Surendran et al. Respiratory Research (2024) 25:77

Respiratory Research
https://doi.org/10.1186/512931-024-02716-2

Check for
updates

Circular RNAs and their roles in idiopathic
pulmonary fibrosis

Akshaya Surendran'?, Chaoqun Huang'? and Lin Liu"*"

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited treatment options. Circular
RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with diverse functions in cellular processes.
This review paper aims to explore the potential involvement of circRNAs in the pathogenesis of IPF and their
diagnostic and therapeutic implications. We begin by providing an overview of the epidemiology and risk
factors associated with IPF, followed by a discussion of the pathophysiology underlying this complex disease.
Subsequently, we delve into the history, types, biogenesis, and functions of circRNAs and then emphasize their
regulatory roles in the pathogenesis of IPF. Furthermore, we examine the current methodologies for detecting
circRNAs and explore their diagnostic applications in IPF. Finally, we discuss the potential utility of circRNAs in the
treatment of IPF. In conclusion, circRNAs hold great promise as novel biomarkers and therapeutic targets in the

management of IPF.

Keywords Circular RNA, Idiopathic pulmonary fibrosis, Fibroblasts, Alveolar epithelium

Introuction

Idiopathic pulmonary fibrosis (IPF) is a chronic, pro-
gressive age-related fibrotic interstitial lung disorder.
The disease is mostly irreversible and is considered to
impose a significant health burden on the population
due to its high mortality rate and reduced quality of life.
It is mostly diagnosed in elderly adults ranging from 50
to 85 years age and 54% of them are males [1, 2]. Etiol-
ogy is unknown although several risk factors have been
identified. The median survivability is 2—5 years after
the diagnosis. The prevalence of IPF has been increasing
in the last few years. Its impact on the quality of life of
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patients, poor prognosis, diagnostic challenges and need
of effective therapeutics makes this disease a significant
health burden across the globe. Early and accurate diag-
nosis coupled with appropriate and economically feasible
treatment options are very crucial when dealing with
such conditions.

Circular RNAs (circRNAs) are long non-coding RNA
molecules which can be found in a vast variety of liv-
ing organisms. They are unique by having a ring struc-
ture formed by a covalently closed bond and lacking
poly-A tail and cap unlike other RNA molecules [3]. The
majority of circRNAs originate from exon regions of the
pre-mRNA. Interestingly, there are few less common cir-
cRNAs which can arise from intron sequences, intergenic
genomic regions, 3’ untranslated regions (UTR) and 5’
UTR [4]. They have high stability and are more resistant
to RNase R than linear mRNAs [5]. They interact with
non-coding RNAs such as microRNAs (miRNA) and
proteins to exert biological functions. Many studies have
uncovered regulatory mechanisms involving circRNAs
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in the pathogenesis of numerous diseases such as cancer,
diabetes mellitus and neurological disorders [6, 7]. How-
ever, limited, but increasing studies have linked circRNAs
to IPE. Here, we briefly introduce IPF and circRNAs
and discuss the major regulatory and functional roles
of several circRNAs in various lung fibrosis models in a
detailed manner, followed by potential application and
constraints of employing circRNAs in the diagnosis and
treatment of IPF.

Idiopathic pulmonary fibrosis

Clinical symptoms and current managements

In IPE, the healthy lung tissue is replaced by abnormal
fibrous tissue, resulting in altered lung architecture,
improper gas exchange and ultimately respiratory failure
[8]. Clinically, IPF is a diagnosis of exclusion and is usu-
ally done by examining radiographic or histopathologic
pattern of usual interstitial pneumonia (UIP). UIP can be
defined by the presence of sub-pleural cystic spaces that
are often referred as “honey combing’, dilatation of the
bronchi and peripheral alveolar wall thickening [9].

Patients with IPF exhibit severe exertional dyspnea
with dry cough. Several studies have found associations
between the severeness of dyspnea and survival in IPF
patients. Cough is the most prominent problematic phe-
notypic feature of IPF [10-13]. On auscultation of the
posterior lung lobe, fine crackles or Velcro rale like crack-
les can be heard especially during inspiration. Addition-
ally, 30-50% of patients report having clubbed fingers.
Other clinical signs include emaciation, hemoptysis and
exercise intolerance.

The primary treatment for IPF is lung transplantation,
but only a limited number of patients can receive this
treatment due to the scarcity of donors and the risk of
allograft rejection [14]. Non-pharmacological treatment
of IPF includes pulmonary rehabilitation. The pharmaco-
logical treatment mainly involves two antifibrotic drugs:
nintedanib (an intracellular tyrosine kinase inhibitor) and
pirfenidone (an antifibrotic and antioxidant molecule),
supported by other therapies such as antibiotics and ant-
acids [15, 16]. These antifibrotic drugs have improved
the condition in moderately advanced IPF patients by
improving forced vital capacity, and slowed the progres-
sion of the disease, but do not cure the disease [17]. The
current goal of IPF management is to alleviate symptoms,
enhance the quality of life and retain the lung function
[18].

Epidemiology and risk factors

Epidemiology

It is essential to understand the occurrence of IPF glob-
ally and country-wise to grasp its health and economic
burden on the population. But accurate data depicting
the incidence and prevalence of IPF is very limited [19].
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Moreover, risk factors such as sex [20], smoking [21],
dust inhalation [22] and genetic factors [23, 24] can cause
heterogeneity in the incidence and prevalence which
makes epidemiological studies much harder. Globally,
the adjusted incidence ranges from 0.09 to 1.3 per 10,000
persons whereas the adjusted prevalence ranges between
0.33 and 4.51 per 100,000 persons. While comparing the
latest data with previously available ones, it is evident
that the incidence and prevalence of IPF has increased
substantially over years and it is high in countries such
as South Korea, Canada, and US [25]. A study conducted
from 2010 to 2019 among U.S veterans, the prevalence
of IPF has increased from 276 cases to 725 cases per
100,000 persons indicating that the annual incidence
increases from 73 cases to 210 cases per 100,000 persons
[26].

Risk factors

As the name suggests, the etiology of IPF is unknown.
However, it is believed that environmental factors, genet-
ics, aging, and microorganisms contribute to the onset of
IPE.

Aging Aging is considered as the most significant risk
factor in IPE. Aging contributes to the pathogenesis of
IPF by impairing progenitor cell renewal, which prevents
alveolar epithelial cells from healing and replacing dam-
aged lungs. In IPF, alveolar epithelial type II cells (AEC2)
exhibit the traits of aging such as genomic instability, telo-
mere attrition, cellular senescence, stem cell exhaustion
along with loss of proteostasis, mitochondrial dysfunc-
tion, and altered intercellular communication [27]. AEC2
of IPF patients has shown a high level of dysfunctional
mitochondria [28, 29]. Moreover, as the age progresses,
genetic damage can build up since the DNA repair can be
severely altered with the age progression [30]. This altera-
tion in the DNA repair and genetic instability can lead to
cell death. A causal link between loss of AEC2 and devel-
opment of IPF has been suggested in a study, where the
targeted deletion of AEC2 has led to the development of
pulmonary fibrosis in mice [31]. Aging also causes sev-
eral epigenetic changes constituting of DNA methylation,
chromatin remodelling, loss of histones, and dysregula-
tion of miRNAs, leading to abnormal alteration of the
lung epithelium [1, 32].

Environmental factors Environmental exposures such
as air pollution, cigarette smoking and inhalation of wood,
metal or silica dust have been considered as major risk
factors for the development and progression of IPF, since
they can cause injury to a genetically susceptible lung [33].
Among these environmental factors, chronic cigarette
smoking provokes a certain epigenetic reprogramming in
the human genome through the alteration in DNA meth-
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ylation [34]. It also induces ER stress, mitochondrial dys-
function, and imbalances in miRNAs, thereby inducing
epithelial injury [28, 35, 36].

Genetics IPF with respect to genetics can be classified
as familial and sporadic IPF. Familial interstitial pneu-
monia is the inherited form of interstitial pneumonia and
is diagnosed in multiple members of the family whereas
sporadic IPF affects only one member of the family.
Research on the genetic makeup of sporadic IPF and the
currently recognized mutations related to familial form of
IPF emphasizes the significance of the lung epithelium in
the progression of the disease [9]. Mutations in the genes
involved in maintaining telomere length including telom-
erase reverse transcriptase (TERT), telomerase RNA
component (TERC), (Fe-S) cluster containing regulator
of telomere elongation helicase (RTEL1), poly-A specific
ribonuclease (PARN), nuclear assembly factor 1 ribonu-
cleoprotein (NAF1), TERF1 interacting nuclear factor2
(TINF2) and dyskerin (DKC1) have been discovered in
approximately 25-30% of the familial IPF [37-42]. The
mutations in these genes result in short telomeres, which
lead to AEC2 senescence [43]. Mutations in desmoplakin
(DSP), A-kinase anchoring protein 13 (AKAP13), catenin
alpha 1 (CTNNA) involving in the epithelial cell integ-
rity have also been identified in IPF [44—46]. Mutations
in the gene for SFTPC, which is specifically expressed by
AEC2, lead to dysfunctional surfactant folding and pro-
cessing, ER stress, deregulated proteostasis, and possibly
epithelial-mesenchymal transition [47]. Polymorphism of
MUCESB (a gene associated with mucociliary clearance) is
considered as one of the most prominent genetic factors
in IPF [48]. Moreover, mutations in the toll interacting
protein (TOLLIP), oligonucleotide/oligosaccharide bind-
ing fold containing 1 (OBFC1), TERT and TERC genes
have been involved in the sporadic IPF [9].

Microorganisms Epstein-Barr virus has been isolated
from IPF lung epithelia [49]. Human herpes virus (HHV)
is found to co-localize with the markers of ER stress and
unfolded protein response (UPR) in AEC2 [50]. HHV can
cause the disease by causing mutations in SFTPC and
AEC2 dysfunction, which ultimately leads to ER stress
and UPR [50]. Several bacteria were observed in the lungs
of IPF patients, including pathogenic gram-positive bac-
teria such as Staphylococcus sp and Streptococcus sp [51].
The dysbiosis in the lung has been linked to the clinical
markers of disease progression [52].

Pathophysiology of IPF

While an established cause is absent for the initiation
of IPF pathogenesis, it has been widely accepted that
repeated microinjuries to the alveolar epithelium in a
genetically susceptible individual initiate an abnormal
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reparative process, which ultimately results in fibrosis
(Fig. 1). The aberrantly activated AEC2 following lung
injury secrete profibrotic cytokines, such as Transform-
ing Growth Factor-p (TGEF-P), platelet derived growth
factor (PDGF), and connective tissue growth factor
(CTGF), and chemokines, such as C-X-C motif chemo-
kine ligand 2 (CXCL2) and C-C motif chemokine ligand
2 (CCL2) [53-56]. AEC2 are also responsible for a pro-
fibrotic feedback loop through the activation of Wnt
pathway which crosstalk with TGF-f [57].

Under the influence of TGF-f, the epithelial cells
undergo epithelial to mesenchymal transition, where
the epithelial cells acquire the features of mesenchymal
cells. For instance they lose their polarity and become
mobile. This is characterized by the upregulation of
alpha-smooth muscle actin (a-SMA) and downregulation
of E-cadherin and syndecan [58, 59]. In addition to EMT,
endothelial to mesenchymal transition (EndoMT) has
also been reported [60, 61].

The release of TGF-f is one of the major pro-fibrotic
factors which promotes the differentiation of fibroblasts
to myofibroblasts [62]. Apart from TGEF-p, epithelial cells
can also secrete Wnt proteins, which activate fibroblasts
through Wnt signalling [63]. These fibroblasts are char-
acterized by having phenotype that can resist apopto-
sis, along with high proliferation potential [64], whereas
myofibroblasts are characterized by the high expression
of a-SMA and can produce extracellular matrix (ECM)
proteins such as type 1 and type 3 collagen [65]. The
deposition of extracellular matrix into the interstitial
space for a chronic period causes stiffening and gradual
lung remodeling. Moreover, it was proposed that ECM
can signal the mesenchymal cells to release additional
ECM, resulting in an amplified loop of matrix production
and deposition [66].

Circrnas

History of circRNAs

CircRNAs were first described while studying potato
spindle tuber disease in 1971 and subsequently in plant
viroids in 1976 by Sanger et al who defined it as cova-
lently closed structures [67, 68]. A decade later, cir-
cRNAs were identified in human hepatitis delta virus
[69]. They were initially thought to be yielded from the
“mis-splicing” of exons or introns [70]. Later studies have
concluded that circRNAs are covalently closed ring-like
structures without 5" or 3’ polarity or a polyadenylated
tail and are formed by a type of alternative splicing called
back-splicing during co-transcriptional and post tran-
scriptional processes. Back-splicing takes place when a
downstream 5’ splice site joins with an upstream 3’ splice
site. This is contrary to the conventional linear splicing
in which an upstream 5’ splice site ligates with a down-
stream 3’ splice site. The canonical pre-mRNA splicing
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Fig. 1 A model of pathophysiology of IPF. A synergistic effect of Aging, environmental factors, genetic makeup, and microorganisms elicit an epigenetic
reprogramming, resulting in alveolar epithelial cell injury and stem cell exhaustion. Alveolar dysfunction and abnormal activation of alveolar epithelial
type 2 cells (AEC2) occur as sequalae to this injury. The activated AEC2 secrete profibrotic cytokines (TGF, PDGF, WNT and CTGF) and chemokines (CXCL2
and CCL2), which recruit migrating fibrocytes and fibroblasts and result in the activation and transdifferentiation of fibroblasts into myofibroblasts. Myofi-
broblasts produce excess extracellular matrix which occupies the interstitial spaces, causing mechanical stiffness, remodelling of pulmonary architecture
and fibrosis. Activated macrophages also help in the fibrosis process by becoming the source of pro-fibrotic molecules and enhance fibroblast prolifera-
tion. AEC2 and endothelial cells undergo epithelial and endothelial to mesenchymal transition, contributing to pro-fibrotic cells (Created with BioRender.

com)

results in a linear RNA whereas back-splicing generates
a circular RNA molecule containing single or multiple
exons [71].

In 2012, Salzman et al. found circRNAs in normal
and malignant human cells and described them as RNA
transcripts which are not arranged in a canonical order
[72]. In 2013, Memczak et al. showed that circRNAs can

function as post transcriptional regulators. For example,
a circCDR1 functions as a sponge for miR-7 [5]. A study
using cryo-electron microscopy to examine structures of
the yeast spliceosomal E complex by Li et al. uncovered
that canonical spliceosome is essential for back-splicing
of circRNAs [73]. In 2017, Piwecka et al. have performed
a circRNA knockout study involving circCDR1 in mice
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to investigate the interactions between circRNA and
miRNA in the brain [74]. Various investigations have
unearthed the diverse functions of circRNAs in humans
and other organisms in normal and pathological condi-
tions which are discussed later in this article.

Types of circRNAs

CircRNAs can be classified based on their origin [75]. (1)
Exon-only circRNA: Most of the highly expressed cir-
cRNAs consist of multiple exons from the pre-mRNA.
Exon only circRNAs are located predominantly in the
cytoplasm [76]. (2) Intron-only circRNA: The biogenesis
for this class of circRNAs occurs due to the failure in
debranching and depends on RNA motifs near 5 splice
site and branch point. They can regulate their parenteral
gene expression by modulating the polymerase II activ-
ity. They are in the nucleus and have less miRNA bind-
ing sites compared to exon only circRNAs [77]. (3) Both
intron and exon containing circRNAs: The introns are
retained between the exons during the circularization
process for this class of circRNAs. They can form com-
plexes with U1 small nuclear ribonucleoprotein (snRNP)
and interact with polymerase II transcription complexes
to enhance gene expression of their parenteral gene. Like
the intron only circRNAs, they predominantly reside in
the nucleus [78]. (4) CircRNAs from fusion gene: They
arise from cancer associated chromosomal transloca-
tions. Their function is to promote tumor cell surviv-
ability and transformation, thereby providing resistance
against the anti-neoplastic treatment [77].

Biogenesis of circRNAs

CircRNAs are generated from pre-mRNA and the circu-
larization occurs through back-splicing. Back-splicing is
often coupled with canonical splicing and uses canonical
spliceosome machinery [79]. There are predominantly
two proposed models for circRNA biogenesis naming
“direct back-splicing” or “lariat intermediate” (Fig. 2).
In direct back-splicing model, the back-splicing leads
to the formation of a circRNA and a linear intermedi-
ate containing exons and introns, which can either be
degraded or undergone canonical splicing, resulting in a
linear RNA with skipped exons. In the lariat intermediate
model, the canonical splicing occurs first to generate a
linear RNA with skipped exons and a lariat consisting of
exons and introns, which further undergoes back-splicing
to form a circRNA [80].

Cis-elements and trans factors can promote back-splic-
ing by bringing the 3’ donor and 5’acceptor site together
[81]. Exon circularization can be achieved by forming
RNA pairing between complementary base pairs across
flanking introns. Among flanking introns, intronic com-
plementary sequences having as low as 30—40 nucleo-
tides are sufficient to facilitate circRNA formation [82].
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In humans, back-splicing through cis elements includes
base pairing between repeated complementary Alu ele-
ments [83] as well as non-repetitive complementary
sequences [79]. Interestingly, the importance of comple-
mentary base pairing often is limited to mammalian
genes which are rich in repetitive elements like Alu ele-
ments [84].

Trans factors that participate in circRNA biogenesis
include certain proteins involved in the spliceosome
functions and RNA binding proteins (RBPs). A study
conducted in Drosophila cells by Liang et al showed that
upon depletion of the spliceosomal factors such as Ul
and U2 snRNPs, the circRNA expression was elevated
with a reduction in the linear mRNA synthesis [85]. Ul
snRNP is required for the selection of the pre-mRNA at
splice sites and U2 snRNP binds to the branch sites to
facilitate canonical splicing [86]. RBPs can promote or
repress circRNA biogenesis by binding complementary
sequences in the flanking introns or by directly uniting
3’ to 5 splice sites. RNA binding proteins muscleblind
(MBNL1) and quaking (QKI) promote circularization,
while RNA editing enzyme adenosine deaminase acting
on RNA 1 (ADARI1) and DExH-box helicase 9 (DHX9)
which possess the double stranded RNA binding domains
are reported to reduce circularization [87-90]. RBPs such
as nuclear factor 90 (NF90) and NF110 promote circRNA
formation during viral infections [91]. Additional RNA
binding proteins such as Fused in Sarcoma (FUS), nudix
hydrolase 21 (NUDT21), and neurotumor ventral antigen
2 (NOVAZ2) also promote circRNA formation [92-94].

CircRNA trafficking, localization, and degradation

Even though circRNA biogenesis happens in the nucleus,
most of the exons only circRNAs are localized in the
cytoplasm. Only a few circRNAs which contain introns
are located in the nucleus [95]. CircRNAs are exported
into the cytoplasm using RNA helicase and its length
determines which protein to use. Two of these helicases
are UAP56 (DDX39B) and URH49 (DDX39A) in Dro-
sophila melanogaster or two homologues of Hel25E in
humans. The depletion of DDX39B leads to the nuclear
retention of long circRNAs with more than 1,300 nucle-
otides, whereas the depletion of DDX39A results in the
accumulation of short circRNA with less than 400 nucle-
otides in length [96]. N6-methyladenosine (m®A) modifi-
cation also takes part in the translocation of circRNAs. A
recent study shows that m°®A of circNSUN2 enhances its
cytoplasmic export [97].

CircRNAs can also be secreted into extracellu-
lar space via exosomes (extracellular vesicles), but the
exact mechanism of this delivery and translocations are
unknown [98]. In a study conducted on pancreatic duc-
tal adenocarcinoma, Circ-PDE8A was found in exosomes
secreted by tumor cells into the blood circulation [99].
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Fig. 2 Biogenesis, trafficking, degradation, and biological functions of circRNAs. CircRNAs arise from pre-mRNA by lariat intermediate and direct back-
splicing methods. After biogenesis, circRNAs are transported into cytoplasm by DDX39B/DDX39A, NF-90/NF-110 or through m®A. CircRNAs can undergo
degradation in the cytoplasm upon the endonucleolytic cleavage endonucleolytic cleavage by RNase P, RNase L and miR-671 or structure-mediated
degradation by UPF1 and G3BP1. CircRNAs can function as (A)- regulator of parenteral gene expression, (B)- miRNA sponge, (C)- protein sponge, (D)
-protein scaffold, and (E)- template for translation. (Created with BioRender.com)

CircRNA-SORE and circPTGR1 can be transferred from
more malignant cancer cells to less malignant cancer
cells to elevate the malignancy potential via exosomes
[100, 101].

The degradation of mRNAs occurs due to poly A-tail
shortening by deadenylase, followed by decapping and
finally decay by exoribonuclease. However, due to the
lack of poly A-tail and 5° 7- methylguanosine cap, cir-
cRNAs are cleaved internally by an endonuclease includ-
ing RNase P, RNase L and miR-671. CircRNAs containing
m®A recruit adapter protein HRSP12, which bring m®A
reader protein YTHDF2 and exoribonuclease RNase P/
MRP together, resulting in the rapid degradation of cir-
cRNAs [102]. Some circRNAs can form RNA duplexes

and inhibit dsRNA-activated protein kinase associated
with innate immunity responses. These circRNAs are
degraded by RNase L during viral infection [103]. Cir-
cRNAs can also undergo degradation via miRNAs. miR-
671-loading Ago2 is recruited to the miR-671 binding site
of circCDR1, leading to the Ago2-mediated endonucleo-
lytic cleavage, followed by exonucleolytic activity [104].
Other RNA binding proteins such UPF1 and G3BP1 can
also participate in the degradation of circRNAs via struc-
ture-mediated RNA decay [105].

Mechanisms of circRNA action
CircRNAs are understudied among other non-coding
RNAs and the investigations on their biological functions
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are limited. Due to the unique structural features of cir-
cRNAs, they can offer binding sites to miRNA and RBPs
and regulate their respective target genes. CircRNAs can
function as a miRNA sponge and regulate the expression
of miRNA target genes. Similarly, circRNAs also act as a
protein sponge. Other functions of circRNAs in protein
binding include acting as protein scaffolds and recruit-
ment of proteins to specific locations. circRNAs have
been reported to play a role in the transcriptional regula-
tion of its parenteral gene. CircRNAs can also be trans-
lated into proteins.

The most well-known and studied function of cir-
cRNAs is its miRNA sponge-like activity. CircRNAs can
have multiple binding sites for miRNAs and act as their
sponges. When circRNAs reach the cytoplasm, they
function as competing endogenous RNAs (ceRNAs)
that bind with miRNAs and thereby inhibit the miRNA’s
action on the target genes [106]. Therefore, indirectly,
circRNAs play a role in gene regulation and alter the
course of various cellular events such as cell proliferation,
migration, metastasis, and apoptosis. Cerebellar degener-
ation-related protein 1 transcript (CDR1as) is one of the
widely known circRNAs, which can function as a miRNA
sponge with 63 known binding sites for miR-7 [5].

CircRNAs also possess binding sites for various pro-
teins and can function as sponge, scaffold and decoys of
proteins [107]. CircRNAs participate in the regulation
of protein expression via their protein sponge activity.
For example, CircPABPN1 suppresses the translation
of its host gene PABPN1 and reduces cellular prolifera-
tion by acting as a sponge or decoy for human antigen R
(HuR) [108]. This study provides a good example of how
a circRNA competes with its parenteral mRNA for an
RBP that affects translation. Similarly, cia-cGAS act as a
sponge for nuclear cGAS and thereby inhibits its enzy-
matic activity to avoid cGAS-mediated exhaustion of
dormant long term hematopoietic stem cells (LT-HSCs)
[109].

Circ-Amotll can enhance the survival of cardiomyo-
cytes because of its protein scaffold activity by bind-
ing with pyruvate dehydrogenase kinase 1 (PDK1) and
serine-threonine protein kinase AKT1 [110]. Circ-Foxo3
binds to cyclin-dependent kinase (CDK2) and cyclin-
dependent kinase inhibitor 1 (p21) to form a ternary
complex and cause the repression of cell cycle progres-
sion and proliferation in non-cancerous cells. CDK2 is
involved in cell cycle progression and upon forming the
ternary complex with circ-Foxo3, the function of CDK2
is lost [111]. Similarly, circACC1 functions as a protein
scaffold by enhancing the 5 AMP-activated protein
kinase (AMPK) through the assembly of a ternary com-
plex with regulatory p and y subunits [112].

Double-stranded binding proteins such as NF-90 and
NF-110 take part in the biogenesis of circRNAs [91]. On
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the other hand, circRNAs can form imperfect intramo-
lecular ds-RNA. Hence, circRNAs can suppress NF-90
and NF-110 which are ds-RNA receptors under nor-
mal conditions. During a viral infection, the action of
endonuclease RNase L causes circRNAs to be degraded,
thereby releasing NF-90 and NF-110 to facilitate an
antiviral immune response [103]. Thus, the degradation
of circRNAs can play a significant role in the immune
response after viral infection by interacting with RNA
binding proteins. CircRNAs have also been reported
to interact with activated protein kinase to promote
immune response in the event of viral infections [103].

CircRNAs located in the nucleus normally function as
transcriptional regulators. Intron-containing circRNAs
interact with Ul snRNP to promote the transcription
of their parenteral gene [78]. For example, exon-intron
circRNAs, circPAIP2 and circEIF3] and intron only cir-
cRNA, ci-ankrd52 regulate the expression of its paren-
teral genes by enhancing RNA polymerase II activity [78,
113]. CircSEP3 in thaliana sp forms an R-loop with its
cognate DNA and leads to transcriptional pausing, which
in turn increases splicing of the cognate exon 6-skipped
variant of SEP3 gene [114].

Even though the mechanism and regulation of circRNA
translation is not fully understood, strong evidence sug-
gests a high possibility that some circRNAs can undergo
translation. Endogenous circRNAs containing internal
ribosomal entry site (IRES) and m®A as well as certain
artificial circRNAs can be translatated [115-117]. Circ-
ZNF609 serves as an illustration of a protein-coding cir-
cRNA in eukaryotes and is translated into a protein in a
splicing-dependent and cap-independent manner [118].
Circ-ZNF609 has an open reading frame starting at the
start codon and ending at an in-frame STOP codon that
results from circularization. CircZNF609 participates
in the proliferation of myoblasts in Duchenne muscular
dystrophy. A few circRNAs that have the ability to trans-
late are found to be involved in the process of tumor sup-
pression. In human glioblastoma, SHPRH-146aa, which
was produced from the overlapping genetic codes of circ-
SHPRH, acts as a tumor suppressor [119]. circ-FBXW7
having internal ribosomal entry site encodes for protein
FBXW7-185aa. The cancer cell proliferation is inhibited
when FBXW7-185aa is upregulated in vitro and in vivo
[120].

Regulatory roles of circrnas in the pathogenesis of
IPF

CircRNA expression profiling in various pulmonary
fibrosis models using RNA sequencing, microarray anal-
ysis and bioinformatics analysis has been tremendously
useful in the identification of dysregulated circRNAs
[121, 122]. So far, few circRNAs having a functional role
in IPF have been identified. These circRNAs have either
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pro-fibrotic or anti-fibrotic effects. Their specific target
genes and functions via various molecular mechanisms
have been studied. Table 1 shows a list of dysregulated
circRNAs whose functional roles in pulmonary fibrosis
are known. We discuss below these circRNAs based on
cell types they act on.

Fibroblasts

Fibroblast activation and differentiation of fibroblasts to
myofibroblasts are unmistakably the pivotal pathologi-
cal process, which ultimately leads to the development
of lung fibrosis. Several circRNAs are reported to be
involved in this process.

Upregulated circRNAs in fibroblasts

Previous studies have shown that increased glycoly-
sis promotes lung fibrosis by stabilizing HIF-1a, which
facilitates the differentiation of fibroblasts into myo-
fibroblasts. The expression of glycolytic enzymes are
increased in the fibrotic lungs and the inhibition of the
glycolysis prevents the differentiation of fibroblasts to
myofibroblasts [143]. A study by Xu et al. explored the
effects of circHIPK3 on glycolysis and fibroblast activa-
tion [123]. They showed that circHIPK3 expression level
was upregulated in TGFB1-treated human pulmonary
fibroblasts in vitro. The inhibition of circHIPK3 reduces
the glycolysis and proliferation of pulmonary fibroblasts.
The silencing of circHIPK3 in vivo using adeno-associ-
ated virus vector inhibits silica-induced lung fibrosis. The
FOXK2 gene is a transcription factor involved in glycoly-
sis and is inhibited by miR-30a-3p. The model proposed
by Xu et al. suggests that circHIPK3 sponges the inhibi-
tory action of miR-30a-3p and increases FOXK2 expres-
sion, resulting in enhanced glycolysis in fibroblasts and
facilitating its activation. Another study showed a similar
effect of circHIPK3 on the differentiation of fibroblasts
to myofibroblasts by a different mechanism [125]. In this
study, circHIPK3 acts as a sponge for miR-338-3p and
thereby enhances the expression of SOX4 and COL1A1l,
which in turn facilitates the differentiation of fibroblasts
to myofibroblasts.

In a study examining the roles of lung fibroblasts in sili-
cosis, it is found that the treatment of human pulmonary
fibroblasts with silica increases Sigma-1 receptor expres-
sion, which induces ER stress and promotes the migra-
tion and activation of fibroblasts [127]. circHIPK2 is also
induced in pulmonary fibroblasts by silica. The induced
circHIPK?2 expression competes with miR-506-3p, lead-
ing to the increase in Sigma-1 receptor level and thus
fibroblast activation.

Circ0044226 was found to be upregulated in bleomy-
cin-treated mice and TGFP1-treated pulmonary fibro-
blasts [124]. The knockdown of circ0044226 in vivo and
in vitro inhibits fibroblast differentiation. The luciferase
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reporter assay reveals that Circ004226 sponges miR-7
and thus increases the expression of spl, a target of
miR-7 and a transcription factor for TGFB1, suggesting
that circ0044226 is a profibrotic factor in lung fibroblasts
via competing with miR-7.

CircRNA-ankyrin repeat domain 42 (CircANKRD42)
was identified as an upregulated circRNA from the
peripheral blood of IPF patients [126]. CircANKRD42
is generated by reverse splicing activated by hnRNPL.
CircANKRD42 promotes lung fibroblast migration
and differentiation by facilitating the crosstalk between
mechanical stiffness and biochemical signals through
sponging of two different miRNAs. The sponging of miR-
136-5p by circANKRD42 increases the expression of the
miR-136-5p target, yes-associated protein 1 (YAP1). The
sponging of miR-324-5p by the same circRNA elevates
its target, ajuba LIM protein (AJUBA), which inhibits the
binding of large tumor suppressor kinase 1/2 (LATS1/2)
and p-YAP1 and results in enhanced nuclear transloca-
tion of YAP1. Elevated YAP1 levels in the nucleus as a
result of sponging both miRNAs initiate transcription
of the genes which causes mechanical stiffness such as
F-actin and Myolc.

Down-regulated circRNAs in fibroblasts

Apart from the above-mentioned upregulated cir-
cRNAs, a few circRNAs are downregulated in IPF and
show antifibrotic functional characteristics.

CircTADA expression is reduced in IPF fibroblasts
compared to normal lung fibroblasts [128]. CircTADA
inhibits the proliferation and activation of human lung
fibroblasts by sponging miR-526b and miR-203 and in
turn elevating the expression of caveolin-1 and caveo-
lin-2, respectively.

Circ949 and circ057 are upregulated in a mouse model
of bleomycin-induced lung fibrosis [121]. Both circRNAs
sponge miR-29b-2-5p. Although miR-29 mimic inhib-
its the proliferation and activation of fibroblasts, the
effects of cicr949 and circ057 on fibroblast functions are
unknown.

Protein phosphatase 1 regulatory subunit 13B
(PPP1R13B) is a member of the p53 family that promotes
apoptosis and is upregulated in the silica-induced pul-
monary fibrosis model. CRISPR knockout of PPP1R13B
inhibits silica-induced ER stress and autophagy as well as
fibroblast proliferation and migration [131]. Circ012091
is downregulated in silica-treated lung fibroblasts and
the lung tissue of silica-treated mice. The overexpression
of ¢irc012091 reduces PP1R13B expression. No studies
were performed on the role of circ012091 on fibroblast
functions.

Similarly, homologous to the E6-AP C-terminal domain
E3 ubiquitin protein ligase 1 (HECTD1) is upregulated
and circHECTDI1 is downregulated in silica-exposed
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Table 1 Dysregulated circRNAs in pulmonary fibrosis and their mechanisms of action
Name Cell type Mechanism Target genes and Effect In vivo model Ref-
of action pathways er-
ence
CircHIPK3 Fibroblasts miRNA miR-3a-3p & FOXK2  Fibroblast-myofibro-  SiO2-induced mouse
(MRC-5,NIH-3T3,  sponge Glycolysis blast differentiation lung fibrosis [123]
mouse primary
lung fibroblasts)
Circ0044226 Fibroblasts miRNA miR-7 & SP1 Fibroblast-myofibro-  Bleomycin-induced
(WI-38, HPF) sponge TGFB1 signaling blast differentiation mouse lung fibrosis  [124]
CircHIPK3 Fibroblasts miRNA miR-338-3p & Fibroblast-myofibro-  Bleomycin-induced
(WI-38) sponge SOX4, COL1A1 blast differentiation mouse lung fibrosis [125]
CircANKRD42 Fibroblasts miRNA miR-324-5p &YAP1  Fibroblast-myofibro-  Bleomycin-induced
(MRC-5) sponge miR-136-5p & blast differentiation mouse lung fibrosis [126]
AJUBA and IPF blood
YAP1 signaling
and mechanical
stiffness
Circ-949 and Circ-057 Fibroblasts miRNA miR-29b-2-5p Fibroblast proliferation  Bleomycin-induced
(L929) sponge & activation mouse lung fibrosis [121]
CircHIPK2 Fibroblasts miRNA miR-506-3p Fibroblast activation ~ SiO2-induced mouse
(HPF-a) sponge lung fibrosis 1271
CircTADA2A Fibroblasts miRNA miR-526b & Cav-1  Fibroblast-myofibro-  Bleomycin-induced
(Normaland IPF sponge miR-203 & Cav-2 blast differentiation mouse lung fibrosis  [128]
HPF)
CircSPON1 Fibroblasts miRNA miR-942-5p/ Fibroblast activation ~ Bleomycin- induced
(Human fetal lung  sponge miR-52f-3p & mouse lung fibrosis  [129]
fibroblasts) Smad-7
CircHECTD1 Fibroblasts unknown HECTD1 Fibroblast activation ~ SiO2-induced mouse
(HPF) Autophagy lung fibrosis [130]
Circ-012091 Fibroblasts unknown PPP1R1B Fibroblast proliferation  SiO2-induced mouse
(1929 and HPF) & migration lung fibrosis [131]
CircRNA-662 Fibroblasts miRNA miR-29b & Gli2/ Fibroblast activation  Bleomycin- induced
CircRNA-949 (L929) sponge STAT3 mouse lung fibrosis [132]
Circ0000672 and Circ0005654 Fibroblasts Protein elF4A3 Fibroblast dysfunction  SiO2-induced mouse
scaffold lung fibrosis [133]
Circ0026344 Fibroblasts miRNA miR-21 Fibroblasts activation  Cigarette smoke-
(MRC-5) sponge induced mouse lung  [134]
fibrosis
CircZC3H4 Epithelial cells miRNA miR-212 & ZC3H4  Epithelial to mesen- SiO2-induced mouse
(MLE12) sponge ER stress chymal transition lung fibrosis [135]
Circ0044226 Epithelial cells Protein CcbC27 Epithelial to mesen-
(RLE-6TN) sponge chymal transition [136]
CircCDR1 Epithelial cells miRNA miR-7 & TGFBR2 Epithelial to mesen-
(Pulmonary epi- sponge chymal transition [137]
thelial cells)
Circ0000981 Epithelial cells miRNA miR-211-5p & Epithelial to mesen- OVA (asthma)-
(Mouse lung TC-1)  sponge TGFBR2 chymal transition induced pulmonary  [138]
fibrosis
CircHECTD1 Endothelial cells Protein HECTD1 Endothelial mesen- SiO2-induced mouse  [61]
(MMLT, HUVEC) sponge chymal transition lung fibrosis
CircHECTD1 Macrophage Protein HECTD1 Macrophage SiO2-induced mouse
(RAW264.7) sponge ZC3H12A activation lung fibrosis [139]
ubiquitination
CircZC3H4 Macrophages Protein ZC3H4 Macrophage SiO2-induced mouse
(RAW 264.7) scaffold activation lung fibrosis [140]
CircRNA11:120406118|12,040,782 Macrophages miRNA miR-30b-5p & Macrophage activa- SiO2-induced mouse
(THP-1) sponge NLRP3 tion & pyroptosis lung fibrosis [141]

inflammasomes &
pyroptosis
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Table 1 (continued)
Name Cell type Mechanism Target genes and Effect In vivo model Ref-
of action pathways er-
ence
CircPWWP2A Macrophages miRNA miR-223-3p & Macrophage SiO2-induced mouse
Fibroblasts sponge NLRP3 activation lung fibrosis [142]
(RAW 264.7,
NIH/373)
fibroblast cells [130]. HECTD1 mediates silica-induced  Epithelial cells

lung fibroblast activation via autophagy. CircHECTD1
has an opposite effect on fibroblast function by reducing
HECTDI protein levels.

CircSPON1 generated from F-spondin 1 (SPON1)
under the influence of forkhead box O3 (FOXO3) is
involved in pulmonary fibrosis through the suppression
of fibroblast activation by inhibiting the translocation
of SMAD-3 into the nucleus. CircSPON1 also acts as a
sponge for miR-942-5p and miR-520f-3p and increases
the expression of SMAD-7 which regulates TGE-f sig-
naling negatively [129]. Signal transducer and activa-
tor of transcription 3 (STAT-3) and zinc finger protein
(Gli-2) are pro-fibrotic molecules which are involved in
pulmonary fibrosis, and it was found that circRNA-662
and circRNA-949 have sponge like activity against miR-
29b which interacts with STAT-3 and Gli-2. However, the
exact mechanism of their function in pulmonary fibro-
sis remains unknown [132]. Circ0026344 is downregu-
lated in mouse lung fibrosis induced by cigarette smoke
extract, and it act as a sponge for miR-21 and the down-
regulation of Circ0026344 causes significant upregulation
of exosomal miR-21, leading to the inhibition of smad-7.
This activates an anomalous crosstalk between epithe-
lial cells and fibroblasts. resulting in fibroblast activation
[134].

m6A modified circRNAs in fibroblasts

mPA is a well conserved transcriptional modifica-
tion in eukaryotic cells and is involved in the initia-
tion and pathogenesis of human cancers [144]. Using
mPA-epitranscriptomic microarray, two circRNAs,
hsa_circ_0000672 and hsa_circ_0005654 were iden-
tified to undergo m®A modification in the lungs of a
mouse model of silicosis [133]. The methyl transferase
3, N6-adenosine-methyltransferase complex catalytic
subunit (METTL3) was identified to be responsible
for m®A modification of these two circRNAs. Simul-
taneously knockdown of hsa_circ_0000672 and hsa_
circ_0005654, but not individual circRNAs leads to
fibroblast dysfunction. This effect appears due to their
binding with elF4A3 protein, a eukaryotic translation
initiation factor. However, how the circRNAs affect the
elF4A3 activity was not studied.

AEC2 serves as stem cells within lung tissues [145]. They
play a crucial role in repairing and regenerating the lung’s
epithelium following injuries and they have been impli-
cated in the development of IPF. However, when AEC2
cells become dysfunctional or undergo apoptosis, this
can lead to stem cell depletion, triggering abnormal and
uncontrolled reparative processes that contribute to the
formation of pulmonary fibrosis [146]. During fibrogen-
esis, AEC2 may undergo a transition called epithelial to
mesenchymal transition (EMT), in which they lose their
typical epithelial characteristics and adopt mesenchy-
mal traits [147]. Although numerous studies show the
involvement of EMT in IPF in vitro, the development of
EMT in vivo remains a subject of controversy [148]. For
example, in a study of bleomycin-induced mouse lung
fibrosis, clear evidence for a complete transformation of
epithelial cells into mesenchymal cells was lacking [149].

CircCDR1 is upregulated in silica-treated lung epi-
thelial cells [137]. This circRNA promotes EMT by act-
ing as a sponge of miR-7 and upregulates the miRNA
target gene transforming growth factor beta receptor 2
(TGFBR?2). Zinc finger CCCH-type containing 4 protein
(ZC3H4) is a transcription factor that increases EMT
via ER stress [135]. circZC3H4 is upregulated in silica-
treated lung epithelial cells. circZC3H4 sponges the activ-
ity of miR-212 and regulates the expression of ZC3H4
protein. As previously discussed, circRNA0044226 is
increased by TGFPl and promotes the activation of
lung fibroblasts [124]. circRNA0044226 was found to be
the most upregulated circRNA in the lung tissue of IPF
patients [136]. In addition to its role in fibroblasts, cir-
cRNA0044226 also regulates EMT in lung epithelial cells.
Knockdown of circRNA0044226 inhibits EMT by down-
regulating the expression of cell division cycle protein 27
(CDC27) [136].

A study conducted on asthma-induced pulmo-
nary fibrosis concludes that circ0000981/miR-211-5p/
TGFBR?2 interaction plays a role in the fibrosis devel-
opment [138]. Atracytlon is a naturally found drug in
surinam cherry and has anti-inflammatory properties.
Upon the treatment with atracytlon, ovalbumin-induced
expression of circ0000981 and TGFBR2 were signifi-
cantly reduced whereas miR-211-5p was upregulated.
In vivo studies confirm that atracytlon inhibits TGFf1-
induced EMT.
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Endothelial cells

Like EMT, endothelial to mesenchymal transition
(EndoMT) also plays a significant role in the develop-
ment of fibrosis through the accumulation of extracellu-
lar matrix. While resident fibroblasts and bone marrow
fibrocytes are recognized as a source of myofibroblasts,
endothelial to mesenchymal transition is a relatively
newly recognized transdifferentiation process enrich-
ing mesenchymal cell population [60]. Such a transition
was observed in a study conducted in a mouse model
of silicon dioxide-induced-lung fibrosis, and mouse and
human endothelial cell lines MML1 and HUVECs treated
with silicon dioxide. In both mouse and human cell
models, circHECTD1 was found to be upregulated and
HECTDI1 protein was downregulated by the treatment
of silicon dioxide [61]. It is proposed that circHECTD1
downregulates the protein HECTD1 and thereby pro-
motes EndoMT and lung fibrosis. This finding was con-
firmed using tissue samples obtained from silicosis
patients and silicon dioxide-treated mice.

Macrophages

Along with endothelial cells and epithelial cells, immune
cells are also engaged in the process of fibrosis develop-
ment. The results from single cell RNA sequencing data
suggest that monocyte-derived alveolar macrophages
are localized near areas of epithelial injury and activated
fibroblasts and drive lung fibrosis in an asbestos mouse
model [150]. During tissue repair, monocytes can differ-
entiate into either M1 or M2 macrophages depending
on the cytokine availability. IFNy and lipopolysaccharide
(LPS) facilitate the differentiation into M1 phenotype
(pro-inflammatory), while IL-4, IL-10 and IL-13 influ-
ence the differentiation of M2 macrophages (pro-fibrotic)
[151]. Under the fibrotic conditions, the profibrotic
cytokines favor M2 differentiation and thereby result in
increased secretion of TGF(, PDGF, FGF and VEGE. The
profibrotic cytokines released by M2 macrophage causes
fibroblast activation and trans-differentiation, thus have
a direct effect on the extra cellular matrix accumulation
and mechanical stiffening [152].

A study conducted in silicon dioxide-induced lung
fibrosis of mice shows that the expression level of cir-
cHECTD1 is reduced, but the expression of its host
gene HECTD1 was increased in the macrophages iso-
lated from bronchoalveolar lavage fluid (BALF) 7- and
28-days post treatment [139]. HECTD1 regulates cell
polarity by ubiquitinating key proteins. This study
emphasizes the interaction between circHECTD1 and
HECTDI1, which mediates the macrophage polariza-
tion through ZC3H12A ubiquitination. The circZC3H4/
ZC3H4 pathway plays a role in macrophage activation
in silicon dioxide-induced lung fibrosis mouse model
and in macrophage cell line RAW264.7 [140]. Exosomal
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circRNA11:120406118|12,040,782 was found to be abun-
dant in the peripheral serum of patients with silicosis.
CircRNA11:120406118|12,040,782 is involved in the
upregulation of NLR family pyrin domain containing 3
(NLPR3) by sponging miR-30b-5p. NLPR3 inflamma-
some is a crucial element of immune system that regulates
caspase-dependent pro-inflammatory cytokine release
and pyroptotic cell death in the advent of cell injury. By
the inhibition of circRNA11:120406118|12,040,782 or
overexpression of miR-30b-5p, silica-induced pyroptosis
in macrophages under the influence of NLPR3 was allevi-
ated [141].

circ002676 is involved in macrophage polarization in
the SiO2-induced model of pulmonary fibrosis. Knock-
down of circ002676 inhibited the expression of M2 mac-
rophages, suggesting that this circRNA has a role in the
M2 polarization of pulmonary macrophages. However,
further studies are required to uncover the exact mech-
anism by which circ002676 regulates M2 polarization
[153].

CircPWWP2A is a profibrotic circRNA sponging miR
—223-3p, which has an inhibitory effect on NLRP3 to
promote pulmonary fibrosis. In SiO2-induced lung fibro-
sis, the CircPWWP2A/miR —223-3p/ NLRP3 pathway
has potential roles in the regulation of inflammation and
fibrogenesis, hence highlighting its therapeutic signifi-
cance [142].

Application of circRNAs in diagnosis and therapy
of IPF

Detection methods of circRNAs

Unlike their linear counterparts, endogenous circRNAs
are generally less abundant, which makes them difficult
to detect [95]. Moreover, the traditional RNA detection
methods using poly A tail fall short while detecting cir-
cRNAs due to its absence of poly A tail. Hybridization-
based methods including Northern blotting, fluorescence
in situ hybridization, microarray and amplification-based
detection methods including RNA sequencing, real-time
PCR, rolling cycle amplification (RCA), loop-mediated
isothermal amplification (LAMP) are employed in cir-
cRNA detection. We briefly discuss microarray, RNA
sequencing and real-time PCR.

Microarray

Microarray is a high throughput tool that can be used
in the large-scale assessment of differentially expressed
genes [154]. The difference in the microarray between
linear RNAs and circRNAs is the design of the probe
sequence [155]. CircRNA microarrays target the back-
splicing junctions in circRNAs, and disregard linear
RNAs since they are devoid of back-slicing junctions
[156]. The disadvantage of this technique is that it cannot
detect low abundance molecules.
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Next-generation RNA sequencing

RNA sequencing allows the complete sequencing of
RNAs from a tissue or cells. The development of RNA
sequencing technology is unarguably the turning point
which has made the genome-wide studies of circRNAs
possible. Total RNA sequencing instead of mRNA
sequencing is normally used for circRNAs as circRNAs
do not have poly A tails. Ribosomal RNAs are depleted
from total RNAs to enhance the sensitivity [157]. RNA
sequencing for circRNAs adapts some methods to dis-
criminate other RNAs from circRNAs, such as employ-
ing deeper sequencing with longer reads, and RNA
exonuclease-based enrichment that eliminates linear
RNAs [158]. A wide variety of software and identifica-
tion tools are developed to analyze circRNAs from the
RNA sequencing data such as CIRI, circ RNA finder,
CIRC explorer, find CIRC, and UROBORUS etc. [159,
160]. The algorithms are designed in such a way to read
through known splice sites in reverse order to identify
a circular sequence. The most advantageous feature of
RNA sequencing technology is that it can discover new
circRNAs with high accuracy.

Real-time PCR

This method is considered as a gold standard test for the
quantification of circRNAs and generally opts for validat-
ing the circRNAs identified through high through-put
methods such as microarray and RNA sequencing [161].
Real-time PCR can be easily employed in any settings
whether it is a clinical or research laboratory, making it
the most user friendly among the circRNA detection
tools. The main disadvantage of this method is that it has
low throughput compared to the other methods. Also, in
rolling circle amplification during reverse transcription,
there might be a chance of formation of concatemers
and this could hamper the accuracy of the data obtained
[162].

CircRNAs as a diagnostic tool
IPF is considered as an underdiagnosed disease. The
ATS/ERS/JRS/ALAT has developed diagnostic crite-
ria of for IPF [163]. These criteria require the patient to
undergo high resolution CT (HRCT) along with a sur-
gical lung biopsy. The technique of tracheobronchial
lung cryobiopsy (TBLC) has also been introduced for a
diagnosis of IPF [164]. The main disadvantage of these
criteria is that it requires the patient to undergo tedious
invasive surgical biopsies under general anesthesia.
Non-invasive methods such as using biomarkers are
still not available. CircRNAs are highly stable and resis-
tant to exonucleases or RNase R and possess a unique
expression pattern. Their high abundance in the body flu-
ids makes them an ideal candidate for non-invasive diag-
nostic methods. CircRNAs are detected in whole blood,
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individual blood cells (red blood cells, white blood cells
and platelets) and serum [165]. circANKRD42 which
is upregulated in the blood of IPF patients serves as an
example of a potential biomarker [126]. In a study con-
ducted by examining the plasma levels of IPF patients, 67
circRNAs were found to be dysregulated. Among them,
hsacircRNA_100906, hsacircRNA_102100 and hsacir-
cRNA_102348 were significantly upregulated depicting
their biomarker potential [166].

CircRNAs are also abundant in exosomes. Exosomal
circRNAs are already in the development as a bio-
marker in the diagnosis of cancers [167]. Exosomal
circ-PDE8A can be used in the prediction of prognosis
of pancreatic ductal adenocarcinoma [168]. In patients
with colorectal cancer, hsa-circ-0004771 was found to
be significantly upregulated and hence can be utilized
as a biomarker [169]. Abundant levels of exosomal cir-
cRNA11:120406118|12,040,782 was reported in patients
suffering from pulmonary fibrosis induced by silica expo-
sure [141]. The most advantage in using circRNAs as
diagnostic biomarkers for IPF is that it is a non-invasive
simple procedure of blood withdrawal. However, the cur-
rent technologies in detection of circRNAs are not eco-
nomically feasible in clinical laboratory settings.

CircRNAs as a therapeutic tool

As discussed earlier, circRNAs are involved in many
pathological pathways, which lead to the development
and progression of IPF. Hence, circRNAs can be targeted
as a promising therapeutic. The approach will be either
overexpressing anti-fibrotic circRNAs or knockdown of
pro-fibrotic circRNAs. Knockdown of circRNAs can be
achieved by RNA interference through short interfer-
ing RNA (siRNA) or short hairpin RNA (shRNA) [170,
171]. Lipid-based polymer delivery of siRNA and shRNA
can be employed for in vivo circRNA knockdown [172].
Another method is CRISPR Cas-9-mediated deletion of
exonic or intronic sequences [173]. CircRNA expression
vectors such as lentiviral and adenoviral vectors can be
used to overexpress a circRNA in vivo. CircRNA overex-
pression can also be made possible by using synthetic cir-
cRNAs exogenously [174, 175].

Ongoing studies also highlight the importance of effi-
cient circRNA delivery systems. CircRNA delivery using
nanoparticles has gained some attention in recent times.
Utilizing gold nanoparticles (AuNPs) linked with siRNA
that target circDnmt1 emerges as a potential therapeutic
strategy for breast cancer [176]. One disadvantage of this
method is that it could trigger an immune response in the
host. Recently exosomes are being employed as vehicles
for the expression of circRNA vectors. The administra-
tion of modified exosomes containing engineered rabies
virus glycoprotein-circSCMH1 facilitates recovery in
mice and monkeys suffered from ischemic stroke [177].
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The advantage of using exosome as a delivery system
over synthetic nanoparticles is that it facilitates circRNA
cellular uptake without setting off the host immune sys-
tem. In IPF, we already discussed a few circRNAs, which
have therapeutic potential. For example, circTADA2A
is shown to alleviate lung fibrosis in bleomycin-induced
mouse lung fibrosis upon overexpression. Knockdown of
has-circ0044226 in bleomycin-induced pulmonary fibro-
sis mouse model attenuates lung fibrosis, highlighting its
potential as a therapeutic target [124].

The potential for circRNAs to be utilized as therapeu-
tic targets is highly promising and could significantly
advance the field of gene therapy. However, it is impor-
tant to acknowledge that the investigation of circRNAs
is still primarily in the research phase. Given the current
state of knowledge about circRNAs, the translation of
these findings into clinical settings is likely to be a consid-
erable distance away. Presently, the key obstacle involves
the identification of suitable circRNAs capable of mitigat-
ing or reversing the disease condition. Furthermore, once
the circRNA is identified, achieving efficient circRNA
distribution and ensuring target specificity also appears
quite challenging. Exogenously synthesized circRNAs
could elicit certain immune responses in some individu-
als and hence pose an obstacle in using it in vivo [178].

Conclusion

IPF represents a disease condition that severely impacts
the patient’s quality of life. Its prognosis is believed to be
worse than cancers. Existing medications for IPF have
limited efficacy in slowing down disease progression
and fail to bring about noticeable improvements in the
patient’s condition. In this context, circRNAs emerge as
promising therapeutic targets and non-invasive biomark-
ers. New technologies have facilitated the discovery of
dysregulated circRNAs in IPF. However, there are still
critical questions that remain unanswered. Most RNA
sequencing analyses for circRNAs have been conducted
using bulk sequencing, necessitating the adoption of
single-cell RNA sequencing to identify dysregulated cir-
cRNAs at a single cell level. Additionally, only a few cir-
cRNAs have undergone functional studies, warranting
further research to identify key circRNAs involved in
different cells during IPF pathogenesis. Most circRNAs
studied in IPF are related to miRNA sponges, but other
mechanisms of circRNA action need further explora-
tion. This includes investigating how circRNAs interact
with DNA, RNA, and proteins. Furthermore, a clearer
understanding of the molecular processes governing
circRNA biogenesis and subcellular localization is nec-
essary. Lastly, it is crucial to identify and conduct func-
tional studies on exosomal circRNAs associated with IPFE.
Looking ahead, we anticipate that more comprehensive
investigations into the role of circRNAs in IPF will shed
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light on the unanswered questions and provide valuable
insights in the future.
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