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and poor prognosis and is estimated to affect 1% of the 
global population [2]. The etiologic processes of PH vary 
from congenital heart diseases, rheumatic heart diseases 
and infections, which are common in less-developed 
areas, to respiratory diseases and left heart disorders, 
which usually affect patients in developed areas [2]. The 
primary goal of PH treatment is to delay or even reverse 
this pathophysiological disorder that causes progressive 
deterioration of the lungs and other target organs, lead-
ing to unpredictable and refractory outcomes [1]. Hence, 
the marked etiological heterogeneity of PH demands 
precise and targeted medical intervention, which high-
lights the need for a comprehensive understanding of the 
pathogenesis of PH.

Pulmonary vascular remodelling is characterized 
as an important histopathological alteration in PH. 
Abnormal vascular remodelling of precapillary arte-
rioles, occlusive intimal lesions, and concentric arte-
rial wall thickening have been observed in PH patients. 

Introduction
Pulmonary hypertension (PH) is a pathophysiologi-
cal abnormality characterized by a progressive increase 
in mean pulmonary arterial pressure (mPAP) over 20 
mmHg [1]. PH has been classified into five clinical groups 
based on clinical and hemodynamic parameters, namely 
pulmonary arterial hypertension (group 1), PH associ-
ated with left heart disease (group 2), PH associated 
with lung diseases or hypoxemia (group 3), PH caused 
by chronic thrombotic or embolic disease (group 4), and 
miscellaneous PH (group 5) [1]. PH is regarded as a major 
threat to global health issues due to its high prevalence 
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Inflammation and immune processes underlie pulmonary hypertension progression. Two main different activated 
phenotypes of macrophages, classically activated M1 macrophages and alternatively activated M2 macrophages, 
are both involved in inflammatory processes related to pulmonary hypertension. Recent advances suggest that 
macrophages coordinate interactions among different proinflammatory and anti-inflammatory mediators, and 
other cellular components such as smooth muscle cells and fibroblasts. In this review, we summarize the current 
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interactions among macrophages, cytokines, and vascular adventitial fibroblasts in pulmonary hypertension, as well 
as the potential therapeutic benefits of macrophages in this disease. Identifying the critical role of macrophages in 
pulmonary hypertension will contribute to a comprehensive understanding of this pathophysiological abnormality, 
and may provide new perspectives for pulmonary hypertension management.
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These histopathological alterations are associated with 
increased pulmonary vascular resistance [3]. A variety 
of factors, such as genetic context, vascular endothelial 
cells (ECs), vascular smooth muscle cells (VSMCs), fibro-
blasts, platelets and inflammatory cells, contribute to 
the pathogenesis and progression of PH, suggesting the 
involvement of the whole vessel wall [4]. Recently, altera-
tions in soluble mediator levels as well as perivascular 
infiltration of immune cells, such as monocytes/macro-
phages, neutrophils and lymphocytes in established PH 
have been demonstrated [3, 5–7]. Lekva et al. reported 
that an elevated level of sCD163, a monocyte/macro-
phage biomarker, was associated with worse outcomes in 
PH patients [8]. These results implicate that inflammation 
plays an important role in PH progression. The infiltra-
tion of macrophages occurs mainly in perivascular areas 
and is involved in the pathogenesis of PH by coordinating 
the initiation and resolution of pulmonary inflammation 
[6]. Since macrophages play a critical role in pulmonary 
vascular remodelling, this review aimed to provide new 
perspectives for further understanding the pathogenesis 
and therapeutic strategies for this catastrophic condition. 
Group 2, Group 3, and Group 4 PH are often included 
and discussed in their primary conditions, such as left 
heart dysfunction or chronic lung diseases. Therefore, we 
focused mainly on Group 1 (pulmonary arterial hyper-
tension) in this review.

Origin of macrophages in the lung during PH
There are two types of tissue-resident macrophages in the 
lung, alveolar macrophages (AMs) and interstitial macro-
phages (IMs). AMs originate from embryonic liver mono-
nuclear cells, reside on alveoli and airways and maintain 
immune homeostasis [9]. IMs originate from circulating 
monocytes and participate in adaptive immune responses 
via interactions with interstitial T lymphocytes [10]. 
Mononuclear phagocytes are recruited to the lung during 
infection and then shift toward different subtypes [11]. It 
is currently accepted that macrophages can be classified 
into two main subgroups: the classically activated type 
(M1), which promotes the inflammatory response via 
the synthesis and release of proinflammatory cytokines; 
or the alternatively activated type (M2), which promotes 
inflammation resolution and tissue repair [12]. Montani 
et al. reported the involvement of bone marrow-derived 
CD117 + cells in human idiopathic PH [13]. Circulating 
monocytes are recruited to the lungs when chemokine 
levels increase, where they replace resident interstitial 
macrophages and subsequently participate in vascular 
remodelling [14]. Therefore, monocytes are recruited and 
then react to microenvironmental changes in the lungs 
during external or internal stimuli, and function as key 
cellular mediators to coordinate inflammatory reactions, 

differentiation and polarization into different active sub-
types [15].

Macrophages infiltrate vessels during PH, contributing to 
vascular remodelling
The remodelling of pulmonary arterial vessels is essential 
for PH progression, and leads to a progressive increase in 
mPAP [3]. Arterial remodelling requires the accumula-
tion of resident pulmonary vessel cells and inflammatory 
cells, which suggests the involvement of all three layers. 
Specific pathological features, such as fibrosis altera-
tions, can be detected via histopathological assessment 
at the early stage of PH progression [3]. Both external 
and internal stimuli, such as genetic mutations, hypoxia, 
cold exposure, air pollution, and respiratory infection, 
can initiate immune responses and therefore lead to the 
proliferation of vascular cells, autoantibody formation, 
and dysregulated immunity [16–20]. Histopathological 
evidence has suggested that perivascular infiltration of 
inflammatory cells is common in PH and precedes struc-
tural remodelling in vessels [5, 6, 17, 21, 22]. In idiopathic 
PH, the level of immune infiltration is higher for CD8 + T 
cells, resting memory CD4 + T cells, γδ T cells, M1/M2 
macrophages and resting mast cells; and lower for mono-
cytes, neutrophils and naïve CD4 + T cells [23–25]. These 
results suggest that immune imbalance contributes to 
remodelling in PH.

Hypoxia-induced (sugen, a vascular endothelial growth 
factor antagonist, is used simultaneously in many stud-
ies) and monocrotaline (MCT)-induced experimental 
PH models, which are similar to group one pulmonary 
arterial hypertension, have been widely adopted [26, 27]. 
Compared with human PH samples, experimental PH 
models provide richer information about macrophage 
infiltration. Monocyte numbers increase in both the bone 
marrow and the blood when hypoxic exposure is pro-
longed [28]. After one day of exposure to hypoxia, the 
IL-1β and oncostatin M regulation-related subtypes of 
macrophages are the most abundant groups in the lungs 
of mice, which are often associated with proinflamma-
tory effects. Later, new subtypes that are overrepresented 
with mitochondrial dysfunction, oxidative phosphoryla-
tion and the EIF2 signalling pathway emerge after seven 
days of hypoxic exposure; these subtypes are involved in 
anti-inflammatory effects and tissue repair [29]. As Pug-
liese et al. reported previously, during the early period of 
hypoxic exposure, macrophages accumulate around pul-
monary vessels, exhibit a hypoxic response and release 
proinflammatory cytokines; subsequently, the peri-
vascular accumulation of macrophages decreases and 
demonstrates the tissue repair and anti-inflammatory 
programming states [30]. Inhibiting the early accumula-
tion of monocytes and macrophages has been reported 
to effectively ameliorate the right ventricular burden and 
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Fulton index in hypoxic mouse models [31]. The genetic/
pharmacological intervention of several key signalling 
pathways in macrophages can protect against experi-
mental PH progression [32–41]. These potential targets 
function via different mechanisms, such as the allevia-
tion of macrophage-related pulmonary inflammation and 
the inhibition of macrophage activation and polarization. 
Additionally, the depletion of AMs reportedly attenuates 
hypoxia-induced PH in rats [42]. These genetic or phar-
macological targets are summarized in Table 1.

Recently, unexpected macrophage infiltration has 
been detected in the right ventricle in MCT- or hypoxia-
induced rat models, leading to inflammation in the right 
heart [43, 44]. Therefore, the inflammatory response 
might not only affect the lungs and pulmonary vessels, 
the heart can also suffer from similar pathophysiologi-
cal alterations. The similar macrophage infiltration in the 
heart is important too, because right heart dysfunction 
and failure are major risk factors for poor prognosis in 
PH patients. Interestingly, the depletion of macrophages 
reportedly induces experimental PH in male mice but not 
in female mice [45], suggesting a potential association 
between sex and immune cells in PH. This is quite inter-
esting, since PH is more likely to be a female predomi-
nant disease with a female-to-male ratio of approximately 
4:1, while PH tends to be more severe in males [46]. 
Oestrogen is believed to mediate the protective effect 
of female sex in PH via oestrogen receptor-β, based on 
evidence from MCT-induced rat PH models treated with 
oestrogen [47]. The genetic variation in oestrogen metab-
olites and the canonical/noncanonical TGF-β signalling 
pathways regulated by sex hormones might explain the 

female predominance in PH [48, 49]. For example, oes-
trogen inhibition induced by aromatase inhibitors can 
reduce the development of PH in bmpr2-mutant mice 
[49]. Oestrogen can regulate the expression of TGF-β 
receptors and signalling modulators, such as endoglin 
and TGF-β3, at the transcriptional and protein levels 
[48]. Other sex hormones, including progestogen, andro-
gen and anti-Müllerian hormone might also contribute 
to the sex-related differences in PH. Therefore, oestro-
gen metabolism and oestrogen receptors are regarded 
as promising therapeutic targets in PH [50]. Addition-
ally, elevated aromatase expression is elevated in the spe-
cial phenotype of female pulmonary SMCs, suggesting a 
higher level of estradiol synthesis and thus contributing 
to female PH susceptibility [51]. Regulatory T-cell func-
tion has been demonstrated to be a protective factor in 
female rodent models of PH, that Treg deficiency results 
in more severe PH in females than in males [52]. The Y 
chromosome was reported to be protective against the 
development of hypoxia-induced PH [53]. However, oes-
tradiol supplementation can also limit several maladap-
tive processes in the right ventricles associated with PH, 
such as pro-apoptotic signalling, oxidative stress and 
activation of pro-inflammatory cytokines, which might 
prevent right ventricle remodelling [49]. Until now, no 
sex difference was found in macrophage polarization 
[45], and there is no direct evidence that macrophages 
act differently in different sexes.

Table 1  Genetic or pharmacological targets associated with macrophages in the PH model
Author Year Main result Model Species Intervention Reference
Yaku et al. 2022 Regnase-1 regulates IL-6 and PDGF in alveolar macrophages. Hypoxia Mouse Genetic knockout  [41]
Yu et al. 2022 Selective BTK inhibitor BGB-3111 regulates macrophage recruitment 

and polarization.
MCT Rat BGB-3111  [36]

Rong et al. 2022 Caspase-8 deletion or pharmacologically blocking affects the proin-
flammatory factors secreting in M1 macrophages.

SU5416/
Hypoxia, 
MCT

Mouse, rat Genetic knockout 
and inhibitor 
(Z-IETD-FMK)

 [38]

Kojima et al. 2019 HIF-1α deletion in myeloid suppresses macrophage infiltration. Hypoxia Mouse Genetic knockout  [33]
Hu et al. 2019 Hif-2 inhibitor PT2567 attenuated monocyte recruitment. Hypoxia Rat PT2567  [35]
Xi et al. 2019 SGK1 knockout inhibits proinflammatory cytokines expression and 

inflammatory infiltration of macrophage.
Hypoxia Mouse Genetic knockout  [39]

Amsellem 
et al.

2017 Inactivation of CX3CR1 modulates monocyte recruitment and mac-
rophage phenotype.

Hypoxia Mouse Genetic knockout 
and CX3CR1 
antagonist F1

 [40]

Barman 
et al.

2014 Nox4 colocalizes with monocyte markers. Nox4 inhibitor VCC202273 
attenuates PH progression.

SU5416/
Hypoxia, 
MCT

Mouse, rat VCC202273  [37]

Tian et al. 2013 Blocking macrophage Leukotriene B4 abrogates endothelial injury. SU5416/
Hypoxia, 
MCT

Rat LTA4H inhibitor 
Bestatin

 [32]

Abbreviations: IL-6, Interleukin-6; BTK, Bruton’s tyrosine kinase; MCT, monocrotaline; HIF-1α, hypoxia-inducible factor-1α; SGK1, serum glucocorticoid-regulated 
kinase-1; LTA4H, leukotriene A4 hydrolase
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Macrophages react to PH triggers and polarize to different 
subgroups
As discussed previously, macrophages infiltrate the 
perivascular area during PH. Monocyte-derived macro-
phages are recruited to the lung and then differentiate 
in response to microenvironmental changes during pul-
monary damage; these cells are involved in lung injury 
and repair [15, 54]. The time- and compartment-specific 
activation of lung macrophages was reported by Pug-
liese et al. [30]. During the early stage of hypoxic expo-
sure, macrophages accumulate vastly around pulmonary 
arterioles instead of the alveolar space, with upregula-
tion of mTORC1 signalling, glycolysis, and oxidative 
phosphorylation in both AMs and IMs. The expression 
of IL-1, IL-5, CCL-5, and EGFR is also increased in both 
AMs and IMs during the early stage of hypoxic exposure. 
When hypoxia is prolonged, the perivascular accumula-
tion of macrophages decreases and presents different 
compartment-specific activation, that perivascular IMs 
tend to signal against inflammation and promote tissue 
repair/remodelling while AMs still exhibit high proin-
flammatory-related signalling [30]. A typical change in 
macrophage subgroups in the experimental PH model is 
that M1-polarized macrophages predominate in the early 
phase after stimulation; then, M2-polarized macrophages 
accumulate in the lung with an increase in the M2/M1 
ratio to almost ten after four weeks of induction [28, 55, 
56]. M1 macrophages are regarded as proinflammatory 
components, while M2 macrophages are often associated 
with anti-inflammatory and reparative effects [45]. How-
ever, interruption of the M1 subgroup can also effectively 
protect against PH [38]. Additionally, a rebalanced M2/
M1 ratio could be observed in alleviated PH models [57]. 
Changes in macrophage activation and the M1/M2 ratio 
are presented in Fig. 1.

The activation of macrophages in the hypoxia-induced 
experimental PH model has been reported to be related 
to alterations in several signalling pathways and cyto-
kines, such as hypoxia-inducible factor 1 (HIF-1), IL-6, 
NF-κB, HIMF and IL-6 [58]. During the early phase of 
hypoxia, the increased expression of Ythdf2 in AMs pro-
motes the degradation of m6A-modified Hmox1 mRNA 
and the activation of macrophages; consequently, levels 
of anti-inflammatory mediators (such as IL-10) are evalu-
ated and promote the proliferation of VSMCs, leading to 
PH progression [59]. The deletion of Ythdf2 in bone mar-
row-derived macrophages (BMDMs) leads to the promo-
tion of the M1 subtype by enhancing MAPK and NF-κB 
signalling and the inhibition of the M2 subtype by upreg-
ulating p53 expression [60]. This result provides another 
potential explanation for why the absence of Ythdf2 in 
macrophages protects PH. IMs express thrombospon-
din-1 after hypoxic exposure, thus promoting hypoxic 
PH progression via TGF-β activation [61].

Human RELM-β, which is homologous to the rodent 
RELM-α (also known as HIMF or FIZZ1) and is regarded 
as a marker of the M2 subtype, has been reported to be 
upregulated in the proliferative stage in hypoxia-induced 
PH [62]. HIMF-positive signals are mainly colocalized 
with perivascular macrophages [63]. When exposed to 
chronic hypoxia, RELM-α emerges in macrophages and 
subsequently promotes the activation and release of 
HMGB1, while the DAMP receptor RAGE is required 
for HMGB1 function and maintenance of inflammation. 
Hence, an autocrine positive feedback loop is established 
in macrophages, resulting in continuous vascular inflam-
mation and proliferation of VSMCs in PH [64]. The 
hypoxia-induced increase in RELM-β could also inhibit 
membrane KCNK3 expression via PLC activity and 
endocytosis [65], which have been reported to contribute 
to local inflammatory response, vascular remodelling and 
proliferation [66]. The IL-4 signalling pathway can syner-
gistically enhance the HIMF-induced expression of vas-
cular endothelial growth factor (VEGF) and monocyte 
chemoattractant protein-1 (MCP-1), which is also asso-
ciated with angiogenesis in pulmonary microvessels [67, 
68].

Hypoxia-inducible factor (HIF) is a major regulator 
of oxygen homeostasis that initiates a series of hypoxic 
responses, including changes in vascular tone and pro-
liferation, cellular metabolism, autophagy and cellular 
survival [34]. HIMF induces the recruitment of macro-
phages to the angiogenesis area in the HIF-1-dependent 
manner and the production of IL-1 by perivascular mac-
rophages and VSMCs in the HIF-1α-dependent manner 
[62]. Deletion of HIF-1α in BMDMs reduces right heart 
remodelling and pulmonary macrophage infiltration in 
hypoxia-induced PH models, suggesting the involve-
ment of HIF-1 in PH progression [33]. It has also been 
reported that decreased perivascular macrophage infil-
tration in hypoxia-induced PH models was associated 
with the alleviation of pulmonary vascular musculariza-
tion [33]. Leptin, a HIF-dependent peptide hormone, is 
reportedly upregulated in pulmonary vessels, leading to 
abnormal monocyte/macrophage activation, perivascu-
lar macrophage accumulation, and IL-6 overexpression 
[69, 70]. Hence, interfering with macrophage migration 
seems to be a promising target for PH treatment. A pre-
vious report indicated that HIF-1α is expressed at higher 
levels in M1 macrophages, and HIF-2α is expressed at 
higher levels in M2 macrophages [71]. The suppression 
of HIF-2α can alleviate hypoxia-induced PH [35]. Active 
arginase can reduce the supply of L-arginine, which is 
needed for NO synthase [72], thus decreasing NO pro-
duction in macrophages. Arginase 1 expression in macro-
phages is induced by HIF-2α [73]. The protective effect of 
HIF-2α suppression in PH might be related to M2 mac-
rophage dysfunction, because NO contributes to vascular 
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Fig. 1  PH triggers induce macrophage activation and polarization. During the early stage, recruited and resident macrophages polarize to the M1 type 
in response to external stimuli. Then M2 type dominates the main polarization type of macrophages in the lung for tissue repair, as stimuli are constantly 
present. Macrophage activation and polarization are complex and consecutive processes, that cannot be simply regarded as separate and contradictory 
processes involved in PH progression
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resistance regulation and M2 polarization contributes to 
vascular remodelling.

In the MCT-induced rat model, Bruton’s tyrosine 
kinase (BTK), a nonreceptor tyrosine kinase of the Tec 
family that is linked to B-cell proliferation and sur-
vival, is upregulated in the lung and colocalized with 
CD68 + macrophages [36]. BTK inhibitors can prevent 
M1 polarization and PH progression in experimental 
PH models [36]. In addition, deficiency of legumain (also 
known as asparaginyl endopeptidase) in macrophages 
has been reported to attenuate hypoxia-induced PH in 
mouse models [74].

Activation and metabolic reprogramming in macrophages
Leukotriene B4 (LTB4) is released by activated macro-
phages and can induce pulmonary arterial endothelial 
apoptosis and extensive vascular injury [32]. LTB4 can 
also promote the proliferation, migration, and differen-
tiation of fibroblasts through both the activation of p38 
MAPK signalling and the upregulation of Nox4 [75]. 
Nox4 and reactive oxygen species (ROS) are detected 
in the adventitia and overlap with fibroblast markers 
(fibroblast activating proteins) and a monocyte marker 
(CD11b) [37]. Nox4-derived ROS activate the transient 
receptor potential melastatin 2 and therefore enhance 
the proliferation and migration of VSMCs in pulmonary 
arteries [76]. M1 macrophage infiltration in the right 
ventricle with enhanced NOD-like receptor thermal pro-
tein domain associated protein 3 (NLRP3) expression 
and activation results in right heart dysfunction [43]. 
Stimulators of interferon genes in macrophages induce 
PH progression via the activation of NLRP3 signalling 
transduction [77]. Moreover, prostaglandin D2 released 
by macrophages inhibits smooth muscle cell proliferation 
and induces vasodilation [78]. Under particular condi-
tions, extracellular vesicles that are released by macro-
phages in certain infections carry high levels of TGF-β1, 
which is associated with increased pulmonary arterial 
systolic pressure [79].

When exposed to inflammatory stimuli or chronic 
hypoxia, macrophages are activated and then undergo 
aerobic glycolysis [80], which in turn governs macro-
phage function [81]. Metabolic reprogramming occurs 
in various cells in PH, including VECs, VSMCs, fibro-
blasts and immune cells, and plays a synergistic role 
with other PH hallmarks such as proliferation, apoptosis 
resistance and inflammation [82]. In macrophages, this 
metabolic shift is usually reversible and might involve the 
synthesis and secretion of immune mediators [83]. The 
metabolic shifts are mainly induced by HIF families and 
prolong survival under stress [84]. For example, HIF-1α 
is induced in M1-macrophages, while glycolytic and pen-
tose phosphate pathways are also enhanced; in M2-mac-
rophages, HIF-2α is elevated, while fatty acid oxidation 

level and mitochondrial respiratory chain activity are 
also increased [85]. These metabolic shifts are impor-
tant for vascular diseases [86]. Metabolite alterations and 
the mitochondrial electron transport chain distribution 
characterize reprogrammed macrophages [87]. Chronic 
hypoxia might lead to a prolonged glycolytic shift even 
when the stimulus has been removed [84]. Due to the 
angiogenesis and chronically inflammatory nature of PH, 
several studies have attempted to alleviate PH by inter-
fering with metabolic reprogramming. G6PD activity 
inhibitors decreased the accumulation of macrophages in 
hypoxic PH mice [28]. The specific deficiency of Pfkfb3 
in myeloid cells, that Pfkfb3 is a critical enzyme of mac-
rophage glycolysis, protects mice from PH and decreases 
the levels of growth factors and proinflammatory cyto-
kines in experimental PH models [88]. When exposed to 
IL-4 and hypoxia, the level of insulin receptor substrate 
2, a critical regulator of cellular energy homeostasis, is 
decreased in macrophages and subsequently contributes 
to chronic inflammation and vascular dysfunction [89]. 
SIRT1-mTOR/HIF-1α signalling can promote M2-type 
differentiation by blocking glycolysis and can reduce the 
recruitment of inflammatory cells [90, 91]. Macrophages 
reprogrammed by HIF-2α can produce several specific 
cytokines, such as IL-6, thus protecting organs from 
injury [92]. The activation of mTOR and HIF-1α can be 
induced by many factors, such as infection and the circa-
dian clock [93, 94]. However, proinflammatory cytokine 
production within macrophages might not be glycolytic 
reprogramming-dependent [95]. In Table  2; Fig.  2, we 
summarize the published studies on experimental PH 
that focused on macrophages. Although metabolic repro-
gramming is an important characteristic of activated 
macrophages, it can occur in many other cellular compo-
nents, such as fibroblasts and vascular endothelial cells, 
during PH progression.

Interaction of macrophages with soluble mediators
The expression of many immune mediators is altered in 
PH, including cytokines (such as IL-1β, IL-6, IL-10, and 
IL-18), chemokines and their receptors (such as CCL2 
-CCR2, CCL5-CCR5, CXCL12, CX3CL1, LTB4), HIMF, 
and complement [7, 104]. Exosomes from mesenchymal 
stem cells can also regulate pulmonary inflammation 
via modulation of macrophage function [15, 57]. These 
soluble components are involved in both the inflamma-
tory response and tissue repair, as well as interactions 
between different cells. Several proinflammatory or anti-
inflammatory biomarkers have been applied to predict 
the outcome of PH clinically or experimentally [105]. In 
Table  3, we summarize the origins of these mediators 
and the cell types affected. Most mediators are produced 
by both macrophages and other cellular components 
(such as fibroblasts or smooth muscle cells) during PH 
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progression. The levels of several chemokines, such as 
CCL2 and CCL5, are reportedly increased in proinflam-
matory fibroblasts and can induce macrophage transmi-
gration. Together, these mediators, which have various 
origins, regulate PH progression.

IL-6
IL-6 has diverse cellular origins, such as fibroblasts, 
macrophages, pulmonary arterial smooth muscle cells, 
and Th1 lymphocytes [6, 7, 16]. In the very early stage 
of hypoxia or MCT exposure, increased levels of both 
IL-6 protein and mRNA can be detected in experimen-
tal PH model lungs [106, 107]. IL-6 plays a complex role 
in inflammation. IL-6 has both a proinflammatory effect 
by stimulating IL-4 production in Th2 cells and an anti-
inflammatory effect by inhibiting IFN-γ production in 

Th1 cells [16]. Fibroblasts subjected to hypoxic condi-
tions exhibit resistance to apoptosis in response to envi-
ronmental changes [82]. The IL-6/STAT-3 signalling 
contributes to macrophage activation in hypoxia-induced 
PH models [108]. The IL-6/IL-21 axis is involved in M2 
polarization, and IL-6 blockade inhibits M2 polariza-
tion in the hypoxia-exposed mouse model of PH [108]. 
Macrophage-derived IL-6 has been reported to promote 
pulmonary vascular remodelling [34]. The pharmaco-
logic blockade or mRNA degradation of IL-6 in AMs can 
decrease right ventricular systolic pressure and alleviate 
PH progression in hypoxic mouse models [41].

IL-10
CD4 + Th2 cells, B lymphocytes and M2 polarized 
macrophages produce IL-10 [109]. IL-10 inhibits the 

Table 2  Recent studies focused on macrophages in PH models
Studies Year Models Main results Role of macrophage in PH
Wu et al. [77] 2023 Rat model 

(hypoxia)
STING was mainly colocalized with CD68+ macrophages. STING inhibition 
prevented the overactivation of NLRP3 signalling and macrophage activation 
in rat models.

Macrophage activation 
in PH.

Chi et al. [96] 2022 Rat model (MCT, 
hypoxia)

Elevated MMP-1 and MMP-10 in M1 macrophages. MMP-10 promoted prolif-
erative and pro-migratory phenotypes of VSMCs.

Macrophage regulates 
VSMC behavior in PH.

Jeong et al. 
[97]

2022 Mouse model 
(hypoxia)

Inhibition of RUNX1 dampens macrophage recruitment and activation. Macrophage activation 
in PH.

Yu et al. [36] 2022 Rat model (MCT) BTK was upregulated and mainly colocalized with macrophages. BTK inhibi-
tion suppressed recruitment of M1 polarized macrophage and vascular 
remodelling in MCT-induced PH.

Macrophage activation and 
polarization in PH.

Gu et al. [98] 2022 Mouse model 
(hypoxia, 
schistosomiasis)

Macrophage subpopulation infiltration increased in the right ventricle after 
acute hypoxia: CD11clowMHCIIlow and CD11chighMHCIIhigh.

Macrophage subgroups 
in PH.

Wang et al. 
[88]

2021 Mouse and rat 
model (hypoxia)

Pfkfb3 regulated the expression of proinflammatory cytokines and growth 
factors. PH was ameliorated when Pfkfb3 was suppressed.

Macrophage activation 
in PH.

Nakahara et 
al. [89]

2021 Rat model 
(hypoxia)

IRS2 was downregulated by IL-4 and hypoxia stimulation in macrophages. 
IRS2 negatively regulated Akt and ERK pathways in macrophages.

Macrophage activation and 
polarization in PH.

Ntokou et al. 
[99]

2021 Mouse model 
(hypoxia)

PDGFb upregulated in macrophages. PDGFb-induced pathological smooth 
muscle cell expansion.

Macrophage regulates 
VSMC behavior in PH.

Kumar et al. 
[61]

2020 Mouse model 
(hypoxia)

Interstitial macrophages expressed thrombospondin-1 after hypoxia. Macrophage regulates 
vasoconstriction in PH.

Batool et al. 
[100]

2020 Mouse and rat 
model (hypoxia)

Expression of Stamp2 decreased in macrophages after hypoxic exposure. 
Stamp2 deficiency led to aggravated pulmonary inflammation and worsen-
ing of hypoxia-induced PH.

Macrophage activation in 
PH. Macrophage regulates 
VSMC behavior in PH.

Park et al. 
[56]

2020 Rat model (MCT) Uptake of macrophage infiltration tracker 68Ga-NOTA-MSA in the lung was 
observed in both rat PH models and PH patients.

Macrophage infiltration 
in PH.

Xi et al. [39] 2019 Mouse model 
(hypoxia)

Increased SGK1 expression in macrophages. SGK1 deficiency inhibited mac-
rophage activation and inflammatory response.

Macrophage activation 
in PH.

West et al. 
[101]

2019 Mouse model 
(hypoxia, BMPR2 
knockdown)

BMPR2 suppression in macrophages contributed to pulmonary vascular 
remodelling.

Macrophage activation 
in PH.

Yin et al. 
[102]

2017 Rat model (MCT) Activation of the P2 × 7R in macrophages. P2 × 7R inhibition suppressed 
cytokine levels and ameliorated vascular remodelling in PH.

Macrophage activation 
in PH.

Saito et al. 
[103]

2017 Rat model (Single 
Su5416)

A high level of HERV-K expression was observed in perivascular CD68+ cells 
in PH patients. HERV-K dUTPase was induced by inflammatory stimuli and 
caused pulmonary hypertension in rat models.

Macrophage activation 
induced by endogenous 
retrovirus in PH.

Abbreviations: STING, Stimulator of interferon genes; MMP, matrix metalloproteinase; RUNX1, Runt-related transcription factor 1; BTK, Bruton’s tyrosine kinase; 
Pfkfb3, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3; IRS2, insulin receptor substrate 2; SGK1, serum glucocorticoid-regulated kinase-1; BMPR2, bone 
morphogenetic protein receptor type 2; P2 × 7R, P2 × 7 purinergic receptor; HERV-K, human endogenous retrovirus K
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proliferation of smooth muscle cells and the synthesis 
of proinflammatory cytokines in macrophages and Th1 
lymphocytes [16]. Upregulation of IL-10 expression in 
PH rat models alleviated inflammatory infiltration and 
VMSC proliferation, as well as mPAP and right ventricu-
lar hypertrophy [110]. The protective effect of increased 
IL-10 levels in PH models was reported with alterations 
in other PH-related cytokines [31]. Hence, quantify-
ing the protective effect of IL-10 in PH seems unlikely. 

Nevertheless, IL-10 is still a promising target for PH 
intervention.

IL-1
IL-1 is produced by diverse cell types, including mono-
cytes, fibroblasts, T lymphocytes, neutrophils, and even 
pulmonary arterial smooth muscle cells [6, 7, 29, 30]. 
Upregulation of IL-1 occurs in the very early period of 
PH initiation and progression in response to hypoxia in 
macrophages [29]. Through the IL-1β/IL-1R1/MyD88 

Table 3  The origins and targets of the main soluble mediators in pulmonary hypertension
Produced by Affects

IL-1 Fibroblast, macrophage, neutrophil, T cell, VSMCs VSMCs, macrophage
IL-6 Fibroblast, VSMCs, Th1 cell, macrophage Macrophage, Th1 cell, Th2 cell
IL-8 VSMC, macrophage, VECs Neutrophil
IL-10 Th2 cell, B-cell Macrophage, Th1 cell, VSMCs
MIF Fibroblast, macrophage, VECs VSMCs, VECs
CCL2 Fibroblast, VECs, VSMCs Macrophage
CCL5 Fibroblast, VECs Macrophage
CX3CL1 Macrophage, VECs Macrophage, VSMCs
CXCL12 Fibroblast, VECs Macrophage
Abbreviations: IL, Interleukin; VSMCs, vascular smooth muscle cells; VECs, vascular endothelial cells; MIF, migration inhibitory factor

Fig. 2  Metabolic reprogramming in macrophages exposed to hypoxia and inflammation. Both HIF-1α and HIF-2α were increased by hypoxia, leading 
to different responses in macrophages. Glycolysis usually characterizes M1 macrophages and suppresses M2 polarization, while HIF-2α promotes cell 
survival and the expression of specific cytokines, such as IL-6. Circulating cytokines such as IL-4, and SIRT1 can also affect metabolic reprogramming in 
macrophages by activating or inhibiting mTOR signalling
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pathway, macrophages induce the proliferation of 
VSMCs in pulmonary arteries, suggesting that IL-1β is 
involved in pulmonary vascular remodelling in experi-
mental PH [111].

IL-8 and migration inhibitory factor
IL-8 is expressed by macrophages or injured vascular 
cells. In the MCT-induced PH models, neutrophil infil-
tration and proinflammatory mediator expression are 
reduced by the upregulation of IL-8 in VECs [112]. The 
migration inhibitory factor (MIF) produced by T-cell 
lymphocytes is increased and activated in idiopathic PH 
patients, while an antagonist of MIF can partially reverse 
the development of experimental PH [113]. MIF func-
tions as a main proinflammatory cytokine and VSMC 
proliferation promoter, and MIF expression and secre-
tion levels are elevated in fibroblasts, monocytes, and 
endothelial cells after infection or hypoxia [114].

Chemokine
CCL2-CCR2 and CCL5-CCR5 are essential for the ini-
tiation and amplification of VSMCs in PH pathogenesis 
[115]. Increased expression of CCL2 and its ligand CCR2 
was observed in the lungs of hypoxic PH models [40]. 
Proinflammatory fibroblasts in the vascular adventitia 
under hypoxic conditions express high levels of CCL2, 
CCL5, and CXCL12 [6, 116]. CCR2 is essential for the 
recruitment and development of M1-polarized macro-
phages, while increased CCL5 induces transmigration, 
adhesion, and activation [6, 11, 116]. Bordenave et al. 
reported a marked alleviation in distributed pulmonary 
hemodynamics and structural disorders in both the lung 
and heart when chemokine CXCL12 was neutralized in 
rat PH models [117]. Furthermore, CXCL12 neutraligand 
administration (chalcone 4, LIT-927, and AMD3100) 
decreased macrophage infiltration in the lungs of PH rat 
models [117]. In addition, the expression of CX3CR1 and 
its ligand CX3CL1 has been reported to increase in the 
lungs of hypoxia-induced PH models [40]. The inhibition 
of the CX3CL1-CX3CR1 signalling pathway effectively 
attenuates pulmonary inflammation and arterial remod-
elling, thus leading to a certain degree of improvement in 
hemodynamics [14]. Genetic deletion or pharmacologi-
cal inhibition of CX3CR1 prevents hypoxia-induced PH 
by regulating monocyte recruitment, macrophage polar-
ization and VSMC proliferation, which are associated 
with a changed balance between the M1 and M2 pheno-
types [40]. These findings highlight the close interaction 
between CX3CL1 and macrophages, suggesting that the 
CX3CL1-CX3CR1 signalling pathway is a potential ther-
apeutic target for PH.

Although these mediators are involved in the promo-
tion or prevention of PH pathogenesis and progres-
sion, it is unwise to simply define them as “harmful” or 

“beneficial”. There is a complex and ingenious collabora-
tion between mediators and cellular components. Cyto-
kines and other inflammatory factors are synthesized and 
released by both macrophages and other cellular com-
ponents, and subsequently activate or repress specific 
downstream signalling pathways, which in turn initiate 
pro- and/or anti-inflammatory responses and induce the 
activation or repression of other inflammation-related 
cells, such as immune cells, fibroblasts, ECs, and even 
smooth muscle cells. For example, PH patients with 
moderate cytokine levels have the best prognosis, while 
groups with the strongest or lowest immune signals have 
more severe clinical symptoms and worse outcomes 
[118], despite disordered circular inflammation factors 
being quite common in PH patients.

Interactions of macrophages with other cellular 
components in PH
Cellular abnormalities, including pulmonary vascular 
endothelium dysfunction, VSMC and adventitial fibro-
blast accumulation in arteries, and innate/adaptive 
immune system dysregulation, are critical promotors 
in PH [17]. Pulmonary ECs are transformed into proin-
flammatory phenotypes, then produce and release mul-
tiple cytokines and chemokines, leading to changes in 
endothelial communication between other resident vas-
cular cells and circulating cells. Endothelial dysfunction 
and environmental stress induce metabolic alterations 
and proliferation in pulmonary VSMCs and fibroblasts. 
Moreover, perivascular inflammatory infiltration and 
circular cytokine alterations can be detected in the early 
stage of PH, suggesting that the immune system responds 
to microenvironmental changes and external stimuli even 
before substantial vascular remodelling occurs [17, 119]. 
These changes interact with other PH promotors.

Histological evidence has indicated concentric or 
eccentric intima-media thickening in muscularized pre-
capillary arteries in individuals with established PH [3], 
which highlights the involvement of ECs and smooth 
muscle cells. ECs are essential for the initiation of PH. 
HIF-2α is activated in ECs under hypoxia, which is 
required for prominent proinflammatory genes Sdf1 
(CXCL12), CXCR4, ICAM1 and VCAM1; then mono-
cytes/macrophages and other circulation-/bone marrow-
derived cells are recruited to lung at the early stage of PH 
development [35, 120]. Inhibition of membrane KCNK3 
expression induced by hypoxia occurs mainly in VSMCs 
and pulmonary ECs, resulting in localized inflammation 
and vascular remodelling [65, 66]. Neutrophil extracel-
lular traps are also involved in endothelial dysfunction 
and vascular homeostasis, which is attributed to proin-
flammation, pro-thrombosis, and the induction of NF-κB 
[121]. VEC ferroptosis in MCT-induced experimental 
PH induces HMGB1 release, leading to the upregulation 
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of TLR4 expression in macrophages and triggering the 
inflammatory response via the HMGB1/TLR4/NLRP3 
inflammasome signalling pathway [122]. Aryl hydrocar-
bon receptors in endothelial cells induce PH in rat mod-
els by upregulating inflammatory signals and increasing 
the accumulation of CD4 + cells [123]. The production 
of granulocyte-macrophage colony-stimulating factor in 
pulmonary artery VECs prevents chronically hypoxia-
induced PH in mice and is upregulated when reducing 
BMPR2 expression [124]. In addition, decreased perox-
iredoxin 6 in VECs induces the release of HMGB1 and 
activation of the TLR4/NLRP3 signalling pathway, thus 
promoting MCT-induced PH in rats [125]. The upregu-
lated salusin-β in VECs and macrophages in PH rats has 
been reported to be a main contributor to both athero-
sclerosis and myocardial ischaemic disease, and pro-
motes pulmonary VEC dysfunction via the activation of 
NF-κB signalling, thus inducing pulmonary inflammation 
and vascular remodelling [126].

Some factors expressed by activated macrophages can 
regulate vascular cell function. The proliferation of pul-
monary VSMCs can be upregulated by VEGF and plate-
let-derived growth factor (PDGF), which are expressed 
by accumulated macrophages in pulmonary vessels [68, 
99]. Moreover, pulmonary VSMC proliferation can be 
inhibited by prostaglandin D2 released by macrophages 
[78]. The proliferative phenotype of VSMC exhibits 
HIF-1α activation and enhanced glycolysis in normoxic 
conditions in experimental PH models [127]. Since the 
accumulation of VSMCs is very common in PH, the inhi-
bition of smooth muscle cell proliferation and migration 
via regulating IL-1β, HIF or Nox4 has been reported to 
be a promising and effective therapeutic target for PH 
[37, 38, 69, 76]. In addition, the expression of MMP-1 
and MMP-10 in M1-polarized macrophages increased in 
both PH patients and PH rat models, and the increased 
expression of MMP-1 and MMP-10 can promote the 
proliferation and promigratory phenotypes of VSMCs 
[96]. VSMC-derived TGF-β regulates the phenotypes 
of macrophages via p38-MAPK-dependent signalling, 
which in turn promotes VSMC proliferation [128]. Addi-
tionally, VSMC-derived multipotent vascular progenitor 
cells can differentiate into multiple phenotypes, such as 
mature VSMCs, resident macrophages, and endothelial-
like cells [129]. These vascular progenitor cells might be 
derived from VSMCs and located at the normal pulmo-
nary artery muscular-unmuscular border [130], or they 
can be derived from distinct PW1 + cells in perivascular 
zones [131].

Another typical characteristic of pulmonary vas-
cular remodelling in PH is the presence of the proin-
flammatory fibroblast phenotype, as proposed by the 
outside-in hypothesis of pathological vascular remod-
elling [132]. When exposed to external stimuli such as 

hypoxia, fibroblasts produce increased levels of lactic 
acid, succinate, citrulline, IL-6, and other inflammation-
related mediators, thus leading to microenvironmen-
tal alterations and anti-inflammatory effects to enhance 
proliferation and apoptosis resistance [82]. These pro-
inflammatory phenotype fibroblasts exhibit increased 
HDAC I activity and express high levels of several typi-
cal products, such as classic cytokines (IL-1 and IL-6), 
macrophage chemoattractants (CCL2, CXCL12, and 
CCL5), the macrophage growth factor GM-CSF, and the 
adhesion protein VCAM-1, thus inducing the migration, 
adhesion, and activation of monocytes [6]. In addition, 
the MiR-124/PTBP1/PKM axis has been reported to be 
associated with metabolic reprogramming in proinflam-
matory fibroblasts [133]. Galectin-3 is also expressed in 
fibroblasts and serves as a pattern-recognition recep-
tor and danger-associated molecular pattern in macro-
phages, leading to M2 polarization [134].

Notably, fibroblasts can activate the inflammatory 
phenotype and immune response of BMDMs, and 
increase aerobic glycolysis in BMDMs [116]. In addi-
tion to cytokines and chemokines, fibroblasts can also 
release extracellular vesicles [135], which can provide 
ROS [37]. The altered microenvironment forces macro-
phages to react. On the one hand, increased lactic acid, 
succinate, and IL-6 levels drive STAT3 and HIF-1 activa-
tion, thus promoting metabolic reprogramming in mac-
rophages, while increased citrulline serves as a material 
for arginase in macrophages and maintains its function 
[82]. On the other hand, extracellular vesicles induce the 
transformation of phenotypes and promote the release 
of mediators in BMDMs, such as IL-4, G-CSF, CXCL13, 
MCP-5, CXCL11, IL-16, IL-17, IL-1β, CCL5, CCL1, 
MIG, IL-10, IL-23, TNF-α, IL-27, IFN-γ, IL-13, MIP-2, 
sICAM-1, IL-3, TIMP-1, and CXCL-1 [135]. Metabolic 
coordination between macrophages and fibroblasts is 
subsequently established, leading to persistent meta-
bolic alterations and cell activation. In addition to VECs, 
VSMCs and fibroblasts, which have received the most 
attention, other cellular components, such as functional 
T cells, are also reported to play a protective role in vas-
cular remodelling in a macrophage-related manner [136]. 
The main interactions between macrophages and other 
vessel cells are presented in Fig. 3.

Macrophages as promising therapeutic targets for PH
Current medical interventions, which involve a combi-
nation of multiple agents, focus on improving the symp-
toms and prognosis of PH patients [137]. PDE5 inhibitors 
such as sildenafil, tadalafil, and vardenafil are effective 
for Group 1 PH and can be delivered by oral or inhaled 
treatment [138, 139]. In addition, prostacyclin, endothe-
lin receptor antagonists, and guanylate cyclase stimula-
tors are also effective for specific PH groups [140–142]. 
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These classical pulmonary hypertension agents may also 
affect macrophages. Classic PDE5 inhibitors have been 
reported to inhibit the mobilization and recruitment of 
bone marrow-derived cells as well as the release of pro-
inflammatory cytokines [143–145]. In addition, sGC 
stimulators (such as Riociguat) modulate liver inflamma-
tion via the inhibition of NLRP3 inflammasome-medi-
ated IL-1β production in Kupffer cells [146]. Endothelin 
receptor antagonists, such as bosentan, macitentan and 
ambrisentan, suppress cytokines released from AMs and 
thus present anti-inflammatory potential [147]. Endo-
thelin has been demonstrated to trigger M2 macrophage 
accumulation and ROS formation [148, 149]. Prostanoids 
(including epoprostenol, treprostinil, iloprost, beraprost, 
and selexipag) have been recognized as major regula-
tors of inflammation progression and resolution [150]. A 
recent study revealed a novel cyclooxygenase/prostaglan-
din E2 axis-dependent mechanism of HIF-1α-induced 

TNF-α expression in macrophages [151]. These stud-
ies suggest that classic pharmacological agents for PH 
treatment might influence the immune system to some 
degree.

In addition to classical PH drugs, new therapeutic tar-
gets are emerging. The protein Regnase-1 is encoded by 
the ZC3H12A gene and is involved in mRNA degradation 
[152], which suppresses PH progression by degrading the 
mRNA of IL-6 and PDGF in AMs [41]. The intratracheal 
administration of Regnase-1-targeting morpholino oli-
gonucleotides, which enhances Regnase-1 expression, 
has shown therapeutic efficacy by attenuating inflamma-
tory cascades and fibrosis [153]. However, there is a lack 
of available pharmacological molecules to enhance Reg-
nase-1 expression in vivo. Serum glucocorticoid-regu-
lated kinase 1 (SGK1), a member of the serine/threonine 
kinase family, is associated with macrophage activation 
and inflammatory response. Deletion of SGK1 inhibits 

Fig. 3  The interaction between macrophages and other vessel cells in PH pathogenesis. Although macrophages might accelerate PH progression, pul-
monary artery remodelling still results from abnormal angiogenesis. VECs, VSMCs and fibroblasts induce the recruitment of macrophages upon injury, 
while activated macrophages release variable mediators at different stages of inflammation. Influenced by these inflammatory mediators, vessel cells 
alter to specific phenotypes for survival or proliferation and release specific factors, such as IL-1, TGF-β, PDGF, or chemokines. These factors can regulate 
macrophage function and polarization in turn. For example, TGF-β contributes to M2-like polarization, while HMGB1 contributes to M1-like polarization. 
Together, these complex interactions eventually result in vascular remodelling and pulmonary hypertension
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macrophage infiltration in the lungs of experimental PH 
models [39]. EMD638683, an SGK1 inhibitor, has been 
reported to suppress macrophage infiltration and prevent 
PH progression in MCT-induced rat models [154]. LDL 
receptor-related protein 1 (LRP1) plays an anti-inflam-
matory role in several diseases by maintaining choles-
terol homeostasis, inhibiting migration, and blocking 
cytokine release [12]. In experimental PH, the increased 
expression of LRP1 in macrophages attenuates neointima 
formation by inducing the degradation of TGF-β2 [155]. 
LRP1 has also been identified as an integrator of TGF-β1-
mediated vascular remodelling in PH. The expression of 
LRP1 is important to vascular homeostasis. PH induced 
by LRP1 deficiency can be reversed by pharmacologic 
PPARγ activation with pioglitazone [156]. Other LDL 
receptor family members are also potential therapeutic 
targets for PH [156].

Since HDACs are involved in perivascular fibroblast 
proliferation and monocyte activation, the inhibition 
of HDACs is believed to be an effective therapy for PH 
patients. However, the efficacy of HDACs pharmacologi-
cal inhibitors in PH remains a controversial issue [6, 133, 
157, 158]. Sotatercept, a ligand trap for multiple TGF-β 
family members, can suppress macrophage infiltration 
and reverse experimental PH [159]. The neutralization 
of CXCL12 improved pulmonary hemodynamics and 
structural disorders in both the lungs and heart in rat 
PH models [117]. Donepezil is an acetylcholinesterase 
inhibitor with a parasympathetic activistic effect. By sup-
pressing M2-macrophage activation, donepezil reverses 
VSMC dysfunction in MCT-induced rat PH models 
[160]. The antifibrotic agent pirfenidone decreases mac-
rophage IL-1β secretion in vitro [161].

Similar metabolic remodelling occurs in both fibro-
blasts and macrophages during PH pathogenesis, which 
indicates that short- or long-term metabolic regulation 
may potentially affect PH progression [82]. MTOB, an 
inhibitor of CtBP1, has been reported to attenuate glycol-
ysis and inflammatory gene expression in macrophages 
and fibroblasts, thus leading to reversion to hypoxia-
induced vascular remodelling and perivascular mac-
rophage accumulation [116, 162]. Carbonic anhydrase 
inhibitors could also modulate AM activation and polar-
ization and restore vascular homeostasis [163]. Molecu-
lar hydrogen restored the increased expression of MCP-1 
and stromal cell-derived factor-1 in the MCT-induced 
PH model and thus suppressed adventitial macrophage 
accumulation [164]. A new series of N-(phenylmethyl)-
benzoxazole-2-thiones, which act as MIF antagonists, 
have been reported to successfully reverse established 
MCT-induced PH and alleviate hemodynamics [165]. 
Additionally, Cheng et al. reported that a novel synthe-
sized hybrid can both reduce the proliferation of peri-
vascular cells and alleviate macrophage infiltration, thus 

attenuating MCT-induced PH in rat models [166]. Sev-
eral researchers have attempted to prevent PH by inject-
ing tolerogenic macrophages generated from monocytes 
into athymic nude rats [167]. Dynamin-related protein 
1 induces both a polarity shift and inflammatory media-
tor expression in macrophages after vascular injury, 
resulting in intimal thickening [168], which is similar to 
vascular remodelling in PH. These studies suggest that 
regulating mitochondrial function in macrophages might 
be a promising therapeutic target for vascular diseases. 
In addition, several novel methods of drug delivery have 
been tested, offering the possibility of tissue-selective 
delivery [169, 170].

Numerous agents are being tested in clinical trials. 
These novel agents are summarized in Table 4. Although 
not all agents are specifically designed to target mono-
cytes or macrophages, they might still affect macrophage 
function. Targeting mTOR signalling in macrophages has 
been demonstrated to be a potential therapeutic inter-
vention in cardiovascular diseases [171]. AMP-activated 
protein kinase activation in macrophages suppresses the 
inflammatory response [172]. Recombinant relaxin pep-
tides delivered by inhaled porous microspheres can sup-
press macrophage M2 polarization [173]. Dapagliflozin 
has been previously tested for its ability to attenuate 
inflammation and regulate macrophage polarization in 
cardiac fibrosis [174]. Besides the classical TGF-β and 
SMAD signalling pathways, activin and PDGF receptor-β 
are associated with macrophage activation and recruit-
ment [175, 176]. Lysyl-tRNA synthetase induces immune 
responses through the activation of monocytes and 
macrophages [177]. Recently, a lysyl-tRNA synthetase 
(KARS1) inhibitor, ZMA001, is being evaluated as a 
potential PH therapy. The KARS1 inhibitor ZMA001 
is designed to block KARS1-dependent infiltration of 
monocytes/macrophages and inhibit inflammatory 
responses in vessels (NCT05967299, registration date: 
August 1, 2023).

Conclusion
Recent advances have revealed the role of macrophages 
as key regulators of PH pathogenesis. When exposed to 
PH triggers, macrophages are recruited and then differ-
entiate into different phenotypes at specific time points, 
inducing perivascular inflammation, endothelial dysfunc-
tion, and consequent vascular remodelling. Macrophages 
are involved in many typical hallmarks of PH, such as 
smooth muscle cell proliferation and fibroblast activa-
tion, which are essential for PH development. Inflamma-
tion-related soluble mediators are closely linked to these 
alterations. M1 and M2 macrophages are commonly 
treated as signs of different stages in PH pathogenesis. 
M1 macrophages promote inflammation, while M2 mac-
rophages have anti-inflammatory functions and regulate 
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tissue repair. Interestingly, M2 macrophages are regarded 
as promotors of advanced PH in most studies due to 
their wound-healing function, and M1 macrophages play 
protective roles in PH in specific circumstances [178]. 
Several novel macrophage targets have been reported 
in preclinical studies. However, these novel therapeutic 
targets need to be tested in further investigation. Mac-
rophages are now recognized as candidate therapeutic 
targets for PH treatment due to their unique role in PH 
pathogenesis, suggesting a new strategy for preventing 
and even reversing PH progression.
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