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Abstract

Background: Diesel exhaust particles (DEPs) are deposited into the respiratory tract and are thought to be a risk
factor for the development of diseases of the respiratory system. In healthy individuals, the timing and mechanisms
of respiratory tract injuries caused by chronic exposure to air pollution remain to be clarified.

Methods: We evaluated the effects of chronic exposure to DEP at doses below those found in a typical bus
corridor in Sao Paulo (150 μg/m3). Male BALB/c mice were divided into mice receiving a nasal instillation: saline
(saline; n = 30) and 30 μg/10 μL of DEP (DEP; n = 30). Nasal instillations were performed five days a week, over a
period of 90 days. Bronchoalveolar lavage (BAL) was performed, and the concentrations of interleukin (IL)-4, IL-10,
IL-13 and interferon-gamma (INF-γ) were determined by ELISA-immunoassay. Assessment of respiratory mechanics was
performed. The gene expression of Muc5ac in lung was evaluated by RT-PCR. The presence of IL-13, MAC2+ macrophages,
CD3+, CD4+, CD8+ T cells and CD20+ B cells in tissues was analysed by immunohistochemistry. Bronchial thickness and
the collagen/elastic fibers density were evaluated by morphometry. We measured the mean linear intercept (Lm),
a measure of alveolar distension, and the mean airspace diameter (D0) and statistical distribution (D2).

Results: DEP decreased IFN-γ levels in BAL (p = 0.03), but did not significantly alter IL-4, IL-10 and IL-13 levels.
MAC2+ macrophage, CD4+ T cell and CD20+ B cell numbers were not altered; however, numbers of CD3+ T
cells (p ≤ 0.001) and CD8+ T cells (p ≤ 0.001) increased in the parenchyma. Although IL-13 (p = 0.008) expression
decreased in the bronchiolar epithelium, Muc5ac gene expression was not altered in the lung of DEP-exposed
animals. Although respiratory mechanics, elastic and collagen density were not modified, the mean linear intercept
(Lm) was increased in the DEP-exposed animals (p ≤ 0.001), and the index D2 was statistically different (p = 0.038) from
the control animals.

Conclusion: Our data suggest that nasal instillation of low doses of DEP over a period of 90 days results in alveolar
enlargement in the pulmonary parenchyma of healthy mice.
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Introduction
Traffic is a major contributor to air pollution in cities,
and traffic-related exposure has been shown to induce
acute inflammation in humans, both in chamber studies
using diesel exhaust [1] and in “real-life” environments
such as road tunnels [2]. In urban centres, diesel exhaust
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particles (DEP) are considered to be the hazardous pol-
lutants released from automotive engines due to their
aerodynamic and chemical characteristics [3,4].
Smoking has been considered the most important risk

factor for chronic obstructive pulmonary disease (COPD)
[5]. However, many COPD cases occur in non-smokers. In-
deed, it is estimated that 25-45% of the patients with COPD
worldwide have never smoked [6]. Nonsmoking-related risk
factors such as genetic syndromes (α1-antitrypsin defi-
ciency) as well as occupational exposures (outdoor pollu-
tion, second-hand smoke, biomass smoke), chronic asthma
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and tuberculosis also contribute to the development and
progression of COPD [5-7].
Long term exposure to air pollution induces chronic

inflammatory changes in the airways [8] and increases
the risk of airway obstruction [9]. It is not known
whether chronic exposure to air pollution leads to em-
physematous changes in the lungs. Lopes et al. [10] that
showed that particles emitted by traffic can worsen the
development of emphysema in mice treated with papain,
but hitherto it has not been demonstrated that air pollu-
tion alone could lead to structural alterations in the air-
spaces of the lungs.
In previous work from our laboratory, Yoshizaki et al.

[11] showed that instillation of 30 μg/10 μl of DEP over
a period of 60 days induced respiratory tract inflamma-
tion and increased mucus content in the nose. A pilot
study using these samples showed a time dependent
DEP-induced alveolar enlargement, reaching statistical
significance at 60 days (data not shown).
In this present study, we hypothesised that chronic ex-

posure of mice to DEP would result in significant airway
and lung parenchymal inflammation and changes in the
alveolar structure. Therefore, we investigated the effect
of a lower dose of DEP for a longer exposure period
(90 days) in mice, focusing on the development and
pathophysiological consequences of the inflammatory re-
sponse. We evaluated bronchial epithelium thickness,
IL-13 expression and Muc5ac RNA expression in pul-
monary tissue. We also determined the number of in-
flammatory cells and cytokine expression [interleukin
(IL)-4, IL-10, IL-13 and interferon-gamma (INF-γ)] in
the BAL. We further quantified alveolar diameter (mean
linear intercepts), elastic and collagen and the number
of MAC2+ macrophages, CD20+ B cells, CD3+, CD4+
and CD8+ T cells in lung parenchyma.

Materials and methods
Ethics statement
This study was approved by the Ethics Committee for
Research of the São Paulo University Medical School
(CAPPesq-FMUSP) number 0571/08.

Particle collection and particle composition analysis
Diesel particles were collected after 1 day of routine op-
eration of a bus from São Paulo city’s metropolitan fleet
that was equipped with a Mercedes Benz MB1620, 210-
hp engine with a Euro III emission profile, which lacked
an electronic fuel injector. The PM was obtained. The
diesel fuel used in Sao Paulo contains 500 ppm of sulfur.
The diesel particulate material was collected with a par-
ticle retainer that is being tested on diesel vehicles to re-
duce PM emissions and was stored at 4°C for further
toxicological and analytical studies. The particle retainer
consists of a bimetallic filter that creates a field capable
of retaining the PM emitted from the exhaust of diesel
buses. As previously published, the characteristics of the
DEPs were analyzed according to (a) concentrations of
elements, which were determined by energy-dispersive
X-ray fluorescence spectrometry (mean ± SEM) (ppb): Ni
(181 ± 37), S (626 ± 416), V (37 ± 13), Pb (50 ± 47), Fe
(74,556 ± 2,266), Cd (29 ± 8), Cr (161 ± 116) and Cu (17 ± 1);
and (b) concentrations of polycyclic aromatic hydrocarbons
(PAHs), determined by high-performance liquid chro-
matograph (ng/g): Naphthalene (49.23), Acenaphthyl-
ene (179.48), Fluorene (683.94), Anthracene (94.73),
Pyrene (12,838.27), Benz[a]anthracene (1,162.73), Benzo
[b]fluoranthene (789.93), Benzo[k]fluoranthene (562.28)
and Benzo[a]pyrene (1,642.28) [11]. The distribution of
particle sizes, as measured by their volume and surface,
and the diameters encompassing 90%, 50%, and 10% of
the particulate matter were determined by laser diffraction
(Long Bench Mastersizer, Malvern Instruments, Malvern,
UK). The analysis was performed at the Laboratory of
Technological Characterization, Department of Mining
and Petroleum Engineering, Polytechnic School, University
of São Paulo, São Paulo, Brazil.
The DEP was resuspended in saline at 10 mg/mL for

2 h through magnetic stirring and was sonicated for
30 min. Next, the DEP was diluted to 30 μg of DEP in
10 μL of saline and stored at −20°C until use.

Exposure protocol
Sixty BALB/c 8-week-old male mice (body weight ca.
20–25 g) were assigned to two groups: (a) Saline
(n = 30): animals received an intranasal instillation of
10 μL saline solution (0.9% NaCl); and (b) DEP (n = 30):
intranasal instillation of 30 μg DEP/ 10 μL of saline (5 μl
in each nostril). This protocol was conducted for 90 days,
five days a week [11,12].
All animals received humane care in compliance with

the “Principles of Laboratory Animal Care” formulated
by the National Society for Medical Research and the
“Guiding Principles in the Care and Use of Animals”
approved by the Council of the American Physiological
Society. Our Institutional Animal Care and Use Committee
approved all protocols in this study.

Respiratory mechanics
After 90 days of intranasal instillation, animals were
anaesthetised with sodium pentobarbital (50 mg/kg body
weight, intraperitoneally), tracheotomised and connected
to a small animal ventilator (FlexiVent, Scireq, Montreal,
Canada). The animals were paralysed with pancuronium
bromide (0.2 mg/kg body weight, intraperitoneally). The
forced oscillation technique was applied in basal conditions
with the constant phase model characterised by the follow-
ing parameters: airway resistance (Raw), tissue damping
(Gtis) and tissue elastance (Htis). Next, a methacholine
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(25 mg/mL) challenge was performed. Total respiratory
system resistance (R) was evaluated using the single com-
partment model in basal condition and after the methacho-
line challenge. After respiratory mechanics assessment,
animals were sacrificed by exsanguination [11].

Bronchoalveolar lavage
Bronchoalveolar lavage (BAL) of lungs was performed
on half of the mice from each study group. Immediately
after respiratory mechanics assessment, BAL was per-
formed by introducing 0.5 mL sterile phosphate-buffered
saline (PBS) into the lungs via a tracheal cannula, and
the recovered fluid was kept in a test tube on ice. This
procedure was repeated three times. The fluid collected
was centrifuged at 1810 rpm for 10 minutes at 5°C to
separate cells from the supernatant. The supernatant
was stored at −70°C and subsequently used for ELISA
analysis. The cell pellet was resuspended in 300 μl PBS.
A volume of 100 μl of resuspended pellet was removed
and stored in an Eppendorf tube with 400 μl PBS. Total cells
were counted using an improved Neubauer hemocytometer
chamber and an optical microscope with a 400X zoom.
BAL differential cell counts were performed on cytocentri-
fuge slides prepared by the centrifugation of each sample
(100 μl BAL) at 450 rpm for 6 minutes (Cytospin 2, Shan-
don Scientific, Pittsburgh, PA, USA). These slides were
stained using Diff-Quick (Romanowsky) stain (Muto Kagaku
Co., Tokyo, Japan), and differential counts of at least 300
cells were made according to standard morphologic criteria.
Macrophages, lymphocytes, eosinophils, and neutrophils
were enumerated [13].

Measurement of IL-4, IL-10, IL-13 and INF-γ
The levels of IL-4, IL-10, IL-13 and INF-γ were quanti-
fied in BAL cell lysates using ELISA kits purchased from
R&D Systems (Minneapolis, MN, USA). ELISA was
performed in accordance with the manufacturer’s in-
structions. IL-4, IL-10, IL-13 and INF-γ levels were ob-
tained using standard curves. Each sample was assayed
in triplicate [14].

Histological analysis
Histological analysis of lungs was performed on the
remaining half of the mice from each study group. After
anaesthesia and exsanguinations of the animals, the
lungs were immediately inflated with warmed 1% low
melt agarose at 25–30 cmH2O. Pressure was maintained
for approximately 1 minute, by which time the agarose
began to harden substantially. The trachea was then tied
with a line, and the whole animal was placed in a re-
frigerator at 4°C for at least 2 h [15]. The chest was
opened, and the lungs were then removed from the
chest (10 lungs per group). Longitudinal sections were
fixed in 4% neutral buffered formalin. Tissues were
subsequently embedded in paraffin, sectioned 5-μm-thick,
and stained with hematoxylin and eosin (H&E) to evaluate
general morphology [11].

Quantification of bronchial epithelial thickness
For each animal, five transversally cut bronchioles with
an adequate cross sectional profile (less than 10% of
variation in maximal and minimal diameter) were analysed.
Using a Leica DMR microscope attached to both a JVC
TK-C 1380 colour video camera and an image analysis
software system (Image Pro-Plus 4.1, Media Cybernetics,
Silver Spring, Md., USA), we digitalised the microscopic
images in a high-resolution video and viewed them
through an eyepiece with a known area. The average
epithelium thickness was determined by measuring the
basal membrane limit and the apical membrane limit
(magnification of 1380X) [11]. Values measured for
each of the five airways were averaged to provide a sin-
gle data point for each animal.

Mean linear intercept (Lm) and airspace enlargement
Lm was measured in airspaces adjacent to the pleura (distal)
[16], and an algorithm was applied to perform quantitative
characterisation of airspace enlargement [17].
Lm, an indicator of mean alveolar distension [18], was

assessed in 10 non-overlapping fields of lung parenchyma
per animal at × 400 magnification in digitised images [11].
The Lm can be used to estimate the surface area for

gas exchange in the lung. Lm is a reliable index for a
relatively homogeneous enlargement of airspaces. How-
ever, in the presence of spatial heterogeneities with large
variability of airspace sizes, Lm did not significantly in-
crease and sometimes even decreased compared with its
value in normal tissue [17]. An automated method for
measuring area and computed an equivalent diameter of
each individual airspace that is independent of shape
was developed [17]. We applied this automated method
to cross section images obtained from the same micro-
scope used to calculate Lm. Mean airspace diameter
(D0) and an index based on the statistical distribution of
D0 (D2) were calculated. This index is able to identify
abnormal airspace enlargement under heterogeneous
conditions because it gives more weight to the enlarged
airspaces than the smaller ones. In this study, we calcu-
lated the Lm and the D2 to avoid bias due to spatial het-
erogeneity with large variability of airspace sizes.

Immunohistochemistry
Five-μm thick sections were used to identify cells express-
ing IL-13, MAC2 +macrophages, CD3 + T cells, CD4 + T
cells, CD8T+ cells and CD20 + B cells by immunohisto-
chemistry. Briefly, sections were deparaffinised, and a
0.5% peroxidase in methanol solution was applied for
5 minutes to inhibit endogenous peroxidase activity.
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Antigen retrieval was performed with citrate solution
for 20 minutes. Sections were incubated overnight with
anti–IL-13 (1:60), anti-MAC2 (1:40.000), anti-CD3 (1:300),
anti-CD4 (1:2000), anti-CD20 (1:20.0000) and anti CD8
(1:50) (Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA). 3,3 diaminobenzidine (Sigma Chemical Co., St Louis,
MO, USA) was used as a chromogen. The sections
were counterstained with Harris haematoxylin (Merck,
Darmstadt, Germany). All primary and secondary anti-
bodies were applied to negative and positive controls.
The slides were coded, and the researcher who per-
formed the morphometrical analyses was blinded to
the study groups. The expression of IL-13 was deter-
mined using digital image analysis, and a positive thresh-
old was applied to all images. For each image, we
measured the positively stained area within the epithelial
layer and the epithelial area. The results are presented as
percentages of positivity (proportion of positive area).
We also counted the number of CD3+, CD4+, CD8+,

CD20+ and MAC2+ cells in ten parenchymal areas per
animal. The inflammatory cells were manually counted
and expressed as the number of positive cells within the
epithelial layer per epithelial area. Briefly, we manually
counted the number of positive cells in ten high power
fields. In addition, using a 100 point grid of known area,
we determined the corresponding proportion of air spaces
and tissue in the same image. The results are presented as
the number of cells per tissue area (cells/mm2).

Collagen and elastic fibers analyses
Sections stained with Sirius red (for collagen fibers) and
resorcin-fuchsin (for elastic fibers) were evaluated in the
parenchyma region. We photographed 10 parenchyma
fields per slide. The proportion of the area occupied by
each type of fiber divided by tissue area was calculated
for comparisons among groups.

Muc5ac gene expression in lung tissue
RNA isolation
RNA was isolated from the lungs of seven animals of each
group. Lungs were removed and immediately immersed in
2 mL of the Trizol Reagent (Invitrogen Life Technologies).
Total RNA isolation and extraction were performed ac-
cording to the manufacturer’s guidelines, as modified by
Chomczynski and Sacchi [19], as previously described
Yoshizaki et al. [11].
Briefly, each sample was quickly homogenised in Politron

(Kinematic) and transferred to Eppendorf tubes. Samples
were homogenised for five minutes at room temperature
to allow the complete dissociation of nucleoprotein com-
plexes. Next, we added 200 μL of chloroform (Merck), and
the tubes were mixed thoroughly by inversion. The tubes
were incubated at room temperature for two minutes,
followed by centrifugation for 15 minutes at 12000 g and
4°C. After transferring the aqueous phase to a fresh tube,
500 μL of isopropyl alcohol (Merck) was added to precipi-
tate the RNA and incubated for one hour at room
temperature. Then, the tubes were centrifuged at 12000 g
for 10 minutes at 4°C. The RNA pellets were washed with
75% ethanol (Merck) and centrifuged at 7500 g for five mi-
nutes at 4°C. The samples were then dissolved in DEPC
water (water treated with RNase inhibitor, Diethylpyrocar-
bonate; Merck) and stored for 10 minutes at 60°C for
complete dissolution of the RNA. The RNA concentration
and purity were determined by measuring the absorbance
at 260 and 280 nm.

Reverse transcriptase/polymerase chain reaction-real time
Reverse transcription of RNA to cDNA was performed
using the following reaction mixture: 10 μg total RNA
from each sample in 2 μL DEPC-treated water, 2 μL Oligo
(dT) at 500 μg/mL (Invitrogen), 2 μL dNTP mix at 10 mM
(Invitrogen), 8 μL 5x first-strand buffer (Invitrogen), 2 μL
DTT at 0.1 M, 2 μL RNaseOUT (Recombinant RNase In-
hibitor, Invitrogen), and 2 μL Superscript III RT enzyme
(200 U/μL). The reaction mixture was incubated at 50°C
for 50 minutes, then at 70°C for 15 min, and finally stored
at −20°C. Polymerase chain reaction was performed using
Rotor-Gene RG3000 (Corbett Research) in a 20 μl reaction
mixture containing: 1.5 U Platinum® Taq DNA polymerase
(Invitrogen); 200 μM of each dNTP, 1.5X SYBR Green, 5%
DMSO (Dimetil sulphoxide), 0.3 μM sense and anti-sense
oligonucleotides to Muc5ac, and β-actin; 1.5 mM MgCl2;
and 100 ηg cDNA. The level of each mRNA expression
was normalised in relation to β-actin. The sequences used
were Muc5ac sense 5′-ACGACACTTTTCAGTACCAAT-
GAC-3′ and anti-sense 5′-GCTTCCTTACAGATGCAG
TCCT-3′, as well as β-actin sense 5′CTGTGGCATCCAC
GAAACTA-3′ and anti-sense 5′-AGTACTTGCGCTCA
GGAGGA-3′. The primer sets have been published by
Lankford et al. [20] and were previously described by
Yoshizaki et al. [11].

Statistical analysis
Data are expressed as median and interquartile ranges.
To compare differences between saline and the respect-
ive DEP groups, the Mann Whitney Rank Sum test was
used. The Sigmastat v.9.0 program was used for the ana-
lyses. The significance level was set at 5%.

Results
Determination of particle size distributions in the
suspension
The frequency distribution of particle diameters in saline
shows that our DEP contains 90% of particles with a
diameter below 25.29 μm, followed by 50% of particles
below 8.96 μm and also 10% below 2.71 μm. The average
sizes of the particles were 11.84 and 5.79 μm according
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to their volume and surface, respectively. DEP metal and
organic contents of this particulate matter were previ-
ously reported.
The effects of DEP exposure on respiratory mechanics
and lung morphology
DEP exposure did not alter the respiratory mechanics
under basal conditions and during methacholine challenge
[(basalsaline = 0.461 ± 0.052 cmH20.S/mL; PBSsaline = 0.578 ±
0.109 cmH20.S/mL; Mchsaline. = 1.509 ± 0.267 cmH20.S/mL)
and (basalDEP = 0.444 ± 0.069 cmH20.S/mL; PBSDEP =
0.622 ± 0.181 cmH20.S/mL; MchDEP = 1.663 ± 0.549 cmH20.
S/mL)]. Tissue elastance (Htis): saline = 13.264 cmH20/mL
[12.309 – 15.447] and DEP= 13.706 cmH20/mL [10.800 –
15.251], damping (Gtis): saline = 3.113 cmH20/mL [2.729 –
3.558] and DEP= 3.034 cmH20/mL [2.729 – 3.558] and air-
way resistance (Raw): saline = 0.211 cmH20.S/mL [1.014 –
0.267] and DEP= 0.204 cmH20.S/mL [0.173 – 0.242] were
not different between saline and DEP-exposed mice
(Figure 1). No differences were observed in the thick-
ness of the bronchiolar epithelium in DEP-exposed
compared to saline-exposed animals (Table 1). Mean
linear intercept (Lm) (p ≤ 0.001) (Figure 2A) and the
parameter D2 (Figure 2B) (index based on the statis-
tical distribution of mean airspace diameter-D0) (p = 0.038)
increased in DEP-exposed animals; D0saline = 110.285
[105.890 – 120.315]; D0DEP = 110.430[107.811–116.989];
D2saline = 361,827 [311.461 – 384.803]; D2DEP =381.844
[359.245 – 430.586]. The long-term intranasal DEP
Figure 1 Respiratory mechanics parameters in saline or DEP exposed
(Gtis) and (C) airway resistance (Raw). The central line defines the median,
75% percentiles, respectively, and the error bars represent the 5% and 95%
represent DEP group. (D) Respiratory mechanics after methacholine challen
Raw means airway resistance. There were not statistically difference signific
exposure during 90 days damaged the lung paren-
chyma, which caused modifications in the distal airspaces,
resulting in alveolar enlargement (Figure 2C, D).
There were no statistically significant differences

among groups in the proportion of elastic (p = 0.08) or
collagen fibers (p = 0.208) occupied in the lung paren-
chyma (Figure 3).
Effects of DEP exposure on lung inflammation
We examined the cellular profile of BAL fluid 24 h after
the last intranasal instillation. The administration of
DEP did not increase the total BAL cell counts when
compared to the saline group after 90 days. Differential
cell counts in the BAL showed differences in lymphocyte
numbers between groups (p = 0.017) (Table 2). The ex-
pression of IL- 4, IL −10, IL-13 and INF-γ were exam-
ined in the BAL supernatants of the study groups. No
statistical differences in BAL levels of IL-4, IL-10 and
IL- 13 (Table 3) were noted. However, INF-γ levels de-
creased in the DEP-exposed group compared to the sa-
line group (p = 0.03).
In the bronchiolar epithelium, there was reduced expres-

sion of IL-13 in the DEP group when compared to the sa-
line group (p = 0.008). In the lung parenchyma, there were
no statistically significant differences in MAC2+ macro-
phage, CD4+ T cell and CD20+ B cell counts (Table 1)
between groups. However, there was an increase in the
number of CD3+ T cells (p ≤ 0.001) and CD8+ T cells
(p ≤ 0.001) in the DEP group when compared with the
mice during 90 days. (A) tissue elastance (Htis), (B) tissue damping
the borders above and below the shaded areas represent the 25% and
percentiles. The grey box represents saline group and stripped box
ge in saline (white circle) or DEP (black circle) exposed mice, where
ant between groups.



Table 1 Density of macrophages (MAC2+ cells), CD4+ T
cells, CD20+ B cells, IL-13 epithelial cells, Muc5ac (mRNA),
bronchial epithelial thickness in DEP and saline groups
after 90 days of exposure

Saline DEP

MAC2+ (cells/mm2) 47.74 (0.00-143.54) 79.64 (52.36-158.73)

CD4+ (cells/mm2) 210.22 ± 98.43 221.43 ± 108.89

CD20+ (cells/mm2) 793.41 (664.34-893.47) 888.56 (761.59-1111.11)

Muc5ac 0.10 (0.04-0.27) 0.15 (0.00-0.72)

Bronchial epithelial
thickness (μm)

9.20 (7.55-11.33) 6.89 (6.47-10.51)

IL-13 (area+/area) 0.34 ± 0.11 0.11 ± 0.10*

Date are presented as means ± SD or medians (interquartile ranges).
* p = 0.008.
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saline group (Figure 4). The pulmonary expression of
Muc5ac mRNA was not statistically different between
groups (Table 1).

Discussion
In this study we demonstrated that chronic exposure to
diesel particles trigger alterations in lung structure of
the alveolar parenchyma, associated with CD8+ T cell
inflammation and decreased IFN-γ production, that are
not associated with impaired lung function or significant
extracellular matrix remodeling. Many studies showed
associations between air pollution and exacerbations of
Figure 2 Airspace enlargement in the lungs in saline or DEP exposed
D2 (*p = 0.038). Lung parenchyma morphology. Photomicrography of m
concentration of DEP of 30 μg/10 μL (D). Scale bar = 50 μm.
pre-existing COPD, but the role of air pollution in the
development and progression of COPD [9,21-25] is still
uncertain. Particle retention in lung tissue results in a
chronic, low-grade inflammatory response that may be
pathogenetically important in the progression of lung
disease. It is possible that longer exposures (in animals
or in real life) could have a more significant impact on
lung mechanics or remodeling, as it is observed in
cigarette smoking models. In addition, it is possible that
in pre-injured lungs, like the smoker’s lungs, chronic ex-
posure to DEP/air pollution could have a synergic effect
on the development of emphysema. We have previously
demonstrated that exposure to ambient particles acceler-
ates the development of protease induced emphysema in
mice [10].
Environmental factors play a critical role in the regula-

tion of the innate and adaptive immune responses that
might be associated with the development of allergic or
chronic obstructive pulmonary diseases. In our study, we
observed decreases in type 1 (IFN-γ) without any differ-
ences in IL-10 in the BAL (Table 3). A decrease in IFN-γ
production in the BAL of smokers and a downregulation
of M1 genes has been previously described in smokers
and COPD [26]. Interestingly, we observed a lower ex-
pression of IFN-γ in the BAL of DEP treated animals,
without a concomitant increase in macrophages [27].
This finding suggests that M1/M2 balance could be also
mice. (A) Mean linear intercept (Lm) (*p≤ 0.001) and (B) parameter
ice lung parenchyma (HE), 90 days after exposure with saline (C) or a



Figure 3 Elastic fibers (resorcin-fuchsin) and collagen fibers (sirius red) in the parenchyma region. Photomicrography of mice lung
parenchyma showing elastic fibers (A, B) and collagen fibers (C, D) in saline (A, C) and DEP group (B, D). There were no statistically significant
differences among groups in the proportion of elastic (p = 0.08) or collagen fibers (p = 0.208) occupied in the lung parenchyma. Scale bar = 20 μm.

Table 3 Cytokines expression in the bronchoalveolar
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modified by DEP exposition, explaining the altered im-
mune allergic or infectious responses described in ex-
posed animals [28,29].
Exposure to low dose DEP over a period of 90 days

caused alveolar enlargement with a CD8+ T lymphocytic
inflammation without a concomitant increase in macro-
phage and neutrophil numbers or an increase in cyto-
kines. Similarly, Biselli et al. [30] studied the inflammatory
and structural pulmonary effects of exposure to residual
oil fly ash (ROFA) in mice for 2 months. The authors
could not detect increases in inflammatory cells but ob-
served early signs of alveolar enlargement in the animals
exposed to ROFA. How can we explain these findings? It
is possible that other tissue injury pathways are activated
during diesel exposure, such as the cytolitic cascade of
granzymes/perforin. Upregulation of granzyme B in CD8+
and non-CD8+ cells has been demonstrated to be an early
phenomenon of small airway wall remodelling in centri-
lobular emphysema in patients with COPD [31]. The
identification of increased CD8+ T cells in the paren-
chyma confirm the findings of a previous study by Deiuliis
et al. [31], that investigated the effects of chronically in-
haled particulate matter <2.5 μm (PM2.5) on inflammatory
cell populations in the lung, mediastinal lymph nodes,
spleen, and circulation [32].
Table 2 Differential cell counts in the bronchoalveolar
lavage between DEP and saline groups

cells/mLx104 Saline DEP

Neutrophils 0.004 ± 0.005 0.007 ± 0.008

Macrophages 1.801 ± 0.546 2.900 ± 1.327

Lymphocytes 0.051 ± 0.060 0.235 ± 0.301*

Values are mean ± SD. * p = 0.017.
Another possibility is the induction of air pollution-
induced autophagy in lung cells. Several studies have
demonstrated that cigarette smoke induces autophagy in
lung cells [33], and this autophagic process appears to
play a critical role in the pathogenesis of emphysema
[33-35]. Deng et al. 2013 found that PM2.5 can elicit oxi-
dative stress, resulting in accumulation of intracellular
reactive oxygen species (ROS) and autophagic cell death
in human epithelial lung A549 cells [36].
It is possible that longer exposures would be necessary

to detect more pronounced inflammatory or ECM
(extracellular matrix) changes.
In our protocol, DEP route administration and particle

size may have contributed to a proportionally higher
dose of particles retained in the upper regions of the re-
spiratory tract and the point is made that much of the
instilled dose is likely to be retained in the upper airway,
the more important point that this lack of penetration to
the deep lung may account for some of the negative
findings. Nevertheless, the presence of alveolar macro-
phages containing engulfed carbon particles indicates
that particles reached the distal parts of the lungs. We
could not find functional alterations in lung mechanics
lavage of mice treated with DEP and saline after 90 days
of exposure

Cytokines (pg/mL) Saline DEP

IL- 4 6.15 ± 3.70 8.89 ± 2.41

IL-10 476.84 ± 241.95 305.26 ± 200.04

IL-13 408.6 ± 328.02 318.16 ± 241.86

INF-gamma 131.30 (109.46-289.36) 93.22 (84.33-102.25)*

Date are presented as means ± SD or medians (interquartile ranges).
IL = Interleukin, INF-γ = Interferon-gamma. * p = 0.03.



Figure 4 CD3+ and CD8+ T cells density in lung parenchyma in saline or DEP exposed mice. Photomicrography of mice lung parenchyma
showing CD3+ (A,B) and CD8+ T cells (C, D) in saline (A, C) and DEP group (B, D). Observe the increased density of these cells in the DEP
group. Scale bar = 20 μm. The graphs show expression of CD3+ T lymphocytes and CD8+ T lymphocytes in saline and DEP group. The median is
represented as horizontal bars. CD3+ T lymphocytes: *p≤ 0.001 compared with saline group. CD8+ T lymphocytes: *p ≤ 0.001 compared with
saline group.
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in our model. However, Lopes et al. [10] showed that
morphometric parameters were more reliable for detect-
ing the presence of emphysema than respiratory me-
chanics in a model of protease induced-emphysema. We
also cannot exclude the possibility that the alveolar en-
largement induced in our model was not severe enough
to cause functional changes.
Evidence shows that lung blood vessels actively promote

alveolar growth during development and contribute to the
maintenance of alveolar structures throughout postnatal
life. Preservation of vascular growth and endothelial
survival promotes growth and sustains the architecture of
the distal airspace [37]. Air pollution is known to induce
endothelial dysfunction [38-40]. In our work, animals were
exposed from postnatal week 8 onwards. We speculate
that DEP could alter alveolar growth pathways by altering
endothelial growth factors. Mauad et al. 2008 showed that
chronic exposure to air pollution has been associated with
adverse effects on mouse lung growth and development in
early life. Whether pollution also alters the postnatal
structure of the lungs should be investigated [41].
A perception that COPD, including emphysema, is

caused primarily by smoking has hindered opportunities
for primary prevention, diagnosis, and treatment of these
diseases [12]. However, limiting air pollution exposure in
the general population does not depend solely on an in-
dividual’s actions, but also on public policy and exposure
awareness programs. The World Health Organization
and the American Thoracic Society have identified per-
manent reduction in lung function as an important po-
tential outcome of air pollution exposure and have
recognised that genetic factors may be important in de-
termining such effects [12,42].
Increasing experimental and epidemiological evidence
shows that ambient pollution alters structures involved
in lung development. Here, we show that chronic expos-
ure of adult mice to diesel particles can also affect lung
structure in the absence of overt inflammation. Future
studies should be conducted to elucidate the pathways
related to alveolar damage caused by air pollution.
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