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Abstract
Background: α1-antitrypsin and surfactant protein-A (SP-A) are major lung defense proteins.
With the hypothesis that SP-A could bind α1-antitrypsin, we designed a series of in vitro
experiments aimed at investigating the nature and consequences of such an interaction.

Methods and results: At an α1-antitrypsin:SP-A molar ratio of 1:1, the interaction resulted in a
calcium-dependent decrease of 84.6% in the association rate constant of α1-antitrypsin for
neutrophil elastase. The findings were similar when SP-A was coupled with the Z variant of α1-
antitrypsin. The carbohydrate recognition domain of SP-A appeared to be a major determinant of
the interaction, by recognizing α1-antitrypsin carbohydrate chains. However, binding of SP-A
carbohydrate chains to the α1-antitrypsin amino acid backbone and interaction between
carbohydrates of both proteins are also possible. Gel filtration chromatography and turnover per
inactivation experiments indicated that one part of SP-A binds several molar parts of α1-antitrypsin.

Conclusion: We conclude that the binding of SP-A to α1-antitrypsin results in a decrease of the
inhibition of neutrophil elastase. This interaction could have potential implications in the
physiologic regulation of α1-antitrypsin activity, in the pathogenesis of pulmonary emphysema, and
in the defense against infectious agents.

Background
Alpha1-antitrypsin (α1-AT) and surfactant protein-A (SP-
A) are major defense glycoproteins in the alveolar spaces
of human lungs. α1-AT, a 52,000 D glycoprotein, is

secreted mostly by hepatocytes, and, to a lesser extent, by
lung epithelial cells and phagocytes. α1-AT inhibits a vari-
ety of serine proteinases by its active site (Met358-
Ser359), but its preferential target is human neutrophil
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elastase (HNE) as demonstrated by the high association
rate constant (Kass) for this proteinase [1]. In the lungs, α1-
AT protects the connective tissue from HNE released by
triggered neutrophils; as a result, subjects homozygous for
the common deficiency variant Z α1-AT (associated with
15% of normal plasma α1-AT levels) develop pulmonary
emphysema early in life, especially if they smoke [2].

SP-A, a member of the collectin (collagen-lectin) family [3],
is one of the proteins of surfactant. Structurally, it com-
prises an N-terminal collagen-like domain connected by a
neck to a C-terminal carbohydrate recognition domain
(CRD) [4]. Six trimers are linked by disulfide bridges in an
octadecamer of 650,000 D, in a "flower bouquet" align-
ment pattern [4,5]. A complex, predominantly trianten-
nary, carbohydrate chain of ~4,000 D [6] is attached to the
asparagine at position 187 of the CRD [7]. SP-A is mainly
present in the alveoli in association with phospholipids,
only 1% being present in the free form [8,9]. The primary
function of surfactant is to reduce alveolar surface tension
at end expiration. It is now however clear that SP-A,
together with SP-D, another hydrophilic surfactant pro-
tein, plays a major role in the innate defenses of lung [5-
10]. SP-A, in particular, is able to bind several micro-
organisms and enhance their uptake by phagocytes, stim-
ulate the production of free oxygen radicals, and induce
phagocyte chemotaxis [11].

Most binding to micro-organisms, including influenza
and herpes simplex viruses, Gram-positive and Gram-neg-
ative bacteria, mycobacteria, fungi, and Pneumocystis cari-
nii, occurs via the CRD and is inhibited by sugars or
calcium chelators [12].

Since some SP-A is present in the alveoli in the free form,
it has a chance of coming into contact with α1-AT. We
hypothesized that, in analogy with what happens with
infectious agents, SP-A could bind to α1-AT, which carries
3 biantennary or triantennary asparagine-linked carbohy-
drate chains [13].

In this paper we provide in vitro evidence that the inhibi-
tory activity of α1-AT towards HNE is significantly
decreased in the presence of SP-A, probably as a conse-
quence of SP-A binding to α1-AT. Such an interaction
would represent a novel mechanism of regulating alveolar
α1-AT. This could have relevance both for the pathogene-
sis of emphysema in patients with the Z α1-AT variant and
for the lungs' defenses against infectious agents.

Methods
Preparative procedures
All reagents were of analytical grade, unless otherwise
specified. The buffer used in all experiments was 0.2 M
Na-K phosphate, with 0.5 M NaCl, 2 mM CaCl2, and

0.05% w/w Triton × 100, pH 8.0 (phosphate buffer),
unless otherwise specified. Lipopolysaccharide (LPS)
from E. coli serotype 026:B6 (Sigma) and methyl-α-D-
mannopyranoside (MNOCH3) (Sigma) were dissolved in
phosphate buffer. HNE and human α chymotrypsin
(αChy) (ART, Athens, GA) were dissolved in 50 mM
sodium acetate, 150 mM NaCl, pH 5.5 and diluted with
phosphate buffer. N-glycocosidase F from Flavobacterium
meningosepticum (PNGase F; EC 3.5.1.52) was purchased
from Roche Diagnostics (Monza, Italy). Clostridium histo-
lyticum collagenase type III (EC 3.4.24) came from Calbi-
ochem (La Jolla, CA). The chromogenic substrates
MeOSucAlaAlaProValNA (for HNE) and SucAlaAlaProPh-
eNA (for αChy), and the irreversible inhibitors MeOSucA-
laAlaProValCMK (for HNE) and TosPheCMK (for αChy)
(all from Sigma) were dissolved in (CH3)2SO. Wild-type
α1-antitryspin (M α1-AT) was either from ART or purified
from human serum by covalent chromatography. Capil-
lary isoelectric focusing (CIEF) with bare fused-silica cap-
illaries filled with polyethylene oxide and carrier
ampholyte solutions in the pH 3.5–5.0 range [14] was
applied to confirm the presence of the common M α1-AT
variant. Z α1-AT variant was purified by covalent chroma-
tography from subjects identified within the Italian
screening program for α1-AT deficiency [15]. SP-A was iso-
lated as described [16] from surfactant obtained from 3
patients affected by pulmonary alveolar proteinosis
(PAP), subjected to therapeutic whole lung lavage [17]
and from adult New Zealand rabbits. To isolate surfactant,
the bronchoalveolar lavage fluid was filtered through
gauze and centrifuged at 150 g for 10 minutes. The super-
natant was centrifuged for 30 minutes at 80,000 × g and
the resulting pellet was suspended in 10 mM Tris-HCl pH
7.4, 145 mM NaCl, 1.25 mM CaCl2, 1 mM MgCl2, 2.2 M
sucrose (solution A), overlaid with 10 mM Tris-HCl pH
7.4, 145 mM NaCl, 1.25 mM CaCl2, 1 mM MgCl2, 2 M
sucrose (solution B) and ultracentrifuged overnight at
85,000 × g in a Ti 60 rotor (Beckman). The floating mate-
rial was dispersed in water and centrifuged for 30 minutes
at 100,000 × g and the pellet recovered was stored at -
70°C (purified surfactant). To obtain SP-A, surfactant was
injected into a 50-fold excess by volume of 1-butanol and
stirred at room temperature for 30 minutes. After centrif-
ugation, the pellet was suspended in 1-butanol and re-
centrifuged at 4,000 × g for 1 hour at room temperature.
The final precipitate was dried under nitrogen and then
resuspended in 5 mM Tris-HCl, 145 mM NaCl, 20 mM
octyl β-D-glucopyranoside, pH 7.4 (solution C). After
centrifugation at 100,000 × g for 1 hour, the pellet was
resuspended in 5 mM Tris-HCl pH 7.4 (solution D) and
dialyzed against solution D for 48 hours with at least six
changes. The final solution was centrifuged at 100,000 × g
for 1 hour and the resulting supernatant, containing puri-
fied SP-A, was stored. Endotoxin-free SP-A was obtained
by treatment with polymyxin-B (Sigma). Small aliquots of
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SP-A in solution D were incubated in a 1:1 ratio for 6
hours at 4°C with polymyxin-agarose previously equili-
brated with 5 mM Tris-HCl, 100 mM octyl β-D-glucopyra-
noside and 2 mM EDTA, pH 7.4. Polymyxin-agarose was
removed by centrifugation at 14,000 × g for 15 minutes,
and the supernatant was then dialyzed against 5 mM Tris-
HCl pH 7.4 for 48 hours with at least six changes and
lyophilized [17,18]. For some experiments polymyxin-
treated SP-A was further purified by D-mannose sepha-
rose 4B chromatography. SP-A was added to a small col-
umn containing D-mannose sepharose 4B (Pharmacia)
previously equilibrated with 5 mM HEPES, 0.4% Triton ×
100 and 1.5 mM CaCl2, pH 7.2 (solution E), and the col-
umn was washed extensively with solution E. SP-A was
finally eluted with 5 mM HEPES, 0.4% Triton × 100 and
2.5 mM EDTA, pH 7.2 (solution F).

Modification of the native proteins
Native and modified proteins used in our experiments
were at high degree of purification (Figure 1). See addi-
tional file 1for more details.

Identification of the SP-A/ α1-AT complex
1) Gel filtration HPLC
A mixture of SP-A (1.62 mg/ml) and α1-AT (1 mg/ml) in
a 1:50 molar ratio was incubated for 24 hrs at 37°C in
phosphate buffer. The SP-A/α1-AT mixture and single pro-
teins were loaded in a Jasco PU 980 HPLC system (Japan
Spectroscopic, Tokyo, Japan) equipped with two Biosep-
SEC-S 4000 columns (300 × 7.80 mm each, Phenomenex,
Torrence, CA, USA) connected in series. Samples were
eluted with 100 mM Na2HPO4, 2 mM CaCl2, pH 6.8 at a
flow rate of 0.3 ml/ min, and monitored at 220 nm. The
excluded (V0 = 12.43 ml) and total (Vt = 24.82 ml) vol-
umes were determined using dextran and creatinine,
respectively; a calibration curve was obtained by running
through the column a set of standard proteins: α2-mac-
roglobulin (725 kD), aldolase (158 kD), bovine serum
albumin (67 kD), chymotrypsinogen (25 kD), and cyto-
chrome C (12.5 kD). The results were reported as mean ±
SD of three separate experiments. 2

2) Qualitative immunodetection by ELISA
250 ng of standard α1-AT, purified SP-A, and SP-A/α1-AT
complex collected from the Size Exclusion Chromatogra-
phy experiments, were immobilized in 50 mM Na2CO3,
pH 9.5 overnight at 4°C in a polypropylene plate (Corn-
ing, New York, USA). Plates were then brought at room
temperature, washed with 150 mM NaCl, 0.1% Tween 20
(ELISA buffer), blocked for 1 h with 50 mM Na2CO3, 2%
BSA pH 9.5, incubated for 2 hrs in the presence of primary
antibodies diluted 1:500 (goat anti-human α1-AT and
rabbit anti-human SP-A; ICN, Aurora, OH, USA), washed
and finally reacted for 2 hrs with the appropriate bioti-
nylated secondary antibodies diluted 1:5000 (Chemicon,
Temecula, CA, USA). After washing, 100 µL of avidin
diluted 1:2000 were added, and samples were incubated
for 30 min. Color development was achieved by incubat-
ing the samples with 1,2-phenylenediamine dihydrochlo-
ride (Dako, Bucks, UK). The reaction was stopped by
addition of 100 µl of 0.5 M H2SO4 and OD was read at
490 nm with a Bio-Rad 680 Microplate Reader (Bio-Rad
Laboratories, CA, USA).

Kinetics studies
Rate constants were derived by competition experiments
of HNE and αChy. Kinetic parameters were determined as
described [20,21]. The active sites of HNE and αChy were
titrated using a procedure based on the measurement of
pNa released after enzymatic cleavage of MeOSucAlaAl-
aProValNA and SucAlaAlaProPheNA, respectively, at
37°C [22]. Product formation was monitored spectro-

SDS-PAGE under reducing conditionsFigure 1
SDS-PAGE under reducing conditions. A: α1-AT; B: 
SP-A. Lane 1: molecular weights; lane 2: native protein; lane 3: 
deglycosylated protein. The two bands in gel B, lanes 2 and 3 
correspond to dimers (57 and 50 kDa, respectively) and 
monomers (33 and 27 kDa, respectively) of SP-A.

MW std. native deglycosylated

SP-A SP-A

1 2 3

97400

66200

45000

31000

-SP-A dimer (57 kDa)

-SP-A dimer (50 kDa)

-SP-A monomer (33 KDa)

MW std. native deglycosylated

αααα1-AT αααα1-AT
1 2 3

97400

66200

45000

31000

A

B

-SP-A monomer (27 KDa)
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photometrically at a wavelength of 405 nm using a Bio
Rad Microplate Reader model 3550. To titrate the differ-
ent forms of α1-ATs (α1-AT, deglycosylated α1-AT and Z
α1-AT), 7.5 nM HNE was incubated for 15 min at 37°C
with 0–100 nM inhibitor, in the presence of 2 mM MeO-
SucAlaAlaProValNA. All following kinetic experiments
were derived from α1-ATs and SP-A/α1-ATs complexes
(obtained by incubation of α1-ATs, from 0 to 25 nM, with
SP-A 15, 7.5, 1.5, 0.15 mM for 15 min at 37°C). See addi-
tional file 1for more details.

Results
To investigate the interaction between SP-A and α1-AT we
studied whether Kass values, derived from incubating HNE
with α1-AT, were modified by SP-A. Indeed we found a
progressive decrease in the Kass as the SP-A concentrations
increased (Table 1), irrespective of the animal source of
SP-A. To exclude that the observed effect was due to LPS
co-purified with SP-A [23], we repeated the assay using
endotoxin-free SPA, but found no differences with native
SP-A (Table 1). To reinforce this finding, in separate exper-
iments we spiked α1-AT and SP-A/α1-AT mixtures with
increasing amounts of LPS, without measurable effect on
the Kass of α1-AT or SP-A/α1-AT mixture (not shown). As
expected, [24], we found that the Kass of Z α1-AT for HNE
was 3.5 fold lower than that of the normal, M α1-AT.
When Z α1-AT was coupled with increasing SP-A concen-
trations, a further decrease in Kass towards HNE was
observed (Table 2).

To exclude that the results were due to non-specific bind-
ing, we incubated 7.5 nM HNE with 0–100 nM α1-AT for
15 min at 37°C in microtiter plates or in glass tubes and
then measured the residual HNE activity with 2 mM MeO-
SucAlaAlaProValNA, finding no difference between plas-
tics and glass. Furthermore, to exclude binding of SP-A to
plastics we incubated 15 nM SP-A with I125α1-AT (from 0
to 100 nM) at 37°C. The number of Cpm of the samples
with SP-A were the same of wells without proteins. We

concluded that our data were compatible with binding of
α1-AT to SP-A.

Gel filtration HPLC was then used to determine the

molecular weight of the SP-A/α1-AT complex. As shown in

Figure 2A, profile a, a mixture of SP-A and α1-AT (1 mg/

ml), gave two peaks, one corresponding to free 1-AT

(unreacted α1-AT) and one, with a theoretical molecular

weight of 1,642 kD ( 1-AT/SP-A complex), possibly cor-

responding to a complex made by one molecule of SP-A

(670 kD) and 18 molecules of α1-AT (54 kD), suggesting

that, under the experimental conditions applied, each

monomer of SP-A bound one molecule of α1-AT. Further

evidence that the first peak of profile a (Figure 2A) con-

tained the complex SP-A/α1-AT was obtained by using an

immunochemical assay in which a polypropylene plate

was probed with antisera anti α1-AT and anti SP-A. As

shown in Figure 2B, the first peak in profile a of Figure 2A

contained both α1-AT and SP-A.

The effect of SP-A on the Kass of α1-AT for HNE was cal-
cium-dependent, being abrogated by EDTA (Figure 3).
Since the calcium-binding domain of SP-A lays at the
COOH terminus, next to the CRD [25], we supposed that
this part of SP-A could be involved in the binding of SP-A
to α1-AT, via the α1-AT carbohydrate chains. Consistent
with these findings, the addition of 1 M mannopyrano-
side to the SP-A/α1-AT mixture almost totally reversed the
reduction in the Kass (Figure 3), most likely by interfering
with the binding of CRD to α1-AT carbohydrate chains
[26,27]. The fact that the lipid recognition domain of SP-
A is located in the neck region of the molecule, far from
the CRD [23], could explain the lack of influence of LPS
on the binding of SP-A to α1-AT (Table 1).

α.

α.

Table 1: Association rate constant (Kass M-1sec-1) for inhibition of HNE by α1-AT with SP-A. SP-A employed was both from humans 
affected by PAP or from rabbit, polymyxin treated and polymyxin-mannose treated. Data are means ± SD of three different 
experiments.

Reaction conditions Kass, (M-1sec-1) means ± SD

Human SP-A Rabbit SP-A

α1-AT nM SP-A nM Native Polymyxin-treated Polymyxin/Mannose-
treated

Native

7.5 0 3.40 ± 0.0079 × 107 3.40 ± 0.0079 × 107 3.40 ± 0.0079 × 107 3.40 ± 0.0079 × 107

7.5 0.15 1.84 ± 0.0577 × 107 1.84 ± 0.0580 × 107 1.86 ± 0.0565 × 107 1.82 ± 0.0585 × 107

7.5 1.5 1.70 ± 0.0623 × 107 1.70 ± 0.0631 × 107 1.72 ± 0.0618 × 107 1.68 ± 0.0620 × 107

7.5 7.5 5.20 ± 0.0483 × 106 5.22 ± 0.0480 × 106 5.00 ± 0.0478 × 106 5.40 ± 0.0490 × 106

7.5 15 4.30 ± 0.0513 × 106 4.30 ± 0.0520 × 106 4.30 ± 0.0520 × 106 4.40 ± 0.0498 × 106
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To better clarify the role of the CRD in the binding of SP-
A to α1-AT, we modified both proteins by enzymatic
digestion, deglycosylation or boiling and then used them
to calculate the Kass of α1-AT for HNE and to deduce the
molar parts of α1-AT bound to SP-A from the number of
turnovers per inactivation of α1-AT not bound to SP-A.
Thus we found that the CRD of SP-A appears to contain all
the putative SP-A binding sites for α1-AT since, when incu-
bated with α1-AT, it retained the same Kass, as that of
native SP-A (Figure 4).

Turnover per inactivation (also referred to as stoichiome-
try of inhibition (SI) or partition ratio + 1) defines the
number of moles of irreversible inhibitor required to
completely inhibit 1 mole of target proteinase. The turno-
ver number resulting from the interaction between
unmodified SP-A and α1-AT was 24, i.e. one part of SP-A
binds 23 molar parts of α1-AT and 24 SP-A plus α1-AT
binds inhibit 1 part of enzyme (Figure 5). The same bind-
ing pattern emerged when Z α1-AT was used instead of α1-
AT, suggesting that the difference in the Kass between the
two variants of α1-AT is independent of the number of
molar parts of inhibitor bound to SP-A.

Deglycosylated α1-AT retains its ability to inhibit HNE
(Kass 3.38 × 107 M-1sec-1). We did, however, find that the
inhibitory activity of α1-AT is greatly decreased in the pres-
ence of SP-A (Kass 1.1 × 107 M-1sec-1, Figure 4), indicating
that binding of SP-A to the carbohydrate moiety of α1-AT
is not the only mechanism involved. The turnover
number of the SP-A/deglycosylated α1-AT is 12, half that
displayed by native α1-AT (Figure 4, 5). To explore other
mechanisms of binding between SP-A and α1-AT, we incu-
bated boiled SP-A and α1-AT. We found that boiled SP-A/
native α1-AT displayed the same Kass and the same turno-
ver number as native SP-A/deglycosylated α1-AT (Figures
4, 5). We postulated that SP-A carbohydrate chains could
bind α1-AT, possibly through the amino acid backbone.
In fact, carbohydrate chains isolated from SP-A mixed

with deglycosylated α1-AT resulted in the same Kass and
turnover number as those of native SP-A/deglycosylated
α1-AT (Figures 4, 5). Besides these mechanisms of binding
of SP-A to α1-AT, a third mechanism, i.e. a carbohydrate/
carbohydrate interaction, probably exists since boiled SP-
A and native α1-AT displayed a Kass of 1.9 × 107 M-1sec-1

and ~6 turnovers (Figure 4, 5).

Finally, we studied the binding of deglycosylated SP-A to
α1-AT. The Kass of native α1-AT mixed with deglycosylated
SP-A was 1.2 × 107 M-1sec-1 and the turnover number 18
(Figure 4, 5). Absence of SP-A/α1-AT binding, i.e. Kass 3.4
× 107 M-1sec-1, and a turnover number of 1, was achieved
by two combinations: 1) SP-A deglycosylated and boiled
with native α1-AT, and 2) both proteins deglycosylated
(Figures 4, 5). In the former case, absence of SP-A carbo-
hydrates and denaturation of CRDs hindered any possible
binding of SP-A to native α1-AT. In the latter case, the
binding was precluded by the absence of carbohydrates
on both proteins, in spite of the presence of intact CRDs
in the SP-A.

Discussion
The present data provide evidence for an in vitro interac-
tion between SP-A and α1-AT. These glycoproteins belong
to two systems of the lung that are supposed to act inde-
pendently: the surfactant system and the proteinase/pro-
teinase inhibitor system. Nevertheless, evidence for
possible links between the two systems does exist. As an
example, it has been shown that SP-A may be digested by
elastolytic enzymes [28,29], and that inhalation of α1-AT
in patients with cystic fibrosis may result in an increase of
SP-A levels in bronchoalveolar lavage fluid (BALf) [30]. In
addition, SP-D induces the production of matrix metallo-
proteinases by human alveolar macrophages [31],
whereas the cysteine proteinase cathepsin H is involved in
the first N-terminal processing step of SP-C [32]. The two
systems may therefore interact in the lungs, both in phys-
iologic and in pathologic pathways. The concentration of

Table 2: Association rate constant for inhibition of HNE by α1-AT and Z α1-AT with SP-A. Data are means ± SD of experiments 
performed in triplicate with 3 different batches of human SP-A and1batch of rabbit SP-A.

α1-AT/SPA 
ratio

α1-AT Z α1-AT

Reaction condition Kass, (M-1sec-1) decrease in 
Kass, n-fold

Reaction condition Kass, (M-1sec-1) decrease in Kass, n-fold

α1-AT nM SP-A nM Z α1-AT nM SP-A nM

7.5 0 3.40 ± 0.0079 × 107 0 7.5 0 9.80 ± 0.0032 × 106 0
50 7.5 0.15 1.84 ± 0.0577 × 107 1.8 7.5 0.15 5.20 ± 0.0314 × 106 1.9
5 7.5 1.5 1.70 ± 0.0623 × 107 2 7.5 1.5 4.70 ± 0.0268 × 106 2.1
1 7.5 7.5 5.20 ± 0.0483 × 106 6.5 7.5 7.5 4.30 ± 0.0240 × 106 2.3

0.5 7.5 15 4.30 ± 0.0513 × 106 7.9 7.5 15 3.80 ± 0.0221 × 106 2.6
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Isolation and immunodetection of the α1-AT /SP-A complexFigure 2
Isolation and immunodetection of the α1-AT /SP-A complex. A: Isolation of the complex by gel filtration chromatog-
raphy on two Biosep SEC – S 4000 columns connected in series using HPLC. Gel filtration profiles: commercial α1-AT (in pro-
file c; 19.32 ± 0.1 mL); purified SP-A (in profile b; 16.49 ± 0.07 mL); α1-AT /SP-A complex (in profile a; 15.31 ± 0.04 mL) and 
unreacted α1-AT (in profile a; 19.35 ± 0.09 mL). Inset: calibration curve obtained using the following standards: A = α2-mac-
roglobulin (725 kDa), B = aldolase (158 kDa), C = bovine serum albumin (67 kDa), D = chymotrypsinogen (25 kDa), E = 
cytocrome C (12.5 kDa). B: Immunodetection of the complex. α1-AT was added to wells a1 and a2, peak 1 (α1-AT /SP-A com-
plex) of Figure 2A was added to wells b1 and b2, and SP-A to wells c1 and c2. Antiserum anti-α1-AT was added to wells a1, b1 
and c1, antiserum anti-SP-A was added to wells a2, b2 and c2. Peak 1 (α1-AT /SP-A complex) is recognized by both antisera.

αααα1-AT -

- SP-A

Peak 1 of Figure 2 A

(αααα1-AT/SP-A complex)

- SP-A

αααα1-AT -

A

B
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SP-A in the BALf of normal subjects is estimated to be
~277 nM [33]. Since approximately 1% of total SP-A is
present in the free form [8,9], its concentration in BALf
would be ~2.8 nM. Given that the concentration of α1-AT
is ~5 µM [34], we reasoned that the two glycoproteins
have a good chance of coming into contact during their
life cycle.

Indeed our in vitro experiments indicate that the interac-
tion between SP-A and α1-AT results in binding between
them. This binding, which is calcium-dependent, appears
to be complex since it could involve binding between the
CRD of SP-A and carbohydrates on α1-AT, binding
between SP-A carbohydrates and the protein backbone of
α1-AT, and binding between the carbohydrate chains of
both proteins.

Turnover per inactivation suggests that one part of SP-A
binds 23 molar parts of α1-AT. Nevertheless, SP-A binds
11 molar parts of deglycosylated, fully active α1-AT (Fig-
ure 4, 5), thus suggesting a possible binding of SP-A car-
bohydrate chains to the amino acid backbone of α1-AT.
Asn, to which carbohydrates of the native glycoprotein are

linked [35], is a likely candidate. This hypothesis was con-
firmed by the results obtained with boiled SP-A and with
isolated SP-A carbohydrate chains (Figure 4, 5). In sup-
port of this hypothesis, it has been reported that the bind-
ing of SP-A to influenza virus [36], herpes virus type 1
infected cells [37], and M. tuberculosis [38], involves N-
linked carbohydrate chains on SP-A. Interestingly, there
may be multiple binding sites on individual micro-organ-
isms [12].

Our experiments also suggest a possible carbohydrate/car-
bohydrate interaction between SP-A and α1-AT. Such a
type of linkage has been shown to operate in the calcium-
mediated homotypic interaction between two Lewis (Lex)
determinants (Galβ1→4[Fucα1→3]GlcNAc) involved in
cell adhesion during murine embryogenesis [39]. Interest-
ingly Lex-Lex interactions appear to be calcium-dependent
[40], by involving van der Waal forces. The fact that ultra-
weak interactions are involved explains why this aspect is
often underestimated [39-41].

It is difficult to postulate whether the three proposed
mechanisms of binding take place simultaneously
between native proteins. It may be that the CRD plays the
main role and that the other two mechanisms are less
important or take place only as artificial mechanisms once
the proteins have been manipulated.

The binding with SP-A results in a decrease in the inhibi-
tion of HNE by α1-AT. There are several known mecha-
nisms that could explain the inactivation of α1-AT. Beside
the physiologic irreversible suicide substrate mechanism
by which α1-AT inhibits HNE [42], α1-AT may also be
inactivated by oxidation of methionine residue(s) located
at or near the active site [22,23]. Another mechanism of
α1-AT inactivation is proteolytic degradation at or near the
active site by a number of host and non-host, mostly
microbial, proteinases [42]. Whether these mechanisms
may act in vivo, thereby contributing to the imbalance
between proteinases and inhibitors in the pathogenesis
and progression of pulmonary emphysema, is still a
debated issue.

With respect to the inhibitory activity of α1-AT, that of Z
α1-AT is further impaired by this latter's enhanced ten-
dency to undergo spontaneous polymerization [2]. This
phenomenon, also known as loop-sheet polymerization,
likely accounts for why Z α1-AT is less efficient at inhibit-
ing HNE, and has been demonstrated to be present in vivo,
since Z α1-AT polymers have been detected in the BALf of
Z α1-AT subjects with emphysema [45]. We found that SP-
A binds Z α1-AT and that the binding further reduces the
Kass, which is already impaired with respect to that of α1-
AT. Were this binding to happen in vivo, it would further
decrease the antiproteinase activity of Z α1-AT.

Effects of calcium removal and sugar addition on Kass M-1sec-1Figure 3
Effects of calcium removal and sugar addition on Kass 
M-1sec-1. Inhibition of HNE by α1-AT (7.5 nM), alone or cou-
pled with 7.5 nM SP-A: (1) α1-AT alone, (2) α1-AT plus SP-A, 
(3) α1-AT plus SP-A with 5 mM EDTA and (4) α1-AT plus SP-
A with 1 M MNOCH3. (Data are means ± SD of experiments 
performed in triplicate).
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The mechanism by which SP-A binding interferes with the
α1-AT inhibitory mechanism is open to speculation. α1-
AT inactivation taking place in vitro upon interaction
between the two glycoproteins seems to occur because of
the functional slowdown of α1-AT in the presence of SP-A,
the turnover number shifting from 1 to 24. After an initial,
non-covalent, Michaelis-like complex, the reaction
between α1-AT and HNE progresses, through an acyl-
enzyme intermediate resulting from peptide bond hydrol-
ysis, to either a loop-inserted covalent complex (inhibitory
pathway) or a cleaved serpin and free proteinase (non-
inhibitory or substrate pathway) [42]. The number of turno-
vers for native α1-AT is 1 (Figure 5), indicating that the
reaction inhibitor-HNE progresses towards the inhibitory
pathway on the other side (Figure 6A). The number of
turnovers after the incubation of native α1-AT or Z α1-AT
with native SP-A is 24 (Figure 5), thus indicating that for
α1-AT bound to SP-A the inhibitory pathway is precluded,
and that the reaction inhibitor – HNE progresses mostly
through the substrate pathway (Figure 6B).

In spite of the detailed dissection of the binding mecha-
nism of SP-A to α1-AT in vitro, an obvious limitation of the

Turnover numbers per inactivationFigure 5
Turnover numbers per inactivation. Turnover numbers 
were determined plotting residual enzyme activity/initial 
enzyme activity versus initial inhibitor concentration/initial 
enzyme activity. A: (1) native α1-AT, (2) deglycosylated α1-
AT, (3) Z α1-AT, (4) native α1-AT coupled with deglyco-
sylated and boiled SP-A, (5) deglycosylated α1-AT coupled 
with deglycosylated SP-A, (6) deglycosylated α1-AT coupled 
with deglycosylated and boiled SP-A, (7) native α1-AT cou-
pled with boiled SP-A and (8)native α1-AT coupled with SP-A 
sugar chains. B: (9) native α1-AT coupled with native SP-A 
and (10) Z α1-AT coupled with native SP-A, (11) deglyco-
sylated α1-AT coupled with native SP-A, (12) deglycosylated 
α1-AT coupled with boiled SP-A, (13) deglycosylated α1-AT 
coupled with SP-A sugar chains and (14) native α1-AT cou-
pled with deglycosylated SP-A.
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Hypothetical mechanism of SP-A interference with α1-AT (simplification)Figure 6
Hypothetical mechanism of SP-A interference with α1-AT (simplification). A: interaction of α1-AT (I) with HNE (E). 
After an initial non-covalent Michaelis-like complex (EI), the interaction progresses through a tetrahedral intermediate (EI ♠), 
forming a covalent acyl-enzyme intermediate (EI ♥). The substrate pathway results in free HNE and cleaved α1-AT (I*); the 
inhibitory pathway results in a, about 100%, kinetically trapped loop-inserted covalent complex (E-I*). B: the SP-A (here shown 
as a trimer) interacts with α1-AT. In the presence of HNE, the formation of a covalent complex E-I* almost precluded (about 
4%), and the reaction progresses through the substrate pathway towards free E and I* (cleaved α1-AT) – SP-A (96%). SI = sto-
ichiometry of inhibition
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present paper is the lack of specific studies investigating a
possible interaction between SP-A and α1-AT in vivo. Nev-
ertheless, some indirect evidence suggesting that such an
interaction might take place is available, although it is not
possible to address a plausible expectation of physiologic
or pathophysiologic relevance of these findings. For
example, a recent report has shown that in human spu-
tum supramolecular complexes with heparan sulfate/Syn-
decan-1 and proteinase and inhibitors are present [46].
These complexes contain the proteinase inhibitors SLPI
and α1-AT, NE as well, whose proteolytic activity is how-
ever not decreased . The large MW of SP-A makes difficult
to highlight the occurrence of such supramolecular com-
plexes including α1-AT by standard techniques [47]. Nev-
ertheless, a report focusing on two-dimensional
electrophoretic characteristics of BALf proteins in subjects
affected by interstitial lung diseases [48] has intriguingly
shown that some α1-AT fragments were superimposed on
spots of SP-A, in its upper, acidic position. These findings,
confirmed by mass spectrometric MALDI-TOF analysis,
would suggest a possible SP-A/α1-AT interaction taking
place in vivo.

Conclusion
We have shown that SP-A binds α1-AT, and that this bind-
ing results in a significant decrease in the association rate
constant of α1-AT for HNE. The mechanism of the binding
seems to be predominantly mediated by the SP-A CRDs,
as indicated by the calcium dependence and by the turno-
vers for inactivation, but other mechanisms may be
involved, such as an interaction between SP-A carbohy-
drates and the α1-AT amino acid backbone or between
carbohydrate chains of both glycoproteins. The presence
of these complex binding mechanisms would exclude the
hypothesis that the α1-AT inhibition occurred simply due
to steric inhibition of the large SP-A molecule, but it
would rather suggest a programmed, coordinated mecha-
nism.

The in vitro interaction described here, if present in vivo,
would be a novel mechanism of impairment of α1-AT
inhibitory activity. It might represent a physiologic mech-
anism of regulating α1-AT activity, especially in acute con-
ditions (for example during defense against infections
agents) [49], in which an excess of α1-AT would interfere
with the physiologic role of proteinases. α1-AT is indeed a
highly specialised proteinase inhibitor [50], but the pres-
ence in nature of several, robust mechanisms of α1-AT
downregulation (i.e. inherited deficiency, susceptibility to
oxidative stress and proteolysis, polymerization) would
imply the occurrence of intrinsic risks related to the over-
expression of a nearly perfect and immortal inhibitor.
Therefore, the formation of supramolecular complexes
SP-A/α1-AT might be a sort of reserve mechanism, taking
place in case of need.

On the other hand, the interaction with SP-A would be of
particular relevance in the pathogenesis of pulmonary
emphysema associated with α1-AT deficiency, since it
would contribute significantly to the complex mecha-
nisms of imbalance between Z α1-AT and HNE in the
lungs. Obviously, all these speculations need further
investigations, first of all to understand whether or not SP-
A/α1-AT binding is a relevant down-regulatory mecha-
nism of α1-AT inhibitory activity in vivo.
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