
RESEARCH Open Access

High resolution metabolomics to
discriminate compounds in serum of male
lung cancer patients in South Korea
Aryo D. Pamungkas1, Changyoung Park1, Sungyong Lee2, Sun Ha Jee3 and Youngja H. Park1*

Abstract

Background: The cancer death rate escalated during 20th century. In South Korea, lung cancer is expected to
contribute 12,736 deaths in men, the highest amount among all cancers. Several risk factors may increase the
chance to acquiring lung cancer, with mostly related to exogenous compounds found in cigarette smoke and
synthetic manufacturing materials. As the mortality rate of lung cancer increases, deeper understanding is necessary
to explore risk factors that may lead to this malignancy. In this regard, this study aims to apply high resolution
metabolomics (HRM) using LC-MS to detect significant compounds that might contribute in inducing lung cancer
and find the correlation of these compounds to the subjects’ smoking habit.

Methods: The comparison was made between healthy control and lung cancer groups for metabolic differences.
Further analyses to determine if these differences are related to tobacco-induced lung cancer (past-smoker control
vs. past-smoker lung cancer patients (LCPs) and non-smoker control vs. current-smoker LCPs) were selected. The
univariate analysis was performed, including a false discovery rate (FDR) of q = 0.05, to determine the significant
metabolites between the analyses. Hierarchical clustering analysis (HCA) was done to discriminate metabolites
between the control and case subjects. Selected compounds based on significant m/z features of human serum
then experienced MS/MS examination, showing that for many m/z, the patterns of ion dissociation matched with
standards. Then, the significant metabolites were identified using Metlin database and features were mapped on
the human metabolic pathway mapping tool of the Kyoto Encyclopedia of Genes and Genomes (KEGG).

Results: Using metabolomics-wide association studies, metabolic changes were observed among control group
and lung cancer patients. Bisphenol A (211.11, [M + H-H2O]

+), retinol (287.23, [M + H]+) and L-proline (116.07, [M + H]+)
were among the significant compounds found to have contributed in the discrimination between these groups,
suggesting that these compounds might be related in the development of lung cancer. Retinol has been seen to have
a correlation with smoking while both bisphenol A and L-proline were found to be unrelated.

Conclusions: Two potential biomarkers, retinol and L-proline, were identified and these findings may create
opportunities for the development of new lung cancer diagnostic tools.
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Background
Cancer is a major public health problem that is currently
one of the most leading causes of death in the United
States. The cancer death rate escalated during the 20th
century which was largely driven by rapid increases in
lung cancer deaths as a consequence of tobacco epi-
demic. In 2015, the estimated number of cancer deaths
in USA is dominated by lung cancer (27 % of all cancer
deaths), surpassing prostate cancer for males (9 %) and
breast cancer for females (15 %) [1]. In South Korea,
meanwhile, lung cancer is expected to contribute 12,736
deaths in men, the highest amount among all cancers
[2]. This increasing mortality rate in lung cancer patients
has led physicians and scientists to seek a deeper under-
standing on this malignancy.
Lung cancer is a type of cancer that initially forms in

lungs and can spread to nearby tissue even other organs,
with the most recurrent metastatic sites were nervous
system, bone, liver, respiratory system and adrenal gland
[3]. Several risk factors may increase the chance to ac-
quiring lung cancer, with mostly related to exogenous
compounds found in cigarette smoke and synthetic
manufacturing materials [4]. In fact, nine out of ten lung
cancer cases are caused by smoking cigarettes [5]. More-
over, smokers have a greater risk for lung cancer today
than they did in 1964, even though they smoke fewer
cigarettes.
There are several diagnostic tools that are available in

detecting lung cancer such as computed tomography
(CT), magnetic resonance imaging (MRI), and positron
emission tomography (PET) [6–8]. However, lung cancer
patients do not experience signs and symptoms at the
early stages of the disease which lead to late diagnosi-
s—often when the cancer has already progressed. Fur-
thermore, there are no initial screening methods
available to diagnose lung cancer at its early stages.
A study mentioned that early detection of lung cancer

can be performed by NMR-based metabolomics method
for urine samples [9]. But the changes in metabolite
levels in urine still cannot be correlated to compounds
involved in lung cancer metabolism. Furthermore, me-
tabolite levels in urine samples may vary depending on
fluid intake prior to collection, and may also be affected
by patients’ kidney function [10]. Miyamoto et al. (2015)
conducted plasma samples analysis using GC-MS in de-
termining metabolic changes of endogenous compounds
in lung cancer patients [11]. However, the detection of
exogenous compounds were not considered. Some other
researches have dealt with respiratory diseases using
NMR metabolomics like the study on electronic nose
and exhaled breath [12], and on cystic fibrosis [13].
During the past decade, liquid chromatography

coupled with mass spectrometry (LC-MS) has gone
through huge development. The ability to determine

thermolabile compounds directly without needing to
undergo derivatization steps has given its advantage over
gas chromatography (GC). With recently-developed con-
figuration like quadrupole time-of-flight (Q-TOF), the
range of screening has quickly expanded, enhancing both
high mass resolution and mass fragmentation [14, 15].
Due to the disadvantages of urine samples mentioned

earlier, this study aims to explore and identify significant
compounds, exogenous and endogenous, that may in-
duce cancer using LC-MS based high resolution metabo-
lomics (HRM) on human serum samples from South
Korean males for the purpose of providing early detec-
tion and non-invasive diagnosis of lung cancer. The sig-
nificant compounds found to contribute in the
discrimination between healthy and lung cancer subjects
will also be confirmed and their correlation with smok-
ing habit will be examined.

Methods
Samples collection
Serum samples were collected from Korean Cancer
Prevention Study II, conducted from January 2004 to
December 2004 across 11 hospitals in Seoul and
Gyeonggi area, in permission of Ministry of Health
and Welfare Korea. The total number of subjects par-
ticipated in this study were 35,522 people which 105
subjects were selected for analysis. Of the 105 sam-
ples, 70 samples were from healthy people and 35
samples were from lung cancer patients which were
diagnosed based on confirmed histologic diagnosis;
details such as age and body mass index (BMI) are
provided in Table 1. Basic parameters of the sample
groups (age and BMI) were checked and was found
to be statistically insignificant (p > 0.05). The study
was approved by the Institutional Review Board of
Yonsei University (2001-0029-011) and an informed
consent was obtained from all participating patients.

Sample preparation and LC-MS measurements
Fifty μl aliquots of samples were treated with acetonitrile
(1:4, v/v), and centrifuged at 14,000 x g for 5 min at 4 °C
for protein separating [16]. Samples were analyzed using
Ultra Performance Liquid Chromatography system

Table 1 Age, Sex, Height, and Weight of Patients

Parameters Control Lung Cancer patients

Number of subjects 70 35

Age 60.60 ± 10.03 60.60 ± 10.10

Sex Male 70 Male 35

Height (cm) 168.58 ± 5.51 165.94 ± 6.19

Weight (kg) 68.82 ± 8.05 64.77 ± 9.84

BMI (kg/m2) 24.20 ± 2.46 23.41 ± 2.57

Values are expressed as mean ± SD
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(Agilent 1260 Infinity Quaternary, Agilent, Santa
Clara, CA, USA) with iFunnel Q-TOF mass spectrometry
(Agilent Q-TOF 6550, Agilent, Santa Clara, CA, USA) in
duplicates. This LC-MS/MS is ideally suited for metabolic
stability and profiling studies, since this system has the
highest sensitivity to detect compounds at low pg/mL
levels and 40 k resolving power to determine excellent
mass and isotope accuracy for confident identification of
metabolites.
An electrospray interface was operated in positive ion

mode. The conditions for the acquisition parameters were:
gas temperature 250 °C, drying gas 14 ml/min, nebulizer
pressure 35 psig, sheath gas temperature 250 °C and sheath
gas flow 11 ml/min [17]. Mobile phase A consisted of
0.1 % formic acid in water (HPLC grade, Tedia, Ohio,
USA) and mobile phase B was 0.1 % formic acid in aceto-
nitrile (HPLC grade, Tedia, Ohio, USA). The gradient was
programed as follows: 0–1 min: 5 % for B, 1–9 min: gradi-
ent increase to 5 % for B, 9–12 min: hold 56 % for B, 12–
13.5 min: 90 % for B; 13.5–13.6 min: hold 5 % for B. The
column heater was adjusted at 30 °C. The flow rate was
0.4 L/min. Three microliter of sample was injected on to a
1.9 μm, 100x2.1 mm C18 column (Thermo, Waltham,
USA) [18]. Detection of m/z of ions from 50 to 1000 with
20,000 resolution over 15 min LC runs with data extraction
using apLCMS [19] provides a minimum of 3000 reprodu-
cible features, many with sufficient mass accuracy to allow
prediction of elemental composition. Ion intensity, m/z,
and retention time defined an m/z feature. Meanwhile,
selected compounds based on significant m/z features of
human serum then experienced MS/MS examination using
LC-MS triple quad (QQQ) 6490 (Agilent, CA, USA),
showing that for many m/z, the patterns of ion dissociation
matched with standards.

Metabolic profiling with univariate and multivariate
statistical analysis
After running high resolution, accurate mass system of
Q-TOF, raw data were processed using apLCMS produ-
cing the total features from the samples for the subse-
quent analyses. In performing statistical analyses and
bioinformatics, features from duplicate LC-MS analyses
were averaged, log2 transformed and normalized using
z-transformation. It included univariate analysis, Man-
hattan plot, and false discovery rate (FDR) [20] using
Limma R package [21] to determine the significant me-
tabolites between healthy controls and lung cancer pa-
tients. Additionally, the metabolic profiles were
discriminated using two-way hierarchical cluster analysis
(HCA) to separate two groups in connection with me-
tabolites [22]. Limma is originally a package for the ana-
lysis of gene expression data arising from microarray or
RNA-Seq technologies. It provides the ability to compare
between many targets simultaneously [23, 24]. Moreover,

classification of samples based on significant metabolites
levels was done using receiver operating characteristic
(ROC) curves (MedCalc).

Comparison groups
A total of three analyses were conducted in this study,
as summarized in Fig. 1. Initially, the comparison was
made between healthy control (n = 70) and lung cancer
patients (LCPs) (n = 35) for metabolic differences (shown
as 1st analysis). Then, further analyses were performed
based on smoking history of the subjects: non-smoker
control vs. current-smoker LCPs (2nd analysis) and past-
smoker control vs. past-smoker LCPs (3rd analysis). The
2nd analysis was conducted to emphasize whether the
findings have correlation with smoking habit while the
3rd analysis determined whether the findings demon-
strated no association with smoking habit.

Data annotation and pathway analysis
The significant metabolites were then annotated using
Metlin Metabolite Database [25]. These metabolites
were listed in a batch containing their m/z value, name
and formula, which could be sorted based on the avail-
ability of Kyoto Encyclopedia of Genes and Genomes
(KEGG) number. Using this number, the metabolites
were queried into the human metabolic pathway [26].
Detected features that matched known human inter-
mediary metabolites are shown as black dots in the map.

Results
Manhattan plot and two-way hierarchical cluster analysis
(HCA)
Using metabolomics-wide association studies (MWAS),
metabolic changes in lung cancer patients were deter-
mined. A Manhattan plot utilizes statistical tests to visu-
ally identify significant features which are differentially

Fig. 1 Scheme of study design. Comparison groups used in
discriminating significant compounds that may be linked in lung
cancer induction
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expressed in subjects when compared to a control
group. FDR adjustment, a multiple testing correction
method which adjusts p-values (q-values) to reduce the
occurrences of false positives was also used for optimum
statistical significance.
The Y axis represents the –log10 of the raw p-value

between two compared groups while the X axis are m/z
values ranging from 50 to 1000 (Fig. 2). The dashed line

shows the FDR significant threshold (q = 0.05) which
separates the significant features from other insignificant
m/z. In this regard, all metabolites which lie above this
threshold are considered statistically significant from the
control group.
In control vs LCPs analysis, the significant features

were 6096 out of the 9516 total detected features, as
shown in Fig. 2a. On the other hand, 5727 significant

Fig. 2 Metabolome-wide association study (MWAS). Manhattan plot (a, c, e) and HCA (b, d, f) using FDR significant features of: (a–b) control vs
LCPs, (c–d) non-smoker control vs current-smoker LCPs and (e–f) past-smoker control vs past-smoker LCPs
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features were seen from the 11,234 total features in non-
smoker control vs current-smoker LCPs group (Fig. 2c)
while 6289 significant features out of the 12,349 total fea-
tures were detected in past-smoker control vs past-
smoker LCPs analysis (Fig. 2e). Furthermore, two-way
HCA was performed to identify which metabolites are the
most important for sample grouping. A clear separation of
the control and case groups is expected in a dataset with
distinct components. As seen in Fig. 2 (b, d, and f), the
control group which is represented by the red panel is
grouped as one cluster while the others (green panel) are
on the other side of the clustering. This apparent separ-
ation in the heatmaps suggest that the metabolites are
highly differentiated from the control.

KEGG pathway analysis
Significant features were annotated in Metlin database
using positive ion adducts (M +H, M +Na, and M+
H2O). After data processing to include only the ones
with KEGG numbers, the human metabolic pathway was
used to determine the possible pathways that were af-
fected. In the KEGG pathway map, the black dots repre-
sent the compounds found in the human metabolic
pathway that were statistically different between control
and LCPs, as shown in Additional file 1. These com-
pounds are part of different metabolic pathways in
humans that are potentially affected by lung cancer.
Figure 3 shows the top ten pathways showing the
percentage of the number of metabolites versus the
total number of compounds in these pathways. Upon
entering the body, xenobiotic compounds which are
usually lipid soluble, are generally not metabolized
easily by digestive enzymes and therefore, may not be
excreted fully. The liver then performs biotransformation

to eliminate these compounds, thus, it can be predicted
that the degradation of aromatic compounds and metab-
olism of xenobiotic compounds are two of the top affected
pathways which can be related to these exogenous com-
pounds that were detected in the samples. In addition,
chemical carcinogenesis pathway is one of the notable re-
sults since large amount of xenobiotics is reported as car-
cinogen [4]. Pathway analysis also showed that vitamin
digestion and biosynthesis of amino acids were also dis-
rupted in patients with lung cancer. Due to their capability
to cause metabolic disturbances (as shown in KEGG path-
way), bisphenol A (BPA), retinol, and L-proline were se-
lected to be the best candidates to undergo verification
and further analysis. The relative concentrations of these
compounds are shown in Fig. 4 ROC analysis was applied
to assess how well the levels of these compounds could
classify LCPs from controls. For BPA, the area under the
curve (AUC) of 0.93 was acquired, and for retinol
and L-proline, the corresponding result was 0.72 and
0.95 (as shown in Additional file 2).

Identification and verification of potential biomarkers
Xenobiotic and endogenous compounds were identified
between control and lung cancer subjects, supported by
multivariate statistical analysis. BPA was found to be ele-
vated in cancer subjects, whereas retinol and L-proline
were found to be lowered. These compounds were con-
sidered significant in the groups shown in Table 2. Valid-
ation of these compounds was performed by multiple
reaction monitoring in positive mode to detect the spe-
cific precursor to product ion transitions: m/z 226.9→
m/z 185.9 for BPA, m/z 286.2→m/z 245 for retinol and
m/z 116→m/z 69.9 for L-proline. The MS/MS data can
be seen in Additional files 3, 4, 5, 6, 7, and 8.

Fig. 3 KEGG mapping. Possible affected pathways from the compounds discriminating control vs LCPs

Pamungkas et al. Respiratory Research  (2016) 17:100 Page 5 of 9



Discussion
This study explored lung cancer-specific low molecular
weight compounds that may have potential roles in in-
ducing the disease and can be used as candidate bio-
markers for the early diagnosis of lung cancer. Using
serum samples from all patients, three compounds: BPA,
retinol, and L-proline were identified as statistically

significant compounds and were correlated to the sub-
jects’ smoking habit.
BPA is used in the production of polycarbonate plastics

which is the main ingredient of many manufactured goods
such as toys, drinking containers, food cans, eyeglass
lenses and electronic appliances [27–29]. It was found to
be significant only in past smoker control vs. past smoker
LCPs analysis (as shown in Additional file 9). With this
finding, it is possible that this compound may induce lung
cancer but it is not related to the smoking history of the
subjects. Since it was detected insignificant under non-
smoker control vs. current-smoker LCPs analysis group, it
can be inferred that BPA may have come from other
sources (e.g. plastic products, food cans) and not from cig-
arettes. Previous studies have mentioned several possible
roles of BPA in carcinogenesis [30–32]. Although having a
BPA concentration of less than 10−4 M had not triggered
the proliferation process of lung cancer cells, it had stimu-
lated in vitro migration and invasion of the cells via up-

Fig. 4 The abundance of selected compounds in control vs LCPs analysis. Relative concentrations of Bisphenol A (a), Retinol (b), and L-proline (c).
*shows significant difference (p < 0.05)

Table 2 Main compounds contributing for the discrimination in
each comparison group

Compounds Comparison groups

Control
(n = 70)

Non-smoker
(n = 22)

Past-smoker
(n = 35)

LCPs
(n = 35)

Current-smoker
(n = 19)

Past-smoker
(n = 14)

BPA ✓ ✓

Retinol ✓ ✓

L-proline ✓ ✓ ✓
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regulation of matrix metalloproteinase-2 which could en-
hance the susceptibility to carcinogenesis. Another study
showed that BPA could alter Peroxisome Proliferator-
activated Receptors (PPARs), in this case, the PPARγ. This
ligand-activated transcription factor was found to induce
differentiation and apoptosis in lung cancer cells. As its
antagonist, BPA promoted prevention of apoptosis, result-
ing the survival of cancer cells [30–32]. In addition, BPA
concentration in human samples was correlated with
intracranial tumor [33] and prostate cancer [34].
Vitamin A, on one hand, is also one of the selected

metabolites observed to be differentially expressed in the
comparison groups. This vitamin comes from carotenoid
and retinoid. Basically, carotenoids are known for their
antioxidant effects and are derived from plants [35]. Retin-
oid are physiological regulators of embryonic development,
vision, reproduction, bone formation, hematopoiesis,
differentiation, proliferation and apoptosis [36]. Retinol
was found to be effective against breast, prostate, and ovar-
ian cancers in animal treatment models. Also, the ability of
retinol to induce apoptosis suggested that it is potential in
prevention and treatment of lung cancer and other types
of cancer [37]. In this study, detection of retinol was
significantly less in current-smoker patients as compared
to non-smoker control (as shown in Additional file 9).
Therefore, it is suggested that the level of retinol in the
body may have been decreased in patients who smoke,
thus increasing their risks in having the disease. In
addition, using control and LCPs comparison, KEGG
mapping displayed vitamin digestion and absorption as
one of the affected human pathway. This finding was
consistent with previous reports. Cigarette smoke could in-
duce depletion of retinol serum levels in rats, as demon-
strated by Li et al. [38]. It was further investigated to be
correlated with the development of emphysema. In
addition, Yuan et al. revealed that low level of serum ret-
inol is associated with the increase of lung cancer risk in
China population [39].
Meanwhile, L-proline, a non-essential amino acid, was

found to be lowered in LCPs, confirming a previously re-
ported study [40]. Zhao et al. reported that L-proline
was one of the amino acid which its plasma concen-
tration was found to be decreased in LCPs, compared
with control group (p < 0.001). Rapid increase in the
transcription of proline dehydrogenase by tumor sup-
pressor p53 triggered the degradation of this amino
acid in cancer [41]. In addition, using control and
LCPs comparison, KEGG mapping displayed biosyn-
thesis of amino acids as one of the affected human
pathway. As shown in Additional file 9, the decreas-
ing L-proline occurred in all parameters that were an-
alyzed, suggesting that this compound is possible to
act as biomarker for lung cancer, regardless of smok-
ing habit.

Conclusions
In summary, two potential biomarkers, retinol and
L-proline, were identified using HRM with the com-
bination of pathway analysis from significant metab-
olites that were found in serum samples of Korean
male LCPs. It was also seen that one of them was
correlated to smoking habit of LCPs. In addition,
one exogenous compound, BPA, which has not been
linked yet to lung cancer patients was demonstrated
as significant feature that contributed to discriminate
healthy and LCPs groups, regardless of smoking
habit. These findings may create opportunities for
the development of new lung cancer diagnostic tools.
In the future, correlations to disease type, stage, also
the applicability to female test subjects group may
also be conducted. Also, further study using larger
population should be conducted.

Additional files

Additional file 1: Kyoto Encyclopedia Genes and Genomics (KEGG)
pathway in control vs LCPs. This figure shows the mapping of matched
features covering human metabolites. (TIF 1915 kb)

Additional file 2: Classification of the subjects using significant
compounds levels. ROC curves showed how the levels of BPA, retinol
and L-proline could classify LCPs from controls. (PDF 130 kb)

Additional file 3: Qualitative analysis of BPA from its total ion
chromatogram. A) from serum sample, B) from standard. (TIF 1214 kb)

Additional file 4: The similarity of BPA fragmentation pattern. A) MS/MS
on serum sample, B) MS/MS on itself. Collision energy of 0 and 5 were
used. (TIF 1719 kb)

Additional file 5: Qualitative analysis of retinol from its total ion
chromatogram. A) from standard, B) from serum sample. (TIF 1046 kb)

Additional file 6: Qualitative analysis of L-proline from its total ion chro-
matogram. A) from standard, B) from serum sample. (TIF 985 kb)

Additional file 7: The similarity of retinol fragmentation pattern. A) MS/
MS on itself, B) MS/MS on serum sample. Collision energy of 0, 10, 20 and
30 were used. (TIF 3088 kb)

Additional file 8: The similarity of L-proline fragmentation pattern. Frag-
mentation can be compared from standard and serum sample with colli-
sion energy of 0 (A, B), 10 (C, D), and 20 (E, F). (TIF 2236 kb)

Additional file 9: Relative concentrations of three compounds in 2nd
and 3rd analysis. BPA, with its increasing abundance, was detected only
in 3rd analysis while retinol, with its decreasing abundance, was detected
only in 2nd analysis. L-proline was found to be lowered in both 2nd and
3rd analysis. *shows significant difference (p < 0.05) (TIF 1390 kb)
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HRM, high resolution metabolomics; KEGG, kyoto encyclopedia of genes and
genomes; LCPs, lung cancer patients; Q-TOF, quadrupole time-of-flight
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