = [1], interpolator: BSpine, filtering included 
wavelet, sqr, sqrt, log and exp. Feature types included 
GLDM, GLCM, Shape, First order, GLRLM, GLSZM, 
NGTDM. Bin width was set to 25. The interpretability 

Fig. 1  Flowchart shows the recruiting process of the study. Firstly, all high-risk patients in 2018 were selected, and then consecutive low-risk patients 
were enrolled to match the high-risk patients
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and harmonization were tested by the PyRadiomics team 
to ensure the consistency from different imaging centers. 
Finally, a total of 1226 radiomic features were extracted.

Clinical data collection and imputation
Electronic clinical records were reviewed, and charac-
teristics relevant to the study were collected, including 
age, sex, smoking history, family cancer history, serum 
biomarker (ProGRP, CEA, cyfra, NSE, SCCA). These 
clinical variables were commonly selected for cancer risk 
factor analysis or prediction models based on researchers 
experience.

Missing data in serum biomarkers were analyzed and 
imputed by MICE package in R. Multiple Imputation 
by Chained Equations (MICE) is a stable, informative 
method that handle the missing data. The method uses a 
series of iterable prediction model to impute the missing 
data. For continues data like serum biomarker, MICE use 
PMM (predictive mean matching to impute the missing 
data). PMM builds prediction models with existing data 
and then predicts a series of data in the “missing data 
column”. Then it chooses a “predicted data” in the “pre-
diction column” which is nearest to the “missing ones”. 
Finally, the real data in the “missing column” whose posi-
tion is the same with the “predicted data” is used to fill 
the missing place.

Radiomics features dimension reduction, model 
construction and evaluation
Several steps of radiomics features dimension reduc-
tion was performed to get the most predictable features. 
First, all the patients were randomly split into training 
and test set by a ratio of 7:3. All data were standard-
ized by the scaling parameters of training set. Observer 
1 (ZW) delineated all the patients ROI and observer 2 
(NZ) repeated 50 of randomly selected patients. The 
interobserver consistency of radiomics feature extrac-
tion was assessed and features with intraclass correla-
tion coefficient (ICC) over 0.75 were kept. Student t test 
and Mann-Whitney U test was then performed for each 
feature, according to the normality Shapiro test results. 
Features of values significantly different in two groups 
were selected with P value set to 0.05. Next, Spearman 
correlation analysis and Pearson correlation analysis 
were performed for non-normally and normally distrib-
uted features. Features with correlation coefficients over 
0.9 were removed. Afterwards, least absolute shrinkage 
and selection operator (LASSO) were applied to training 
cohorts, with 10 folds cross validation tuning the opti-
mal lambda. The lambda was decided when the mean 
square error of the prediction model reached one stan-
dard error, also known as “lambda.1se”. LASSO regres-
sion is an effective method for features reduction in high 
dimension data like radiomics study, while “lambda.1se” 
balanced the prediction value and number of features. 

Fig. 2  A general analysis process of the whole study
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Radscore was calculated by the features and coefficients 
selected by LASSO regression.

The radiomics and clinical model was established by 
logistic regression. As mentioned above, radiomics fea-
tures selected by LASSO were used to build radiomics 
model. For clinical model, we performed univariate 
analysis first and clinical variables with P value less than 
0.05 were included into multivariate logistics regression 
model to select the optimal clinical variables for logistics 
regression model. A cliscore was also calculated with this 
model for each patient. A combined dataset with rad-
score, cliscore and group labels was built for combined 
model construction using logistics regression. Logistic 
regression is one of a favorable algorithm in machine 
learning. Research compared logistic regression, ran-
dom forest, and support vector machine classifiers in 
radiomics-based machine learning in different cancers. 
Logistic regression showed equivalent prediction val-
ues with others [19, 20]. Moreover, logistic regression is 
easier to interpret due to its close relationship with lin-
ear regression. In our study, we used logistic regression 
as the approach to build prediction models, and the same 
technique to validation the models.

The receiver operating characteristic (ROC) curve and 
area under the ROC curve (AUC) were used as main 

methods to evaluate the performance of the three mod-
els. Other model evaluation indicators including accu-
racy, sensitivity, specificity, positive predictive value, and 
negative predictive value. DeLong test and Bland-Altman 
analysis were used to compare the ROC curves. Calibra-
tion curves were used to visualize the Hosmer-Lemeshow 
test for the logistic regression. Decision curves were used 
to evaluate the clinical significance of the models.

Statistical analysis
All statistical analyses were performed using R (version 
4.4.2, R foundation, Viena, Austria). Major packages used 
in this study included ‘caret’ (version 6.0), ‘glmnet’ (ver-
sion 4.1), ‘glm’ function in ‘stats’ (version 4.3.0), ‘pROC’ 
(version 1.18.4), ‘blandr’ (version 0.5.1), ‘tidyverse’ (ver-
sion 2.0.0), ‘mice’ (version 3.16.0). Continuous variables 
were presented as mean ± standard deviation, while cat-
egorical variables were presented as count numbers. Sha-
piro test was used for the normality test. For varaibles 
normally distributed, Student t test was used to compare 
the statistical difference. Other variables were compared 
by Mann-Whitney U test. Significance level was set to 
0.05, two sided.

Results
Clinical and conventional radiographic characteristics, with 
missing data imputation
A total of 351 patients were included in this analysis. 
Among them, 246 were randomly split into training 
set and 105 in test set. Clinical and conventional radio-
graphic characteristics of baseline between training 
and test set were shown in Table  1. There were no sig-
nificantly different clinical and conventional radiographic 
features between the two sets. Training set was then used 
for data analysis and model building.

The missing value distribution in the lung cancer bio-
marker was shown in Fig.  3 (before and after mice and 
missing). Multiple Imputation by Chained Equations 
was adopted to impute the missing values while keep 
the original data distribution, which make the statistical 
analysis practicable as well as the results convincible.

Out of the 246 patients in the training set, there were 
significantly more male in high-risk group than the low-
risk group (61% vs40%, p < 0.001). Moreover, lesion size 
was larger in the high-risk group (39 vs. 32, p < 0.001). 
Solid lesion is also the predominant type in high-risk 
group (98% vs. 69%, p < 0.001). Univariate analysis also 
showed that high-risk group had less signs of air bron-
chus (16% vs. 28%, p = 0.017), vessel in the lesion (32% vs. 
52%, p = 0.001), and lobular (30% vs. 45%, p = 0.011). Fur-
thermore, smoking history was much more often in high-
risk group as well (47% vs. 26, p < 0.001). In multivariate 
analysis, diameter max, type, air bronchus and lobular 
sign were shown to be significantly different between 

Table 1  clinical characteristics of training and test set at baseline
Characteristic test, N = 1051 train, N = 2461 p-value2

age 63 (56, 67) 62 (55, 67) 0.14
gender > 0.9
  F 53 (50%) 123 (50%)
  M 52 (50%) 123 (50%)
max diameter(mm) 37 (24, 50) 36 (25, 48) 0.5
smoking history 40 (38%) 89 (36%) 0.7
lung cancer family history 12 (11%) 24 (9.8%) 0.6
ProGRP 44 (37, 56) 43 (38, 56) > 0.9
CEA 3 (2, 6) 3 (2, 6) 0.7
cyfra 2.20 (1.70, 3.40) 2.20 (1.70, 3.38) 0.9
NSE 13.7 (12.4, 15.3) 13.3 (12.2, 15.1) 0.3
SCCA 0.80 (0.60, 0.90) 0.80 (0.60, 0.98) > 0.9
type 0.6
  CTR < 0.5 11 (10%) 20 (8.1%)
  CTR > 0.5 5 (4.8%) 6 (2.4%)
  pure-GGO 5 (4.8%) 14 (5.7%)
  solid 84 (80%) 206 (84%)
lobular 42 (40%) 92 (37%) 0.6
spiculation 52 (50%) 149 (61%) 0.055
pleural traction 27 (26%) 63 (26%) > 0.9
air bronchus 21 (20%) 54 (22%) 0.7
vessel 43 (41%) 104 (42%) 0.8
hollow 17 (16%) 33 (13%) 0.5
smooth edge 6 (5.7%) 13 (5.3%) 0.9
adjacent to pleural 15 (14%) 30 (12%) 0.6
1Median (IQR); n (%)
2Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test
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Fig. 3  Missing values evaluation and imputation by MICE. (A) demonstrated missing value distribution among five clinical variables. (B) and (C) demon-
strated the data distribution before and after MICE. MICE: multivariate imputation by chained equations
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two groups. Full univariate and multivariate results were 
shown in Table 2.

Radiomics feature selection and prediction models 
building
After a series of preprocessing including interobserver 
analysis, Student t test, Mann-Whitney U test and corre-
lation analysis, a total of 116 radiomics features were fil-
tered from the overall 1226 features extracted from ROIs. 
Then LASSO regression with 10-fold cross validation 
was used for dimension reduction, with lambda set to 
one-standard-error of model mean square error (MSE). 
Ninety features were finally selected and radiomics pre-
diction model was then established. Radscore was cal-
culated by multiply the value of each feature with their 
coefficients. This process results were shown in Fig.  4; 
Table 3.

Clinical prediction model was built with the four clin-
ical-conventional radiographic characteristics by logistic 
regression (supplementary file 1). Characteristics value 
was set to 1 when presented and 0 when absent. After-
wards a “cliscore” (indicating “clinical score”) was also 
calculated by multiplying the values and corresponding 
coefficients. The radscore and cliscore of each patient 
were gathered to build new training set and test set, 
in which a combined model was build. Figure  5 (a-d) 
showed the scores between high-risk and low-risk groups 
in the training and test set.

Model evaluation and clinical significance
The radiomics model, clinical model and combined 
model were built with the training set and validated 
by the test set. ROC curves and its AUCs showed that 
radiomics model and combined model had good pre-
dicting value (AUCs: 0.849, 95%CI: 0.774–0.924 for 
radiomics model and 0.853, 95%CI: 0.782–0.925 for com-
bined model in test set), while clinical model also had 
acceptable prediction value with AUC of 0.778 (95%CI: 
0.687–0.868) in test set (Fig. 5e,f ). DeLong test revealed 
that there was significant difference between ROCs of 
radiomics model and clinical model (p = 0.003), com-
bined model and clinical model (p < 0.001), whereas the 
combined model did not show better prediction ability 
than radiomics model (p = 0.125). Bland-Altman analy-
sis also showed similar results, with p values of 0.009, 
0.002 and 0.651 for the comparation of radiomics-clinical 
model, combined-clinical model and radiomics-com-
bined model (Fig. 6). Detailed model estimators demon-
strated in Table 4.

In calibration curve analysis, the three models were 
proved to fit well with the training set, while also reason-
ably fitted in the test set (Fig. 5g,h). Hosmer-Lemeshow 
test indicated no significant difference in the three mod-
els in training and test set (Training set: p = 0.193, 0.822 
and 0.741 for radiomics, clinical and combine model. 
Test set: p = 0.13, 0.78, 0.81 for radiomics, clinical and 
combine model). Decision curve analysis assess the clini-
cal usage of a prediction model by calculating the net 
benefit of treatment with different thresholds and com-
pare it with “treat all” and “treat none”. Figure 7 demon-
strated that the radiomics and combined model started 
to practice better clinically than the clinical model when 
the threshold reached 37.5%.

Discussion
The histological subtype diagnosis of lung adenocar-
cinoma is still based on the tumour resection or biopsy 
[21]. However, biopsy sometimes cannot provide evi-
dence strong enough for subtype classification [22, 23]. 
New non-invasive method is required for preopera-
tive prediction for the high-risk subtypes. In this study, 

Table 2  clinical characteristics of high-risk and low-risk groups in 
the training set
Characteristic high risk, 

N = 1221
low risk, 
N = 1241

p-value2 multivari-
ate

age 62 (55, 67) 61 (55, 67) > 0.9
gender < 0.001
  Female 48 (39%) 75 (60%)
  Male 74 (61%) 49 (40%)
max 
diameter(mm)

39 (28, 54) 32 (22, 43) < 0.001 0.008

smoking history 57 (47%) 32 (26%) < 0.001
lung cancer 
family history

12 (9.8%) 12 (9.7%) > 0.9

ProGRP 42 (36, 54) 44 (39, 58) 0.11
CEA 4 (2, 7) 3 (2, 5) 0.2
cyfra 2.25 (1.70, 

3.48)
2.20 (1.68, 
3.30)

0.7

NSE 13.50 (12.60, 
15.80)

13.11 (12.10, 
14.50)

0.062

SCCA 0.80 (0.60, 
1.00)

0.70 (0.50, 
0.90)

0.2

type < 0.001 < 0.001
(pure-GGO)

  CTR < 0.5 1 (0.8%) 19 (15%)
  CTR > 0.5 1 (0.8%) 5 (4.0%)
  pure-GGO 0 (0%) 14 (11%)
  solid 120 (98%) 86 (69%)
lobular 36 (30%) 56 (45%) 0.011 0.013
spiculation 76 (62%) 73 (59%) 0.6
pleural traction 37 (30%) 26 (21%) 0.093
air bronchus 19 (16%) 35 (28%) 0.017 0.011
vessel 39 (32%) 65 (52%) 0.001
hollow 17 (14%) 16 (13%) 0.8
smooth edge 9 (7.4%) 4 (3.2%) 0.15
adjacent to 
pleural

15 (12%) 15 (12%) > 0.9

1Median (IQR); n (%)
2Wilcoxon rank sum test; Pearson’s Chi-squared test; Fisher’s exact test
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clinical with conventional radiographic features, and 
radiomics features have been incorporated into predic-
tion models for the present of micropapillary or solid 
pattern in lung adenocarcinoma. Different from other 
combined models on lung adenocarcinoma predic-
tion, which enrolled a bunch of radiomics and clinical 

features, we creatively built a simple combined model 
with “radscore” and “cliscore” calculated by the radiomics 
and clinical model. The performance of three models 
was compared and their clinical use was evaluated. Our 
results showed that radiomics and combined model 
performed better than traditional clinical and radio-
graphic variables, suggesting that it could be potentially 
employed in the preoperative classification of subtypes of 
lung adenocarcinoma. This finding would further remind 
surgeons about high-risk lesions before planning surgery 
for lung adenocarcinoma, even though the lesions may be 
small and just “ordinary”.

Micropapillary or solid subtypes of lung adenocarci-
noma have significantly worse survival than other sub-
types [24]. However, lung resection for small lesions 
and bilateral lesions were normally sub-lobectomies to 
keep as much lung tissue as possible, while might be not 
enough for micropapillary or solid subtypes [10]. This 
was even more crucial for patients with bilateral nod-
ules, as lobectomy and sub-lobectomy were planned 
carefully before surgery. However, lung adenocarcinoma 
subtype diagnosis is often made 7 days after surgery with 
the paraffin embedded pathology examination. There 
is no appropriate additional treatment when high-risk 
pattern is identified, and the resection is sublobectomy. 
Some studies have focused on the classification for the 
subtypes of lung adenocarcinoma, but with their own 
limitations. He et al. obtained a highest AUC of 0.73 on 
the test set among all the models, while Li et al. reported 
an excellent AUC of 0.91, but both studies had no clini-
cal features integrated. Xu and his colleagues only iden-
tified micropapillary pattern and no clinical model built 
either. Yang et al. achieved accuracy rates of 84.2% and 

Table 3  radiomic features selected by LASSO regression and 
their coefficiencies
Coefficients Feature 

family
Feature subtype

-0.01469447 Intercept
0.23464576 original shape_Flatness
-0.07955321 square glcm_InverseVariance
-0.23345119 glrlm_ShortRunLowGrayLevelEmphasis
0.11685419 exponential firstorder_90Percentile
0.27726069 firstorder_Mean
0.06374112 firstorder_TotalEnergy
0.01856495 glszm_SizeZoneNonUniformityNor-

malized
-0.01994271 wavelet HHH_firstorder_Kurtosis
0.17396774 HHH_glcm_Idmn
-0.13376102 HLH_glcm_Idn
0.01637181 HLL_firstorder_Skewness
0.23530962 HLL_glszm_ZoneEntropy
0.15230831 LHH_glcm_MCC
0.13845049 LHL_glszm_SmallAreaLowGray-

LevelEmphasis
-0.13695941 LLH_glcm_MCC
0.09393939 LLH_glszm_GrayLevelNonUniformity-

Normalized
0.16229105 LLL_firstorder_90Percentile
0.36867058 LLL_firstorder_Kurtosis
0.40500583 LLL_glcm_JointEntropy

Fig. 4  LASSO regression and cross validation
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Fig. 6  Bland-Altman analysis for the comparation of the models

 

Fig. 5  Radscores and cliscores in training (a,b) and test (c,d) set. ROC curves (e,f) and calibration curves (g,h) of three models. In ROC curves, higher AUC 
indicated better capability of discrimination. In calibration curves, being closer to the 45-degree black dotted line indicated better model fitting
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91.6% in the prediction models, whereas the sample size 
was no more than 100 [24–26]. We built three models 
to predict the high-risk subtypes preoperatively. Clinical 
model with conventional features showed moderate pre-
dictive value for the discrimination of high and low risk 
type. The multivariate logistic regression model showed 
that max diameter of lesion, lobulation and solid type all 
contributed to the differential diagnosis, which is consis-
tent with finding of Yuan et al [27]. Additionally, Seo also 
proposed that solid subtypes were likely to have larger 
diameter and appear as solid morphology, and tumours 
with spiculation or lobulation were prone to low risk sub-
types [28–30]. These findings were also confirmed by our 
multivariate analysis.

However, clinical model was not robust enough in pre-
dicting high-risk subtypes of lung adenocarcinoma, with 
relatively low sensitivity, specificity, and accuracy. In our 
study, the radiomics model showed better predictive 
performance over clinical model, similar to combined 
model, indicating that the clinical features with conven-
tional radiographic signs did not have strong predictive 
value on the classification purpose. The radiomics fea-
tures selected generally described the heterogeneity of 
grey levels and density of the tumour, which is in accor-
dance with some radiographic features such as tumour 

type (solid or sub-solid) and air bronchus, and they some-
how mutually confirmed each other [31]. Therefore, we 
hypothesised that the radiomics features which reflected 
the grey level and density could be further investigated in 
differentiating subtypes of lung adenocarcinoma. In addi-
tion to radiomics features on the grey level and density, 
some researchers have validated that specific radiomics 
features could be related to clinical prognosis like overall 
survival among multi-organ cancer. Nguyen Quoc Khanh 
Le et al. demonstrated that a set of radiomics features 
extracted from CT images of lung cancer were evalu-
ated in lung, head and neck, and kidney data, showing 
improved time-dependent AUC of 0.736 (95% CI 0.654, 
0.819), 0.732 (95% CI 0.655, 0.809), and 0.834 (95% CI 
0.722, 0.946) [32]. This finding reminded us that we may 
put an eye on “function-specific feature selection” when 
selecting radiomics features.

Multiple imputation by chain equation is an advanced 
and widely accepted technique for missing data manipu-
lating. The statistical theory is based on regression mod-
els, which is built from existing data and then predicts 
the missing values. Multiple imputation by chain equa-
tion is typically performed by MICE package in R [33]. In 
this process, a new column is calculated with suffix “imp” 
for the column with missing data. Then whether each 

Table 4  model evaluation measurements
Name AUC AUC_upper95%CI AUC_lower95%CI Accuracy Kappa Sensitivity Specificity Pos_Pred_Value Neg_Pred_Value F1
rad_train 0.863 0.817 0.909 0.785 0.569 0.782 0.787 0.789 0.780 0.785
rad_test 0.849 0.774 0.924 0.762 0.521 0.720 0.800 0.766 0.759 0.742
cli_train 0.771 0.713 0.713 0.695 0.391 0.597 0.795 0.747 0.660 0.664
cli_test 0.778 0.687 0.868 0.705 0.404 0.620 0.782 0.721 0.694 0.667
comb_train 0.872 0.829 0.916 0.785 0.569 0.758 0.811 0.803 0.767 0.780
comb_test 0.853 0.782 0.925 0.790 0.577 0.700 0.873 0.833 0.762 0.761

Fig. 7  Decision curves for the three models. Models further from the ‘Treat All’ and ‘Treat None’ are better in clinical benefit
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missing value is closer to the previous or the next value is 
decided by the sequence of the newly calculated column. 
Finally, the missing value is imputed by the closer value 
in its own column. In our study, the missing data were 
mainly from the serum biomarker of carcinoembryonic 
antigen (CEA), nerve-specific enolase (NSE), cytokera-
tin 19 fragment (CYFRA21-1), squamous cell carcinoma 
antigen (SCC-Ag), and pro-gastrin-releasing peptide 
(ProGRP), due to different clinical practise of patients. 
Removing patients with missing data would lead to mark-
edly reduce in sample size, while introducing MICE could 
preserve the sample size and keep statistics working. 
Although univariate results showed that no biomarker 
was expressed differently between two groups. Serum 
biomarker of CEA, NSE, CYFRA21-1, SCC-Ag, and 
ProGRP has been investigated and applicated in clinical 
practise. However, their value of differentiation diagno-
sis mainly focusses on the major types of non-small cell 
lung cancer and small lung cancer, whether they could 
be used to discriminate the subtypes of lung adenocarci-
noma remains uncertain [34, 35]. To further predict the 
subtypes of adenocarcinoma, novel biomarkers such as 
extracellular vesical associated microRNA, and radiomics 
biomarkers shown in our study, may be adopted.

LASSO regression is popular in dimension reduc-
tion and feature selection for “big data”. Almost every 
radiomics study adopted cross validation of LASSO 
regression as a main approach in the data processing. 
However, concerns have been raise that randomness 
exists in the cross validation, which lead to inconsis-
tent optimal values of lambda [36]. During our analysis, 
we also experienced time consuming process of lambda 
optimization. In addition, training and test set splitting 
also brought instability. The calibration curve of clini-
cal model fitted even better than the other two models, 
probably causing by the splitting issue. To solve these 
problems, scientists are working on updated dimension 
reduction methods with LASSO regression. For example, 
Damian and Geroge et al. proposed a “StaVarSel” method 
using nested cross validation combined with frequency 
selection by LASSO [37]. They achieved 100% specific-
ity and 95.2% sensitivity with Stabilised nested cross 
validation compared with standard nested cross valida-
tion (66.7% in specificity and 47.1% in sensitivity). This 
method may be promising in radiomics application with 
reasonable revision.

This study, nevertheless, has certain limitations. First, 
this was a retrospective study from a single centre, with 
inevitable selection bias and other confounding factors. 
A multi-centre prospective study with larger population 
is required in further analysis. Second, as a single centre 
study, there was no external validation set recruited. The 
model would be more convincible if validated in inde-
pendent external validation set. Third, study data was 

consisted of radiomic features extracted from various 
scanners. Though 1*1*1 mm voxel isotropic resampling 
was applied, a single scanner data analysis would be con-
ducted in future investigation.

Conclusions
In conclusion, our study revealed that radiomics features 
by themselves could facilitate the prediction of subtypes 
of lung adenocarcinoma. Additionally, clinical missing 
data could be imputed by MICE and then be used to cal-
culate clinical scores, forming a simple but discriminative 
dataset with radiomic scores. Radiomics and combined 
models had reasonable prediction value for micropapil-
lary or solid subtype of lung adenocarcinoma.
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