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Abstract

Background: The palatine tonsils have a pivotal role in immunological detection of airborne and
ingested antigens like bacteria and viruses. They have recently been demonstrated to express Toll-
like receptors (TLRs), known to recognize molecular structures on such microbes and activate
innate immune responses. Their activation might also provide a link between innate and adaptive
immunity. In the present study, the expression profile of TLRI-TLR 10 was characterized in human
tonsil T cells, focusing on differences between subsets of CD4* T helper (Th) cells and CD8*
cytotoxic T lymphocytes (CTL). The study was also designed to compare the TLR expression in T
cells from patients with recurrent tonsillitis and tonsillar hyperplasia.

Methods: Tonsils were obtained from children undergoing tonsillectomy, and classified according
to the clinical diagnoses and the outcome of tonsillar core culture tests. Two groups were defined;
recurrently infected tonsils and hyperplastic tonsils that served as controls. Subsets of T cells were
isolated using magnetic beads. The expression of TLR transcripts in purified cells was assessed using
quantitative real-time RT-PCR. The corresponding protein expression was investigated using flow
cytometry and immunohistochemistry.

Results: T cells expressed a broad repertoire of TLRs, in which TLRI, TLR2, TLR5, TLR9 and
TLRI10 predominated. Also, a differential expression of TLRs in CD4* and CD8* T cells was
obtained. TLRI and TLR9 mRNA was expressed to a greater extent in CD4* cells, whereas
expression of TLR3 mRNA and protein and TLR4 protein was higher in CD8* cells. CD8" cells
from infected tonsils expressed higher levels of TLR2, TLR3 and TLR5 compared to control. In
contrast, CD4* cells exhibited a down-regulated TLR9 as a consequence of infection.

Conclusion: The present study demonstrates the presence of a broad repertoire of TLRs in T
cells, a differential expression in CD4* and CD8* cells, along with infection-dependent alterations
in TLR expression. Collectively, these results support the idea that TLRs are of importance to
adaptive immune cells. It might be that TLRs have a direct role in adaptive immune reactions against
infections. Thus, further functional studies of the relevance of TLR stimulation on T cells will be of
importance.
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Background

Tonsillar diseases are among the most common health-
related problems in the general population, and tonsillec-
tomy is one of the most frequently performed surgical
procedures in the western world. The two main indica-
tions for tonsillectomy are recurrent tonsillitis and tonsil-
lar hypertrophy [1]. The pathogenesis of recurrent
tonsillitis is largely unknown [2], though it has generally
been regarded as an infection caused by Streptococcus pyo-
genes, in particular group A B-hemolytic streptococci
(GAS), or viruses [3,4]. It is still debated whether Haemo-
philus influenzae (HI) and Staphylococcus aureus (SA), other
common bacteria that harbor in the deep crypts of the
tonsils [2,4], play a role for the recurrent disease.

The palatine tonsils are secondary lymphoid organs
located at a critical position for immunological detection
of airborne and ingested antigens [5]. They are sites where
innate immunity leads to onset of the adaptive immunity,
mediated by B and T lymphocytes [6]. Naive lymphocytes
circulate between the blood and the secondary lymphoid
organs in search of antigens. Once antigens are encoun-
tered within a secondary lymphoid organ, the passing
naive B and T lymphocytes bearing specific antigen recep-
tors are retained [7]. After being activated, they undergo
clonal expansion and after a few days acquire effector
functions and immunological memory [6-9]. In contrast,
the innate immune response provides protection immedi-
ately after an infectious challenge [10]. Members of the
Toll-like receptor (TLR) family have emerged as central in
this defence, through their ability to recognize conserved
molecular structures on pathogens that are not present in
higher eukaryotes, so called pathogen-associated molecu-
lar patterns (PAMPs) [10]. To date, 10 human TLRs
(TLR1-TLR10) have been identified [11], all of which are
transmembrane proteins with an extracellular leucine-rich
domain and a conserved cytoplasmic domain. Each TLR
recognizes specific PAMPs [12], including bacterial lipo-
proteins and lipoteichoic acids (TLR2), double-stranded
viral RNA (dsRNA; TLR3), lipopolysaccharides (LPS;
TLR4), flagellin (TLR5), imidazoquinolines and single-
stranded viral RNA (ssRNA; TLR7 and TLR8) and unmeth-
ylated CpG-DNA (TLR9) [13-17]. TLR1 and TLR6 only sig-
nal as a dimer when combined with TLR2 [18], and the
ligand for TLR10 is yet unknown [10]. Recognition of
PAMPs by TLRs triggers a signaling pathway that leads to
activation of nuclear factor kB (NF-kB) transcription fac-
tors and members of the MAP kinase family [19,20]. This
activation does not only initiate innate immune
responses, it also triggers adaptive immunity via induc-
tion of cytokines, chemokines and co-stimulatory mole-
cules [5]. In addition, Gelman and colleagues [21] have
reported that mouse CD4+ T cells expressing TLR3 and
TLR9 respond to CpG-DNA and poly(I:C) (ligand for
TLR3) stimulation with NF-xB activation. This observa-
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tion suggests that infectious organisms via TLRs can
directly activate the adaptive immune response, which
raises questions regarding the role of TLRs in T cell activa-
tion both with and without antigen-presenting cells
(APCs).

Expression of TLRs has been detected in various upper air-
way tissues such as tonsils and adenoids, as well as in dif-
ferent cells of the immune system, e.g. monocytes,
macrophages, dendritic cells (DCs) and B cells [5]. How-
ever, little is known about the expression in human T
cells. The expression of TLRs in lymphocytes other than B
cells has been a controversial issue and further informa-
tion is needed for the understanding of the link between
TLRs and adaptive immunity. In the present study, we are
first to investigate the expression pattern of TLR1-TLR10
in cellular subsets of human tonsil T cells at both mRNA
and protein level. The ability of TLRs to recognize PAMPs
and to activate pro-inflammatory mechanisms might be
of great importance for immune reactions in the tonsils.
To address this issue, we compared the TLR expression ex
vivo in T cells from recurrently infected and hyperplastic
tonsils.

Methods

Patients

Tonsils were obtained from 39 children undergoing ton-
sillectomy under general anaesthesia at Malmo University
Hospital (Malmo, Sweden). The study was approved by
the Ethics Committee of Lund University and written
informed consent was obtained. After the tonsillectomy,
swabs were taken for tonsillar core cultures (representing
the microbial flora of the tonsillar crypts) in order to
determine the presence of pathogenic -hemolytic strep-
tococci and anaerobes. The patients providing the tonsils
were divided into two groups, referred to as infected or
control, based on their clinical diagnosis and the outcome
of the core culture (Table 1). The infected group consisted
of 18 patients referred to tonsillectomy because of multi-
ple episodes (at least four times during the year preceding
the surgery) of GAS tonsillitis (small to substantially
enlarged tonsils, positive cultivation test). The control
group consisted of 21 patients who underwent tonsillec-
tomy because of tonsillar hyperplasia (no history of recur-
rent tonsillitis, negative cultivation test). None of the
patients displayed symptoms of acute infection at the
time of surgery, and none of them had received any anti-
biotic treatment for at least one month prior to surgery.
Apart from the tonsillar symptoms, all patients were
healthy and did not receive any medication.

Cell separation

Tonsils were minced in complete medium consisting of
RPMI 1640 (Sigma Aldrich, St. Louis, MO, USA) supple-
mented with 0.3 g/l L-glutamine, 10% FCS (AH diagnos-
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Table I: Demographic data of the patients
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Infected group

Control group

Number of patients 18
Sex 8 males, 10 females
Age (years)
Indication for tonsillectomy
Tonsil size

Tonsillar core culture test Positive

3-19 (mean 9.4, median 9)
History of recurrent tonsillitis
Small to substantially enlarged

21

8 males, |3 females

3-18 (mean 8.2, median 6)
Hyperplastic obstructing tonsils
Substantially enlarged

Negative

The tonsillar core culture test was positive if the tonsils harbored -hemolytic streptococci or anaerobes.

tics, Aarhus, Denmark), 100 U/ml penicillin and 100 ng/
ml streptomycin (Invitrogen, Carlsbad, CA, USA). The cell
suspension was incubated with neuraminidase-activated
sheep red blood cells (SRBC) followed by density gradient
centrifugation with Ficoll-Paque (Amersham Bioscience,
Uppsala, Sweden) as previously described [22]. SRBCs
bind and form rosettes with human T cells through their
affinity for CD2 (pre-treatment with neuraminidase
increased this binding). After centrifugation on a Ficoll
gradient, the non-rosetting cells are found at the interface
fraction while the rosetting T cells are obtained from the
pellet [22,23]. The T cells are thereafter obtained by lysing
the SRBCs with dH,0 and 1.4 M NacCl. Different subsets of
T cells were further isolated using the MACS magnetic
labeling system (Miltenyi Biotec, Cologne, Germany)
according to instructions of the manufacturer. Briefly,
cells were incubated in 4°C with antibody-conjugated
microbeads in buffer containing PBS supplemented with
0.5% FCS and 2 mM EDTA, and separated on a LS column
placed on a magnetic separator. Untouched CD8+*T cells
were isolated by an indirect magnetic labeling system
using antibodies against CD4, CD14, CD16, CD19,
CD36, CD56, CD123, TCRy/d and Glycophorin A to
deplete CD4+T cells, monocytes, granulocytes, B cells, y/5
T cells, NK cells, DCs, and erythroid cells (CD8+T Cell Iso-
lation Kit II, Miltenyi Biotec). Untouched CD4+ T cells
were isolated in a similar manner (CD4+ T Cell Isolation
Kit II, Miltenyi Biotech) by depletion of non-CD4+ cells.
The CD4+ subset was occasionally further separated based
on the expression of the chemoattractant receptor-homol-
ogous molecules expressed on Th2 cells (CRTH2) into
CRTH2-Th1 and CRTH2*Th2 cells using the anti-CRTH2
Microbead Kit (Miltenyi Biotech). For all protocols, the
isolated cells had routinely a purity of > 95% as deter-
mined by FACS.

RNA isolation and real-time RT-PCR

Freshly isolated T cells were lysed in RLT buffer (Qiagen,
Hilden, Germany) supplemented with 1% 2-merkap-
toethanol and stored in -80°C until use. RNA was
extracted using RNeasy Mini Kit (Qiagen). The quantity
and quality of the RNA concentration was determined by
spectrophotometry based on the A,,/A,g, ratio. Omnis-
cript Reverse Transcriptase kit (Qiagen) and oligo(dT);s

primer (Novagen, Nottingham, UK) were used for first-
strand cDNA synthesis with an aliquot of 20 ng RNA as
starting material. The obtained cDNA was diluted with
water and 18 ng was used for amplification. The real-time
PCR was performed on a Smart Cycler (Cepheid, Sunny-
vale, CA, USA) using TagMan Universal PCR Master Mix,
No AmpErase UNG and Assay-on-Demand Gene Expres-
sion products (Applied Biosystems, Foster City, CA, USA)
containing unlabeled primers and MGB probe (FAM™
dye-labeled). The thermal cycler was programmed to per-
form an initial set-up (95°C, 10 min) and 45 cycles of
denaturation (95°C, 15 s) followed by annealing/exten-
sion (60°C, 1 min). To ensure proper function of the
probes, B cells and neutrophils were used as controls. The
gene expression was assessed using the comparative cycle
threshold (Ct) method http://docs.appliedbiosys
tems.com/pebiodocs/04303859.pdf. The relative
amounts of mRNA for the TLRs were determined by sub-
tracting the Ct values for these genes with the Ct value for
the housekeeping gene B-actin (ACt) [24]. The amount of
mRNA is expressed in relation to 100,000 mRNA mole-
cules of B-actin (100,000 x 2-2Ct) and presented as mean
values + SEM.

FACS analysis

Flow cytometry analyses were performed on a Coulter
Epics XL flow cytometer (Beckman Coulter, Marseille,
France). Live lymphocytes were gated based on forward
and side scatter properties and 10,000-15,000 events
were collected and analyzed using Expo32 ADC analysis
software (Beckman Coulter). The following anti-human
mAbs were used: CD3-FITC (UCTH1) and CD3-ECD/
CD8-FITC/CD4-PE (UCTH1/B9.11/13B8.2) from Immu-
notech (Beckman Coulter, Marseille, France), CD8-PECy5
(RPA-T8) and CD4-PECy5 (RPA-T4) from eBioscience
(San Diego, CA, USA) and TLR2-FITC (TL2.1), TLR3-PE
(40C1285), TLR4-FITC (HTA125) and TLR9-FITC
(26C593) from AMS Biotechnology (Abingdon, UK).
Unlabeled mAbs against TLR1 (GD2.F4) and TLR5
(85B152.5) from Acris antibodies (Hiddenhausen, Ger-
many) were used together with Alexa Fluor 488 mouse
IgG1 or IgG2a labeling kit from Molecular Probes
(Eugene, OR, USA). Isotype controls relevant for each Ab
were used for background staining. Serial dilutions of the
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TLR Abs were performed to determine the optimal work-
ing titres, and as positive controls B cells, monocytes and
DCs were used. For the detection of TLRs, intracellular
staining of the cells was performed. Freshly isolated CD4+
and CD8+ cells were fixed in 4% formaldehyde and per-
meabilized in PBS containing 0.1% Triton x 100. Cells
were either incubated for 30 min in RT with primary
mADbs targeted with Alexa Fluor 488, or for 30 min in 4°C
with direct-conjugated mAbs. To block unspecific bind-
ing, PBS supplemented with 2% FCS was used for all labe-
ling and washing steps.

Immunohistochemistry

The morphological localization of TLR proteins in tonsils
was investigated using immunohistochemistry. Tissue
preparations were embedded in paraffin, cut in 3 pm thick
sections, mounted on glass slides and stored in -80°C
until use. Prior to visualization of proteins, the sections
were treated with xylene to remove the paraffin and rehy-
drated using ethanol. To facilitate binding of the Abs, the
sections were treated with Target retrieval solution (Dako-
Cytomation, Copenhagen, Denmark) for 20 min in a
microwave oven, followed by Triton x 100 (1%) for
increased membrane permeability. To quench endog-
enous peroxidase activity, sections were incubated in
0.03% hydrogen peroxide for 10-15 min. If needed, sec-
tions were incubated for 20 min in PBS containing 2%
FCS to block non-specific binding. The following primary
Abs were used, and applied to the sections for 1 h: CD4
(IF6) from Novocastra (Newcastle upon Tyne, UK), CD8
(C8/144B) and CD20cy (L26) from DakoCytomation,
TLR1 (GD2.F4), TLR5 (SM7102P), TLR7 (rabbit polyclo-
nal) and TLR9 (26C593) from Acris antibodies, as well as
rabbit pAbs against TLR2 and TLR3 from AMS Biotechnol-
ogy. Subsequently, HRP-labeled goat anti-mouse or goat
anti-rabbit polymer was incubated with the sections for
30 min, followed by 3,3'-diaminobenzidine (DAB) or 3-
amino-9 ethylkarbazole (AEC) respectively (DakoCyto-
mation EnVision* System-HRP kits). To exclude unspe-
cific staining of the HRP-labeled polymer, antibody
diluent without primary Ab was used as negative control.
At some occasions, sections were counterstained with
Mayer's hematoxylin. The sections stained with AEC were
mounted in Faramount aqueous mounting medium
(Dako), whereas the DAB-stained sections were dehy-
drated with increasing concentrations of ethanol, rinsed
in xylene and mounted in Pertex (Histolab). TBS (pH 7.6)
supplemented with 0.05% Tween 20 was used for all
washing steps.

Statistics

Statistical analysis was performed using GraphPad Prism
4 (San Diego, CA, USA). Student's t-test was used to deter-
mine statistical differences for unpaired, with the Welch
test if variances were non-homogenous, and paired obser-
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vations. P-values < 0.05 were considered statistically sig-
nificant.

Results

Expression pattern of TLRI-TLRI0 in subsets of human T
cells

Analysis of TLRs in T cells requires removal of contaminat-
ing cells expressing high levels of TLRs, such as monocytes,
B cells and DCs. FACS analysis of the purified T cell subsets
routinely showed a purity of > 95 % (Fig 1), which consid-
erably diminished the possibility of contamination. The
freshly isolated CD8+, CD4+, CD4+/CRTH2- and CD4+/
CRTH2+* cells from human tonsils were analyzed for expres-
sion of TLR1-TLR10 transcripts using quantitative real-time
RT-PCR, and all data are presented in relation to the house-
keeping gene B-actin. The tonsils used were randomly
selected, independent of the patients' clinical diagnosis.
Hence, the cells originated from both infected and hyper-
plastic tonsils. T cells expressed 8 out of the 10 presently
known TLRs, and among them TLR1, TLR2, TLR5, TLR9
and TLR10 were most prominent (Fig 2). Expression of
TLR3, TLR4 and TLR7 was relatively low, whereas TLR6 and
TLR8 were undetectable. CD8* cells generally expressed
lower levels of TLR mRNA than CD4+ cells. Comparison of
the expression levels of single TLRs in the different cell
types revealed that CD4+ cells had significantly higher
mRNA expression levels of TLR1 and TLR9 than CD8+,
while in contrast TLR3 expression was significantly higher
in CD8+ cells. TLR4 and TLR7 levels were close to the detec-
tion limit, why no reliable statistical analyses could be
made. Furthermore, no significant differences in mRNA
expression were found between CD4+/CRTH2- Th1 and
CD4+/CRTH2+Th2 cells (n = 21; data not shown).

To determine whether this observed mRNA expression
pattern actually reflected the expression of the TLR pro-
teins, immunohistochemistry and flow cytometry were
carried out. Immunohistochemical staining of tonsils
with Abs against CD4, CD8 and CD20 as well as against
TLR1, TLR2, TLR3, TLR5, TLR7 and TLR9 was performed
to identify the cellular location of the receptors. Ab against
TLR4 was evaluated but found not to function in a satis-
factory way, and no Ab against TLR10 was available on the
market. As expected, CD4+ cells were found both in the T
cell zones and in the germinal centers (GCs) (Fig 3A)
where they provide help during B cell differentiation.
CD8+ cells on the other hand were only detected in the T
cell zones of the tonsils (Fig 3B). B cells, stained with
CD20, were located mainly in the GCs (Fig 3C). TLR1,
TLR5, TLR7 and TLR9 were found highly expressed within
the GCs, but also in the adjacent T cell zones, whereas
TLR2 and TLR3 expression was more intense in the T cell
zones (Fig 3D-1). Although the staining of the TLRs does
not discriminate between T cells and other TLR-expressing
cells, the locations of the receptors are clearly shown. Col-
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lated by negative selection using magnetic beads. The isolation procedure was accompanied by FACS analysis of surface pheno-

type (purity > 95%).

lectively, TLR1, TLR2, TLR3, TLR5, TLR7 and TLR9 were all
present in the T cell zones, but also in the GCs, of human
tonsillar sections, which supports the presence of TLR
mRNA presented above.

In order to verify the presence of the TLR proteins as well
as to confirm the differences observed between CD4+and
CD8+ cells at transcriptional level, Abs against the various
TLRs were used for flow cytometry analyses. The fluores-
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Figure 2

Expression pattern of TLR transcripts in subsets of
human tonsil T cells. Freshly isolated CD4* (filled bars)
and CD8* T cells (open bars) were analyzed for TLRI-TLRI0
expression using quantitative real-time PCR. Data from
experiments with cells from different patients are summa-
rized (CD4*, n = 22, CD8*, n = 21), depicted in relation to
the housekeeping genef-actin as 2-ACtx |05 and presented as
mean values £ SEM (*p < 0.05).

cence intensity of the TLRs varied markedly between dif-
ferent donors. Therefore, the TLR expression was
calculated as relative mean fluorescence intensity (rMFI =
TLR Ab/corresponding isotype control) [25]. CD8+T cells
displayed a higher level of TLR3 than CD4+ cells, which is
in line with the real-time PCR results (Fig 4). The higher
expression of TLR1 and TLR9 previously seen in CD4+
cells could not be confirmed statistically, although there
was a trend towards a higher TLR1 expression in CD4+
cells. An interesting finding was that TLR4, which was
poorly expressed at mRNA level, was clearly present in
both CD4+ and CDS8+ cells. In addition, the receptor
expression was significantly higher in CD8* compared to
CD4+ cells. Moreover, no differences in expression of
TLR2 and TLR5 proteins were found between the subsets
(data not shown).

Influence of chronic tonsillar infection on TLR expression

In this study the expression profile of the 10 presently
known TLRs has been characterized in freshly isolated
CD4+and CD8+T cells. The results show expression of most
TLRs, but also a differential expression in the two cellular
subsets. Next, it has previously been reported that micro-
bial stimuli affect the expression of the cognate TLR [26].
Therefore, we wished to investigate whether infection has
an effect on the TLR expression. To address this issue, the
TLR expression in cells from recurrently infected tonsils was
compared with controls. In the infected tonsils several bac-
terial strains were found, including B-hemolytic strepto-
cocci (group A, C and G) and anaerobes. The results
revealed that TLR2, TLR3 and TLR5 transcripts were up-reg-
ulated in CD8+ cells from infected tonsils, whereas in CD4+
cells, TLRY transcripts were down-regulated (Fig 5).
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Figure 3

Immunohistochemical staining of tonsillar tissue. Tonsil sections were stained with Abs against (A) CD4 (diluted
1:400), (B) CDS8 (1:50), (C) CD20 (1:1500), (D) TLRI (1:50), (E) TLR2 (1:50), (F) TLR3 (1:50), (G) TLR5 (1:50), (H) TLR7
(1:50) and (1) TLR9 (1:50), localized using DAB or AEC, which stain tissues brown and red respectively, and analyzed by micro-
scopy (magnification 40—100x).
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CD8* T cells express higher levels of TLR3 and TLR4
than CD4* T cells. Freshly isolated CD4* and CD8* T cells
from human tonsils were stained intracellularly with Abs
against CD4 or CD8 and TLRI, TLR3, TLR4, TLR9 or con-
trol Ab and analyzed by FACS. Data, summarized from eight
independent experiments, are expressed as rMF| + SEM (*p
= 0.05, **p < 0.01).

In order to confirm the observed differences between
infected tonsils and controls, freshly purified cells were
analyzed for expression of TLR proteins using flow cytom-
etry. As previously mentioned, the fluorescence intensity
varied markedly between different donors, why it was
impossible to conduct statistical analyses. However, we
could see a clear trend that CD8+ cells from infected ton-
sils displayed an increase in TLR2, TLR3 and TLR5 (Fig 6).
In contrast, the down-regulation observed with TLR9
could not be confirmed at protein level. All in all, these
observations demonstrate an altered TLR profile in
patients with a history of recurrent tonsillitis caused by
GAS.

Discussion

The expression profiles as well as the functions of the TLRs
have been studied extensively in various types of immune
cells. However, information regarding TLRs in lym-
phocytes other than B cells is still limited. The present
study demonstrates mRNA and corresponding proteins
for TLR1-TLR10 in different subsets of T lymphocytes.
Broad patterns of TLRs are found in all cellular subsets
investigated and marked differences between CD4+ and
CD8+T cells can be noted. In addition, the TLR expression
profile in cells derived from patients with chronic tonsilli-
tis differs from the pattern found among healthy controls.
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Figure 5

Altered TLR expression in response to tonsillar infec-
tion. Freshly isolated CD4* and CD8* T cells from infected
tonsils (open bars) and controls (filled bars) were analyzed
for TLRI-TLR 10 expression using quantitative real-time PCR.
Data from experiments with cells from different patients are
summarized (CD4*, n = 1415, CD8*, n = 7-13), depicted in
relation to the housekeeping gene B-actin as 2:ACtx |05 and
presented as mean values £ SEM (*p < 0.05).

Using purified human tonsil T cells we found transcripts
encoding 8 of the 10 presently known TLRs, with TLR1,
TLR2, TLR5, TLR9 and TLR10 being most prominently
expressed. This is in agreement with previous studies that
collectively have demonstrated the presence of most TLRs
in T cells derived from peripheral blood [26-29]. The most
notable differences between the present and previous
blood based reports [26,29] are that we found higher
mRNA levels of TLR10 and no expression of TLR6 and
TLR8. These discrepancies might be related to the func-
tional and phenotypical differences between T cells from
the different origins [9]. mRNA levels do not always cor-
relate with the actual protein levels. Hence the present
study extends and complements the transcriptional data,
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TLRS-FITC

Enhanced TLR2, TLR3 and TLR5 expression in CD8* T cells from infected tonsils (black area) compared to
controls (gray area). Freshly isolated CD8* T cells were stained intracellularly with Abs against CD8 and TLR2, TLR3 or
TLR5 and analyzed by FACS. Also shown are isotype controls (infected, black line; control, dashed line). Experiments were
performed with cells from four patients out of each group. One representative experiment from each group is shown.

demonstrating the presence of the corresponding TLR
proteins.

Most studies on TLRs have been focusing on immune cells
known to be involved in the innate immunity, such as
DCs, monocytes and granulocytes. Although T cells
express low levels of TLRs compared to other immune
cells, they do indeed express a broad TLR repertoire. Tra-
ditionally T cells are not believed to play a role in the ini-
tial phase of the innate immune response. However, the
finding of TLRs in T cells might reflect a direct link to the
adaptive immunity [28]. This question has been
addressed in previous studies examining the effects of var-
ious TLR ligands on T cell activation. TLR2, activated by
bacterial lipoproteins, has been described as a co-stimula-
tory receptor to human CD4+ T cells [30], and flagellin
and R-848 are reported to directly stimulate memory
CD4+T cells via TLR5 and TLR7/8 respectively [29]. The
emphasis has however been on CpG-DNA, known to pro-
vide mitogenic stimuli to human B cells and activate
APCs. If the reported effects on T cells are direct or medi-
ated via APCs is still a matter of controversy [21,31-34],
and further functional studies to demonstrate the rele-
vance of TLR stimulation are required.

The present study also demonstrates a differential expres-
sion of TLRs in CD4+and CD8+T cells. This is not surpris-
ing since their activation and effector functions are
divergent. Zarember et al [28] have performed a study
where the TLR expression in CD4+and CD8+ subsets of T
cells is examined using real-time PCR. Our results are con-
sistent with theirs, demonstrating that CD4+ cells express

higher levels of TLR1, TLR4 and TLR9 than CD8 cells, and
that CD8+ express a higher level of TLR3. In addition, we
found that mRNA expression levels do not always corre-
late with the corresponding protein levels assessed by flow
cytometry. These discrepancies were most evident for
TLRY. Similar differences when TLR mRNA and protein do
not correlate have previously been described in human
leukocytes [14,35]. A commonly used explanation for this
phenomenon is that proteins might be consumed after
they have been activated. Other possible explanations
might be related to transcriptional control as well as
mRNA and protein half-life [36,37].

An interesting finding in the present study is that CD8*
cells, in comparison to CD4+ cells, exhibit a higher expres-
sion of TLR3, which is involved in the recognition of
dsRNA produced by viruses during their replication [13].
Upon infection with viruses, fragments of the virus are
presented on MHC class I and recognized by CD8+ cells,
resulting in the induction of a cytotoxic T cell response
[38,39]. It is tempting to speculate in whether TLR3 is yet
another way for CD8+T cells to recognize viral infections,
and thus have a role in activation of the cytotoxic T cell
response.

Microbial stimulation is known to alter the TLR expres-
sion in various cell types [27,28,40]. However, no such
information has been presented for T cells. Therefore we
decided to compare the TLR expression in T cells from
recurrently infected tonsils with non-infected/hyperplas-
tic tonsils. The hyperplastic tonsils were culture-negative
and can therefore function as appropriate controls in rela-
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tion to the infected tonsils. This assumption is also sup-
ported by the fact that hyperplastic tonsils are a relatively
common finding also among normal healthy children not
undergoing tonsillectomy. Nonetheless, it is important to
bear in mind that these "control tonsils" might not be
fully healthy tissues. Therefore, it cannot be completely
ruled out that there is some immunological relevant cause
of the hyperplasia that effects the TLR expression on those
tissue samples. Even so, we made the observation that
CD8+*T cells from infected tonsils express a higher level of
TLR2, TLR3 and TLR5. In contrast, TLR9 was found down-
regulated in CD4+ T cells during tonsillar infection. The
latter finding could however not be confirmed at protein
level.

One explanation for the infection-dependent induction of
TLR2 might be related to the presence of Gram-positive
Streptococcus pyogenes, such as GAS. TLR2 is known to be
activated by structures on Gram-positive bacteria such as
lipoproteins and peptidoglycan [16], but the receptor has
also been described to recognize a soluble factor from
group B streptococci isolated from newborn infants with
sepsis [41]. If streptococci found in upper airway infec-
tions secrete a similar factor that can be detected by TLR2
has not yet been addressed, but if so, might explain the
induction of TLR2. Infected tonsils often concomitantly
harbor bacteria and viruses [4]. dSRNA from the latter
might be of special importance for the activation of TLR3,
whereas flagellated bacteria might have contributed to the
enhanced expression of TLR5. The literature on how the
TLR expression is affected by microbial stimuli is partly
contradictory. Hornung et al [26] demonstrated a decrease
in TLRY in plasmacytoid dendritic cells (PDC) and B cells
in response to CpG-DNA stimulation, whereas Muzio et al
[27] found an increase in TLR4 in polymorphonuclear
cells (PMN) and monocytes, as well as in TLR2 in PMN
upon exposure to their cognate PAMPs. Furthermore, an
inflammation-dependent induction in TLR2 and TLR4
expression in intestinal macrophages has been demon-
strated [40], as well as both a positive and negative regu-
lation of these receptors in granulocytes and monocytes
after incubation with E. coli [28]. Taken together, it is evi-
dent that the TLR expression is affected by microbial stim-
ulation, albeit no general rule appears to apply. If the TLR
expression becomes positively or negatively regulated
seems to be related to the cell types involved as well as to
variations in the external milieu [27]. Further, the well-
defined patterns of TLRs in different cell types imply that
each cell type has a certain way to respond to microbial
stimulation [28].

Conclusion

We have demonstrated the presence of a broad repertoire
of TLRs in T cells, a differential expression in CD4+ and
CD8+* T cells, along with an altered TLR expression in

http://respiratory-research.com/content/7/1/36

response to tonsillar infection caused by Streptococcus pyo-
genes or anaerobes. The expression of TLRs in T cells fur-
ther stresses the biological role of TLRs in the adaptive
immune response, and raises questions regarding the role
of TLRs in T cell activation both with and without APCs.
Thus, further functional studies of the relevance of TLR
stimulation on T cells are of great importance. Moreover,
the infection-dependent alterations in TLR expression in T
cells support the idea that TLRs are important players in
immune reactions against infection.
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