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Abstract

Lung morphogenesis is stereotypic, both for lobation and for the first several generations of
airways, implying mechanistic control by a well conserved, genetically hardwired developmental
program. This program is not only directed by transcriptional factors and peptide growth factor
signaling, but also co-opts and is modulated by physical forces. Peptide growth factors signal within
repeating epithelial-mesenchymal temporospatial patterns that constitute morphogenetic centers,
automatically directing millions of repetitive events during both stereotypic branching and
nonstereotypic branching as well as alveolar surface expansion phases of lung development.
Transduction of peptide growth factor signaling within these centers is finely regulated at multiple
levels. These may include ligand expression, proteolytic activation of latent ligand, ligand
bioavailability, ligand binding proteins and receptor affinity and presentation, receptor complex
assembly and kinase activation, phosphorylation and activation of adapter and messenger protein
complexes as well as downstream events and cross-talk both inside and outside the nucleus. Herein
we review the critical Sonic Hedgehog, Fibroblast Growth Factor, Bone Morphogenetic Protein,
Vascular Endothelial Growth Factor and Transforming Growth Factorf3 signaling pathways and
propose how they may be functionally coordinated within compound, highly regulated
morphogenetic gradients that drive first stereotypic and then non-stereotypic, automatically
repetitive, symmetrical as well as asymmetrical branching events in the lung.

Introduction

Lung morphogenesis is stereotypic, both for lobation of
the lungs and for the first 16 of 23 generations in humans.
The latter phase of lower airway branching and on into
the alveolar surface folding and expansion phase is nons-
tereotypic, but nevertheless follows a recognizable, proxi-

mal-distal fractal pattern that is repeated automatically at
least 50 million times. This morphogenetic program
drives the formation of an alveolar gas diffusion surface
0.1 micron thick by 70 square meters in surface area that
is perfectly matched to the alveolar capillary and lym-
phatic vasculature [1].
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Murine genetics and organ culture experiments, as well as
comparative studies in the fly, have revealed that the ster-
eotypic branch pattern of the respiratory organs is deter-
mined by a well-conserved, genetically hard-wired
program directed by transcriptional factors, that interact
in a coordinated manner with peptide growth factor sign-
aling pathways as well as hypoxia and physical forces [1-
4]. Transduction of candidate growth factor peptide lig-
and signals can be regulated at many levels. These may
include ligand expression, proteolytic activation of latent
forms of ligand, ligand binding to matrix bound and/or
soluble inhibitors, as well as ligand binding to receptor
presentation molecules outside the cell. On the cell sur-
face and within the cell, receptor assembly, kinase activa-
tion, and phosphorylation and activation of adapter and
messenger protein complexes activate downstream signal-
ing pathways both within and without the nucleus,
including the induction of pathway specific inhibitors.
Thus, peptide growth factor signaling is finely coordinated
to regulate such essential morphogenetic functions as
gene expression, cell cycle progression and cell migration,
cytodifferentiation and matrix deposition in the lung.

The purpose of this selective review is to place key exam-
ples of the regulatory mechanisms that mediate growth
factor signaling into the general context of lung morpho-
genesis. We will discuss selected examples of these finely
balanced regulatory mechanisms and propose how they
may be functionally coordinated within compound,
highly regulated morphogen gradients to drive first stere-
otypic and then non-stereotypic, automatically repetitive,
symmetrical as well as asymmetrical branching events in
the lung.

Candidate growth factors in lung development

Those growth factors that have been studied most inten-
sively in lung development include Epidermal Growth
Factor (EGF), Fibroblast Growth Factor (FGF), Hepatocyte
Growth Factor (HGF) and Platelet-Derived Growth Factor
(PDGEF). These peptide growth factors signal through cog-
nate transmembrane tyrosine kinase receptors to exert a
positive effect on lung morphogenesis. In contrast, growth
factors such as Transforming Growth Factor (TGF) B fam-
ily peptides, which signal through transmembrane serine-
threonine kinase receptors, exert an inhibitory effect on
lung epithelial cell proliferation and hence negatively reg-
ulate lung morphogenesis. However, recently, TGFj iso-
form-specific null-mutants show that the Ilatter
generalization may not be entirely correct. Moreover,
Bone Morphogenetic Protein (BMP) 4 appears to exert a
complex negative or positive regulatory influence,
depending on whether mesenchymal signaling is intact.
Sonic Hedgehog (SHH) family peptide signaling repre-
sents another special case. The SHH cognate receptor,
patched (PTC), exerts a negative effect on SHH signaling
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both through the release of the transcriptional repressor
Smoothened (SMO) and the induction of the Hedgehog
interacting protein (Hip).

Growth factor signal interactions and
morphogenesis

Peptide growth factors in the embryonic lung are
expressed in repeating patterns in morphogenetic centers
that surround and direct each new branch tip. Mesenchy-
mally expressed morphogenetic genes include Fgfl10,
Sprouty4 (Spry4), patched, smoothened, Wnt and Hox family
members. While Bmp4, Shh, mSpry2 and Smads 2, 3 and 4
are expressed in the adjacent epithelium. The interactions
of subsets of these ligand signals, particularly SHH, BMP4
and FGF10 have been extensively reviewed recently and
several models have been proposed to explain how they
may interact to induce and then regulate epithelial
branching morphogenesis [1-3,5].

In general, these models propose that FGF10, which is
expressed focally in embryonic lung mesenchyme adja-
cent to stereotypically determined branching sites, acts as
a potent chemoattractant to epithelium. Whether this
results in a monochotomous or dichotomous branching
event, likely depends on additional factors as well, such as
the organization of the overlying matrix [6]. However,
since FGFR2IIIb, which is the principal and highest affin-
ity FGF10 receptor, is expressed widely throughout the
epithelium, the question arises as to how the ligand signal
can become stereotypically localized. SHH and BMP4
have been proposed as candidate ligands to play a role in
defining the expression and function of FGF10, while
Sprouty2 (SPRY2) has been proposed as an inducible neg-
ative regulator of FGF signaling (Figure 1).

SHH, which is expressed throughout the epithelium is
postulated to suppress Fgf10 expression and hence pre-
vent branching events at sites where branching is stereo-
typically determined not to take place. This supposition is
based on the finding that Fgf10 expression is not spatially
restricted in the Shh null mutant mouse lung. Moreover,
the local suppression of SHH signaling by the induction
of Ptc and Hip at branch tips may serve to facilitate FGF
signaling locally where branch outgrowth is stereotypi-
cally programmed to take place.

The role of BMP4, which is expressed predominantly in
the epithelium and is increased at branch tips, until
recently was postulated to be the localized suppression of
epithelial proliferation, thus, providing a negative modu-
latory influence on FGF signaling to mediate arrest of
branch extension and hence to set up branch points. This
hypothesis was based upon the hypoplastic phenotype of
the epithelium in transgenic misexpression studies of
Bmp4 in the epithelium, as well as upon addition of BMP4
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Growth factor interactions during lung bud out-
growth and lung bud arrest. In the left hand panel, a bud
is beginning to extend. Fibroblast Growth Factor 10 (FGF10)
expression is shown as a clump of green mesenchymal cells
that chemoattracts the epithelium, shown in brown, towards
the pleura shown in white. Sonic hedgehog (SHH) is
expressed at low levels, which facilitates the chemotactic
activity of FGF10. Bone Morphogenetic Protein 4 (BMP4)
also plays key roles in bud extension. In the right hand panel,
the bud has extended and is undergoing bud arrest. FGFI0
has induced Sprouty2 (SPRY2) expression in the epithelium
to a high level, which inhibits further chemotaxis in response
to FGF10 signaling. BMP4 is also induced at a higher level and
inhibits cell proliferation and hence bud extension. SHH acts
through Patched (PTC), to negatively regulate Fgf/ 0 expres-
sion in the mesenchyme near the bud tip. The net result is
inhibition of cell proliferation and chemoattraction, culminat-
ing in bud arrest.

ligand to naked epithelial explants in culture. However,
two groups have now shown that BMP4 is actually a
potent stimulator of branching in the presence of mesen-
chyme and at physiologic concentrations in lung explants.
Moreover, the effects of BMP4 are in turn negatively mod-
ulated by the BMP binding proteins Gremlin and Noggin.
Therefore it seems unlikely that BMP4 signaling merely
serves to inhibit epithelial proliferation, particularly since
BMP4 specific Smads 1, 5 and 8 are predominantly
expressed in the mesenchyme away from the epithelium.
BMPs have also been reported to control differentiation of
the endoderm along the proximal-distal axis [7]. Inhibi-
tion of BMP signaling at the tip of the lung bud by over-
expression in the distal epithelium of Noggin (a secreted
inhibitor of BMPs) or of a dominant negative form of the
Bmp type I receptor, activin receptor-like kinase 6 (AlkG),
results in a distal epithelium exhibiting differentiation
characteristics, at the molecular and cellular level, of the
proximal epithelium.
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A further puzzle in early lung morphogenesis is the role of
the vasculature and Vascular Endothelial Growth Factor
(VEGF) signaling, since vascularization must perfectly
match epithelial morphogenesis to ensure gas exchange.
Several VEGF isoforms are expressed in the developing
epithelium, whereas their cognate receptors are expressed
in and direct the emergence of developing vascular and
lymphatic capillary networks within the mesenchyme. It
is possible that VEGF signaling may lie downstream of
FGF signaling, since in vivo abrogation of FGF signaling
severely affects both epithelial and endothelial
morphogenesis.

Later on in postnatal lung development, null mutation
studies have revealed essential roles for PDGF-A chain and
for FGFR3 and FGFR4 in induction of alveolar ridges and
the correct orientation of elastic fibers in the postnatal
lung. Following delivery, particularly premature delivery,
exposure to endotoxin, oxygen and/or barotrauma, with
the resulting induction of cytokines including excessive
amounts of TGFB, adversely affect alveolarization and can
frequently induce interstitial fibrosis, a human pathobio-
logical condition termed bronchopulmonary dysplasiaor
infantile chronic lung disease.

Sonic hedgehog, patched and Hip

The role of SHH signaling in lung morphogenesis has
recently been reviewed [8]. Hedgehog signaling is essen-
tial for lung morphogenesis since Shh null mutation pro-
duces profound hypoplasia of the lungs and failure of
tracheo-esophageal septation [9,10]. However, proximo-
distal differentiation of the endoderm is preserved in the
Shh null mutant, at least in so far as expression of sur-
factant protein-C (SP-C) and Clara cell protein 10 (CC10)
are concerned. The expression of the SHH receptor,
Patched, is also decreased in the absence of Shh as are the
Gli1 and Gli3 transcriptional factors. On the other hand
lung-specific misexpression of Shh results in severe alveo-
lar hypoplasia and a significant increase in interstitial tis-
sue [11]. Fgfl0 expression, which is highly spatially
restricted in wild type, is not spatially restricted and is
widespread in the mesenchyme in contact with the epithe-
lium of the Shh null mutant mouse lung. Conversely,
local suppression of SHH signaling by the induction of Ptc
and Hip at branch tips may serve to facilitate FGF signaling
locally, where branch outgrowth is stereotypically pro-
grammed to take place [12]. It is interesting to note that
the cecum, which forms as a single bud from the mouse
midgut and does not branch, also expresses Fgfl10
throughout its mesenchyme (Burns and Bellusci, unpub-
lished results). Thus, temporospatial restriction of Fgf10
expression by SHH appears to be essential to initiate and
maintain branching of lung.
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Potential interactions between Fibroblast Growth
Factor7 (FGF7) and Fibroblast Growth Factor|0
(FGF10) and cognate FGF receptors (FGFRIb and
FGFR2b). FGF10 can activate both FGFRIb and FGFR2b.
On the other hand, FGF7 only activates FGFR2b. Activation
of FGFRIb by FGF10 may be responsible for chemotaxis,
while epithelial cell proliferation and differentiation is medi-
ated by both FGF10 and FGF7 activation of FGFR2b. This is
mediated downstream by activation of specific target genes.

FGF signaling promotes outgrowth of lung
epithelium

The mouse embryonic lung represents a uniquely useful
system to study the genes involved in bud outgrowth and
bud arrest (Figure 1) [11,13-17]. FGF10 promotes
directed growth of the lung epithelium and induces both
proliferation and chemotaxis of isolated endoderm
[14,16]. The chemotaxis response of the lung endoderm
to FGF10 involves the coordinated movement of an entire
epithelial tip, containing hundreds of cells, toward an
FGF10 source. How this population of cells monitors the
FGF gradient and which receptors trigger this effect
remains unknown. FGF10 also controls the differentia-
tion of the epithelium by inducing Surfactant Protein C
(SP-C) expression and by up-regulating the expression of
BMP4, a known regulator of lung epithelial differentia-
tion [13,18,19,16]. In vitro binding assays have shown
that FGF10 acts mostly through FGFR1b and FGFR2b
[20]. While there is good evidence that FGF10 acts
through FGFR2b in vivo, there are as yet no conclusive data
involving FGFR1b (or any other receptor) in vivo. The
biological activities mediated through these two epithelial
receptors are likely to be different as FGF7 (acting mostly
through FGFR2b) exhibits a different activity compared to
FGF10 [14]. This hypothesis is also supported by our
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recent findings showing that Fgf10-/- lungs exhibit a more
severe phenotype than Fgfr2b/- lungs (Figure 2).

FGFR2b is critical for mesenchymal-epithelial
interactions during early lung organogenesis

The mammalian Fgf receptor family comprises four genes
(Fgfr1 to Fgfr4), which encode at least seven proto-type
receptors. Fgfrl, 2 and 3 encode two receptor isoforms
(termed IIIb or IIlc) that are generated by alternative splic-
ing, and each binds a specific repertoire of FGF ligands
[20]. FGFR2-1IIb (FGFR2b) is found mainly in epithelia
and binds four known ligands (FGF1, FGF3, FGF7 and
FGF10), which are primarily expressed in mesenchymal
cells. Peters et al. reported the first evidence of a key role
for Fgfr2 during lung development [21]. They showed that
mis-expression of a dominant negative form of Fgfr2 in
the embryonic lung under the SP-C promoter led to a
severe reduction in branching morphogenesis. Further
evidence came from Fgfr2 inactivation in the embryo.
While mice null for the Fgfr2 gene die early during embry-
ogenesis, those that are null for the Fgfr2b isoform, but
retain Fgfr2¢, survive to birth [22-25]. Mice deficient for
Fgfr2b show agenesis and dysgenesis of multiple organs,
including the lungs, indicating that signaling through this
receptor is critical for mesenchymal-epithelial interactions
during early organogenesis. This idea is supported by the
recent finding that prenatally induced misexpression of a
dominant negative FGFR, to abrogate FGF signaling,
results in a hypoplastic, emphysematous lung phenotype
[26]. In contrast, induced abrogation of FGF signaling
postnatally did not produce any recognizable phenotype.

FGF10 is a major ligand for FGFR2b during lung
organogenesis

The FGF family is comprised of at least 23 members, many
of which have been implicated in multiple aspects of ver-
tebrate development (for review see [27]). In particular,
FGF10 has been associated with instructive mesenchymal-
epithelial interactions, such as those that occur during
branching morphogenesis. In the developing lung, Fgf10
is expressed in the distal mesenchyme at sites where pro-
spective epithelial buds will appear. Moreover, its
dynamic pattern of expression and its ability to induce
epithelial expansion and budding in organ cultures have
led to the hypothesis that FGF10 governs the directional
outgrowth of lung buds during branching morphogenesis
[14]. Furthermore, FGF10 was shown to induce chemo-
taxis of the distal lung epithelium [16,28]. Consistent
with these observations, mice deficient for Fgf10 show
multiple organ defects including lung agenesis [29-31].
FGF10 is the main ligand for FGFR2b during the embry-
onic phase of development as evidenced by the remarka-
ble similarity of phenotypes exhibited by embryos where
these genes have been inactivated [17,24,31].
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FGF 10 activity was initially described as control-
ling proliferation and chemotaxis of the lung
epithelium

The paradigm proposed so far is that FGF10 expressed by
the mesenchyme acts on the epithelium (which expresses
FGFR1b and 2b). However, a recent report by Sakaue et al.
suggests that FGF10 expressed in the fat pad precursor of
the developing mammary gland from embryonic day 15.5
(E15.5) onwards could act in an autocrine fashion to
induce the differentiation of adipocytes from the fat pad
precursor, but the specific receptors involved are
unknown [17,32]. In Drosophila melanogaster, Branchless
(bnl), the Drosophila counterpart of FGF10, has been
involved in the directional growth of the ectoderm-
derived cells from the tracheal placode [33]. Bnl expressed
by the cells surrounding the placode acts on the ectoderm
expressing the Fgfr2b ortholog, breathless (btl). An addi-
tional unsuspected function of bnl in the development of
the male genital imaginal disc has been recently reported
[34]. Here, FGF signal expressed by ectoderm-derived cells
of the male genital disc induces the FGFR-expressing mes-
odermal cells to migrate into the male disc. These meso-
dermal cells also undergo a mesenchymal to epithelial
transition. The authors suggest that bnl, the FGF10
ortholog, is likely to be involved in this process. Thus,
FGF10 is a multifunctional growth factor and additional
roles for FGF10 in lung development likely remain to be
identified.

Sprouty family members function as inducible
negative regulators of FGF signaling in lung
development

The role of inhibitory regulators in the formation of FGFR
activated signaling complexes during respiratory organo-
genesis remains incompletely characterized. The first
example of an FGF inducible signaling antagonist arose
from the discovery of the sprouty mutant during Drosophila
trachea development, in which supernumerary tracheal
sprouts arise. In the Drosophila tracheae, bnl binds to btl,
inducing primary, secondary and terminal branching. The
function of bnl is inhibited by Sprouty (Spry), a down-
stream effector in the bnl pathway [35]. Spry feeds back
negatively on bnl, thereby limiting the number of sites at
which new secondary tracheal buds form. Spry is not only
found downstream in the FGFR pathway, but also appears
to be an inhibitor of other tyrosine kinase signaling path-
ways such as EGF and Torso [36].

Mice and humans possess several Spry genes (mSpryl-4
and hSPRY1-4). mSpry2 is the gene that is most closely
related to Drosophila Spry and is 97% homologous to
hSpry2. mSpry2 is localized to the distal tips of the embry-
onic lung epithelial branches and is down regulated at
sites of new bud formation [17]. On the other hand,
mSpry4 is predominantly expressed throughout the distal
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mesenchyme of the embryonic lung. Abrogation of
mSpry2 expression stimulates murine lung branching
morphogenesis and increased expression of specific lung
epithelial maturation/differentiation markers [18]. Con-
versely, over-expression of mSpry2 under the control of a
SP-C promoter or by intratracheal microinjection of an
adenovirus containing the mSpry2 cDNA, results in
smaller lungs with a particular "moth-eaten" dysplastic
appearance along the edges of the lobes, with decreased
epithelial cell proliferation [17]. Thus, not only is the
function of Spry conserved during respiratory organogen-
esis, but also as seen by loss of function and gain of func-
tion studies, Spry plays a vital role in regulating lung
branching morphogenesis.

In Drosophila, in vitro co-precipitation studies show that
Spry binds to Gap1l and Drk (a Grb2 orthologue), result-
ing in inhibition of the Ras-MAPK pathway [36]. Upon
further investigation of the mechanism by which mSPRY2
negatively regulates FGF10 in mouse lung epithelial cells
(MLE15) we recently determined that mSPRY2 differen-
tially binds to FGF downstream effector complexes ([37];
Figure 3).

Proposed model

Raf

FRS2 | Grb2
activation Shp2

+

MAPK/Erk1/2

Shp2 19 GAP -
. & ' Raf

FRS2 SPry2

R

Figure 3

Sprouty is a rapidly inducible negative regulator of
fibroblast growth factor (FGF) pathway signaling. The
figure shows a model describing the interaction of murine
Sprouty2 (mSPRY?2) with other key signaling proteins in the
FGF signaling pathway. In the upper panel, the FGF pathway
is shown signaling the activation of MAP kinase/ERK2 via the
FGFR, FRS2, Shp2, Grb2, Sos, Ras and Raf pathway. In the
lower panel Sprouty2 (SPRY2) is shown binding FRS2 and
Grb2 and displacing Shp2 from FRS2 and Grb2, thereby pre-
venting subsequent activation of the Sos, Ras-GAP, Raf path-
way, resulting in net inhibition of MAP kinase/ERK2
activation.
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FGFRs are different from other tyrosine kinase receptors in
that they require adapter or docking proteins including
phospholipase Cy, Shc, FRS2 and various others to recruit
the Grb2/Sos complex upon stimulation. Stimulation of
FGFR not only results in formation of the FRS2/Grb2/Sos
complex, but the binding of a positive tyrosine phos-
phatase regulator, Shp2, to FRS2, which is required for full
potentiation of MAP-kinase activation [38]. Complex for-
mation leads to catalyzation of GDP to GTP on Ras, which
is required for Raf (serine/threonine kinase) activation.
Raf causes direct activation of ERK, leading to phosphor-
ylation of cytoplasmic proteins followed by cell growth
and differentiation [39]. We found that in the native state
mSPRY2 associates with Shp2 and Gap, which is a
GTPase-activating protein that hydrolyzes GTP to GDP. It
is possible that in this state the binding of Shp2 to
mSPRY2 regulates mSPRY2 activity. Upon FGFR activa-
tion, mSPRY2 disassociates from Shp2 and Gap and trans-
locates to the plasma membrane, where it binds to both
FRS2 and Grb2, thus blocking the formation of the FRS2/
Grb2/Sos complex, resulting in a net reduction of MAP-
kinase activation (Figure 3). Thus, Sprouty would inhibit
the formation of specific signaling complexes down-
stream from tyrosine-kinase receptors resulting in modu-
lation and co-ordination of cell growth and development
during organogenesis.

It is interesting to note, that overexpression of Spry in
chick limb buds results in a reduction in limb bud out-
growth that is consistent with a decrease in FGF signaling
[40]. This suggests a possible co-regulatory relationship
between FGF signaling and Spry during development. In
further support of this model, Spry4 inhibits branching of
endothelial cells as well as sprouting of small vessels in
cultured mouse embryos. Endothelial cell proliferation
and differentiation in response to FGF and VEGF are also
inhibited by mSpry4, which acts by repressing ERK activa-
tion. Thus, Spry4 may negatively regulate angiogenesis
[41].

It has been suggested that both Spry2 and Spry4 share a
common inhibitory mechanism. Both Sprouty translocate
to membrane ruffles upon EGF stimulation. However,
only SPRY2 was shown to associate with microtubules
[42]. The C-terminus of hSPRY2 has been shown to be
important for modulation of cellular migration, prolifera-
tion and membrane co-localization [42,43]. Interestingly,
the C-terminus is the region that is most conserved
throughout the Spry family, and contains potential regu-
latory sites that would modulate Spry activity. Spry has
also been shown to interact with c-Cbl resulting in
increased EGFR internalization [44]. Although Spry is not
a specific inhibitor to the FGFR signaling pathway nor to
respiratory organogenesis, it appears that Spry plays a vital
role in modulating several signaling pathways in order to
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limit the effects of excessive growth factor receptor tyro-
sine kinase signaling.

BMPs in lung development

Several BMPs, including BMP3, 4, 5 and 7, are expressed
during embryonic lung development [13,45,46]. The
expression of Bmp5 and Bmp7 has been detected in the
mesenchyme and the endoderm of the developing embry-
onic lung respectively, while Bmp4 expression is restricted
to the distal epithelial cells and the adjacent mesenchyme
[13,46]. Most of the BMP signaling pathway components,
such as BMP receptors (type II and type I: ALK2, 3, and 6)
and BMP specific receptor-regulated Smads (R-Smads),
including Smadl, 5, and 8, are expressed in early mouse
embryonic lung [47,48]. Overexpression of Bmp4, driven
by the SP-C promoter in the distal endoderm of transgenic
mice, causes abnormal lung morphogenesis, with cystic
terminal sacs and inhibition of epithelial proliferation
[13]. In contrast, SP-C promoter-driven overexpression of
either the BMP antagonist Xnoggin or a dominant negative
Alk6 BMP receptor to block BMP signaling, results in
severely reduced distal epithelial cell phenotypes and
increased proximal cell phenotypes in the lungs of trans-
genic mice [7]. However, the exact roles of BMP4 in early
mouse lung development remain controversial. In iso-
lated E11.5 mouse lung endoderm cultured in Matrigel™
(Collaborative Biomedical products, Bedford, MA, USA),
addition of exogenous BMP4 inhibited epithelial growth
induced by the morphogen FGF10 [16]. However, addi-
tion of BMP4 to intact embryonic lung explant culture
stimulates lung branching morphogenesis [49,50].
Recently, parallels have been drawn between genetic hard
wiring of tracheal morphogenesis in Drosophila mela-
nogaster and mammals [1]. Dpp, the Drosophila BMP4
orthologue, has been reported to be essential for the for-
mation of the dorsal and ventral branches of the tracheal
system, controlling tracheal branching and outgrowth
possibly through induction of the zinc finger proteins Kni
and Knrl [51,52]. Since conventional murine knockouts
for BMP4 and BMP-specific Smads cause early embryonic
lethality, their functions in lung development in vivo still
need to be further defined. Interestingly, germ line muta-
tions in BMP type II receptors were recently found in
familial primary pulmonary hypertension [53]. Therefore,
BMPs may play multiple roles in lung development.

Activin Receptor-like kinases (ALKs) and lung
development

All TGFB superfamily members (TGFPs, activins and
BMPs) produce their cellular responses through forma-
tion of heteromeric complexes of specific type I and type
I1 receptors (reviewed in [54,55]). The type Il receptors are
constitutively active kinases, which, upon ligand-medi-
ated complex formation, phosphorylate particular serine
and threonine residues in the type 1 receptor
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juxtamembrane region. This leads to activation of the type
I receptor, which is thereby capable of transducing signals
downstream. It has been shown that type I receptors are
responsible for determining specificity within the hetero-
meric signaling complex.

Seven type I receptors called activin receptor-like kinases
(ALKs) have been discovered in mammals. ALK4 and
ALK5 are receptors for activin and TGFf, respectively,
whereas ALK2, ALK3 and ALKG are receptors for BMPs.
Recently, ALK1 was shown to be an endothelial cell spe-
cific TGFB receptor, while ALK7 has been suggested to
mediate signals of another TGFB-related ligand, nodal.
Interestingly, among all TGFp type I receptors, ALK2
shows the broadest spectrum of specificity. It has been
shown to mediate BMP-signaling, but it also has been
shown to act as a type I receptor for TGFf, activin and
Miillerian inhibitory substance [56-60]. ALKs, their lig-
ands and expression in the midgestational lung have been
summarized in Table 1.

ALKs in pulmonary development

During embryonic days 12-14 (E12-E14), Alk5 and Alk4
are expressed predominantly in the lung mesenchyme
and the epithelium, respectively [61]. Alk2 and Alk6 are
expressed in the lung epithelium. However, Alk6 expres-
sion is limited to the lung epithelium ([48] Kaartinen,
unpublished results). It was recently suggested that the
effect of TGFp 2 on lung branching morphogenesis would
be mediated by the TGFp type Il receptor — ALK5 complex.
Thus, activins and therefore ALK4 would not have a signif-
icant role in this process [61]. The role of ALK6 in pulmo-
nary maturation was recently underscored by Weaver and
coworkers, who showed that the BMP signaling mediated
by these receptors regulates the proximal-distal differenti-
ation of endoderm in mouse lung development [7]. The
role of ALK?2 in epithelial differentiation and branching, if
any, is yet to be determined.

ALKs and the Pulmonary Vasculature

The complex process of vascular development involves
vasculogenesis - de novo formation of blood vessels
through the aggregation of endothelial cells - and
angiogenesis - the growth of new blood vessels from a
pre-existing vascular network [62]. Several lines of evi-
dence demonstrate that TGFB-BMP signaling via ALKs
plays a key role in the regulation of angiogenesis. It was
recently shown that the TGFf type I receptor, ALK5, plays
a crucial role during vascular development by regulating
endothelial cell proliferation, extracellular matrix deposi-
tion and migration [63]. Loss-of-function mutations both
in the human and mouse genes encoding Endoglin, a TGFj
binding protein, and in Alkl, cause hereditary hemor-
rhagic telangiectasia type 1 (HHT1) and type 2 (HHT2),
respectively [64-68]. This disease affects blood vessel
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integrity and causes arteriovenous malformations of the
lung. It has been suggested that ALK1 would function in
establishment of arterial-venous identity, and that the bal-
ance between signals mediated by ALK1 and ALKS5 is
important in determining vascular endothelial properties
during angiogenesis [68,69]. Moreover, recent studies
demonstrated that the TGFJ type II receptor, BMPRII,
which is one, and maybe the principal binding partner of,
ALK2, is mutated in primary pulmonary hypertension
(PPH) [53]. Histo-pathological findings of PPH include
intimal fibrosis, in situ thrombosis and hypertrophy of
smooth muscle cells in walls of pulmonary arteries [70].
Therefore it is evident that TGFp, and particularly BMP sig-
naling, plays a key role in maintaining the normal home-
ostasis of smooth muscle cells in pulmonary arteries. It
will be interesting to see whether Alk signaling plays a role
in the remodeling of the double alveolar capillary net-
work into a single one during erection of alveolar septae.

ALKs, pulmonary fibrosis and inflammation
Several studies have shown that TGFp s are central regula-
tors of pulmonary fibrosis [71,72]. Interestingly, it has
also been shown that TGFps act as strong anti-inflamma-
tory agents in the lung [73,74]. Therefore, it is possible
that TGFfs contribute to the normal lung repair mecha-
nisms after pulmonary insult, such as inflammation, and
that in relatively rare cases this repair process is over-rid-
den, resulting in life threatening pulmonary fibrosis.
Using the experimental mouse model for allergic airway
inflammation, it was recently shown that mRNA levels of
Alk1 and Alk2 were markedly elevated, while, surprisingly,
Alk5 levels were slightly reduced during allergic airway
inflammation [75]. It is expected that the mechanisms
used during lung development are similar to those uti-
lized during pulmonary repair, which underscores the
importance of understanding complex molecular interac-
tions during lung development in vivo.

Physiological TGF[} family peptide expression
and activation is essential for normal lung
development

The TGFB superfamily can be divided into three sub-
families: activin, TGFf, and BMP [76]. There are three
TGF isoforms in mammals: TGFB 1, 2, 3. All of them
have been detected in murine embryonic lungs [77-80].
In early mouse embryonic lungs (E11.5), TGFB 1 is
expressed in the mesenchyme, particularly in the mesen-
chyme underlying distal epithelial branching points,
while TGFp 2 is localized in distal epithelium, and TGF3
is expressed in proximal mesenchyme and mesothelium
[49]. Mice lacking Tgff3 1 develop normally but die within
the first month or two of life of aggressive pulmonary
inflammation. When raised under pulmonary pathogen
free conditions these mice live somewhat longer but die of
other forms of inflammation [81]. Thus, physiological
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concentrations of TGFB 1 appear to suppress the pulmo-
nary inflammation that occurs in response to exogenous
factors such as infection end endotoxin. On the other
hand Tgff 2 null mutants die in utero of severe cardiac
malformations, while Tgf#3 mutants die neonatally of
lung dysplasia and cleft palate [82,83]. Embryonic lung
organ and cell cultures reveal that TGFp 2 plays a key role
in branching morphogenesis, while TGFB3 plays a key
role in regulating alveolar epithelial cell proliferation dur-
ing the injury repair response [84,85]. Thus, finely regu-
lated and correct physiologic concentrations and
temporo-spatial distribution of TGFp 1, 2 and 3 are essen-
tial for normal lung morphogenesis and defense against
lung inflammation. Overexpression of Tgf# 1, driven by
the SP-C promoter, in lung epithelium of transgenic mice
causes hypoplastic phenotypes [86]. Similarly, addition of
exogenous TGFp to early embryonic mouse lungs in cul-
ture resulted in inhibition of lung branching morphogen-
esis although each TGFp isoform has a different ICs,
(TGFB 2 > 1 > 3) [49,87]. In contrast, abrogation of TGFf
type II receptor stimulated embryonic lung branching
through releasing cell cycle G1 arrest [89]. Moreover, over-
expression of constitutively active TGFB 1, but not latent
TGFB 1, in airway epithelium, is sufficient to have signifi-
cant inhibitory effects on lung branching morphogenesis
[85]. However, no inhibitory effect on lung branching was
observed when TGFB 1 was over expressed in the pleura
and subjacent mesenchymal cells. Furthermore, adenovi-
ral overexpression of a TGFp inhibitor, Decorin, in airway
epithelium, completely abrogated exogenous TGFp 1-
induced inhibition of embryonic lung growth in culture
[89]. On the other hand, reduction of decorin expression
by DNA antisense oligonucleotides was able to restore
TGFB 1-mediated lung growth inhibition [89]. Therefore,
TGEFp signaling in distal airway epithelium seems to be
sufficient for its inhibitory function for embryonic lung
growth. Interestingly, TGFB specific signaling elements,
such as Smad2/3/7, are exclusively expressed in distal air-
way epithelium [90-92]. Attenuation of Smad2/3 expres-
sion by a specific antisense oligonucleotide approach
blocked the exogenous TGFf 1-induced inhibitory effects
on lung growth. Moreover, expression of Smad7 in airway
epithelium, which was induced by TGFf, had negative
regulatory functions for the TGFB-Smad pathway in cul-
tured cells, specifically blocking exogenous TGFB-induced
inhibitory effects on lung branching morphogenesis as
well as on Smad2 phosphorylation in cultured lung
explants. Since blockade of TGFp signaling not only stim-
ulates lung morphogenesis in culture per se, but also
potentiates the stimulatory effects of EGF and PDGF-A, it
follows that TGFp signaling functions downstream of, or
can over-ride, tyrosine kinase receptor signaling.
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Developmental specificity of the TGFf3 | overex-
pression phenotype

During embryonic and fetal life, epithelial misexpression
of TGFp 1 results in hypoplastic branching and decreased
epithelial cell proliferation [85]. In contrast, neonatal
misexpression of TGFB 1 using an adenoviral vector
approach phenocopies Bronchopulmonary Dysplasia
(BPD) with alveolar hypoplasia, some interstitial fibrosis
and emphysema (Gauldie and Warburton, unpublished
results). Adult misexpression of TGFp 1, on the other
hand, results in a chronic, progressive interstitial
pulmonary fibrosis, resulting mainly from increased pro-
liferation and matrix secretion by the mesenchyme; a
process that depends on transduction through Smad3
[93,94]. Thus, the phenotype caused by excessive TGFf 1
production and signaling is always adverse, but the pre-
cise effect depends on the developmental stage of the
lung: hypoplasia in embryonic, fetal and neonatal lung,
fibrosis in premature and adult lung.

TGFp family peptide signaling is the best studied

example of regulation in multiple layers

Selected key aspects of the TGFp signaling system are dia-
gramed in Figure 4 and have recently been reviewed (see
[55,95,96]). Latent TGFp ligands require proteolytic acti-
vation prior to signal transduction by proteases such as
plasmin. Expression of B6 integrin and thrombospondin
play key roles in TGFp ligand activation. Bioavailability of
activated TGFp ligand is further regulated by soluble bind-
ing proteins such as Decorin, as well as by binding to
matrix proteins such as Fibrillin. Cognate receptor affinity
for ligand binding may also be modulated by such factors
as betaglycan, Endoglin or Decorin. In the case of TGFf 2
ligand, betaglycan (TGFf type III receptor) presents acti-
vated ligand to the signaling receptor complex and mark-
edly increases ligand-receptor affinity. TGFf receptors
function predominantly as tetrameric transmembrane
complexes, comprising pairs of TGFJ type I and II serine
threonine kinase receptors. Following dimeric TGFp lig-
and binding, the type I receptor kinase is phosphorylated
and activated by the constitutively active TGF type II
receptor kinase. The activated type I receptor serine/threo-
nine kinase phosphorylates the receptor activated R-
Smads 2 and/or 3. However, this signal transduction step
can be negatively modulated by BAMBI, which functions
as a dominant negative, kinase dead TGF[ receptor.
BAMBI inhibits TGFf receptor complex signaling to R-
Smads. Phosphorylated R-Smads in turn form a complex
with the common effector Smad4. This activated complex
then becomes rapidly translocated to the nucleus and acti-
vates or represses transcription by binding to specific tran-
scriptional complexes on certain gene promoters such as
plasminogen activator inhibitor-1 (PAI-1) and cyclin A
respectively. Smad complex stability is negatively regu-
lated by Smurf 1, a ubiquitin ligase. Once in the nucleus,
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Smad complex mediated gene regulation is antagonized
by the transcriptional regulators Sno and Ski.

The bleomycin-induced model of lung fibrosis is medi-
ated by excessive TGFf production and signaling. Smad3
null mutation substantially blocks bleomycin-induced
interstitial fibrosis [94]. However, the initial phase of lung
inflammation induced by bleomycin is not blocked.
Moreover, induction of TGFB 1 expression by bleomycin
is not blocked. Rather, the key factor in blockade of bleo-
mycin-induced fibrosis was lack of Smad3 signaling.
Thus, Smad3 could act as a final common downstream
target in the TGFB-mediated pathobiologic sequence in
the lung. Putative non-Smad signaling pathways provide
potential sites for crosstalk with other signaling pathways.

Developmental modulation of growth factor sig-
naling by adapter proteins

The substrates of growth factor receptor kinases are often
adapter-proteins, which have no intrinsic enzymatic func-
tion but combine with other proteins to activate down-
stream effectors. An important example is that of the Shc
protein family, which comprises three isoforms with dif-
ferent functions. All are substrates of receptor tyrosine
kinases [97]. The 52 kDa isoform (p525"¢) is a mediator of
Ras activation. Upon tyrosine phosphorylation, p52She
forms a heterotrimeric complex with Grb2 and Sos, which
then translocates to the plasma membrane where it
encounters and activates Ras. Ras activation leads to MAP
kinase activation and subsequent induction of cell prolif-
eration. A second isoform of 46 kDa is translated from an
alternative start site on the p52Shc transcript; the function
of this peptide is incompletely understood. A third iso-
form of 66 kDa (p665h) is transcribed from an alternative
splice product of the Shc gene, which encodes an addi-
tional proline-rich domain to the amino terminus of the
p525he, Unlike p525ke, overexpression of this isoform nei-
ther transforms 3T3 fibroblasts nor activates MAP kinases,
but appears to antagonize Ras activation, possibly by
sequestering Grb2 and making it unavailable for
mitogenic signaling [98]. The 66 kDa protein has also
been characterized as a mediator of cellular responses to
oxidative damage [99]. Cells deficient in p665< are resist-
ant to cell death following oxidative damage, and mice
deficient in p665" have a 30% longer life span. Cellular
resistance to oxidation-induced death is reversed by
induced expression of the wild-type p66sh¢, and this resist-
ance is regulated by serine phosphorylation at amino acid
36 of p665t [99]. Induced expression of mutant p665 in
which the Ser3¢ has been ablated does not restores the oxi-
dative response of p665t null fibroblasts. Phosphoryla-
tion of Ser3¢ is induced by a number of cellular stresses
including hydrogen peroxide, ultraviolet irradiation, and
taxol-induced microtubular disruption [100,101]. Ser3¢
phosphorylation also occurs in renal mesangial cells
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following endothelin-1 stimulation, suggesting that the
mediated stress response pathway can be induced by
intercellular peptide signaling [102]. The p66S' and 46
Kda isoforms are differentially regulated towards the end
of fetal lung development [41].

VEGF isoform and cognate receptor signaling
and lung development

Vasculogenesis is initiated as soon as the lung evaginates
from the foregut [103]. A critical growth factor during
embryonic lung development is VEGF. The loss of even a
single allele of Vegf leads to embryonic lethality between
days E9.5 and E10.5 in the mouse [104]. VEGF is diffusely
distributed in pulmonary epithelial and mesenchymal
cells and is involved in controlling endothelial prolifera-
tion and the maintenance of vascular structure. VEGF is
localized in the basement membrane of epithelial cells
[105].

Both humans and mice have three different VEGF iso-
forms. VEGF-120, VEGF-164 and VEGEF-188 are all
expressed in mice during development, but VEGF-164 iso-
form is the most highly expressed and active during
embryogenesis. VEGF signals through the cognate recep-
tors Fetal liver kinase-1 (FLK-1) and Fetal liver tyrosinase-
1 (FLT-1). VEGF signaling is responsible for the differenti-
ation of embryonic mesenchymal cells into endothelial
cells. Interactions between the epithelium and mesen-
chyme contribute to lung neovascularisation, which is
crucial in normal lung formation. In fact, epithelial cells
of the airways are positive for VEGF and VEGF is even
more expressed at the budding regions of the distal airway
[106]. Also, only lung mesenchyme cultured in the
absence of epithelium degenerates significantly and only
a few Flk-1 positive cells are maintained [103].

Vegf knockout mice have a lethal phenotype within the
early stages of embryonic development (E8.5-E9).
Whereas in Vegf misexpressing transgenic mice, where the
Vegf transgene is under the control of the SP-C promoter,
gross abnormalities in lung morphogenesis are associated
with a decrease in acinar tubules and mesenchyme [104].
VEGEF treated human lung explants show an increase of
cellular proliferation in the distal airway epithelial cells
with up regulation of the mRNA expression of Surfactant
Protein-A (SP-A) and C (SP-C) but not SP-B [107].

VEGEF has also been demonstrated to play a role in main-
taining alveolar structure [108]. Lungs from newborn
mice treated with antibodies to FLT-1 were reduced in size
and displayed significant immaturity with a less complex
alveolar pattern [109]. In contrast the accumulation of
VEGF in the alveoli appears to make transgenic VEGF mice
more resistant to injury by hyperoxia [110,111].
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Figure 4

Signal transduction in the Transforming Growth Factor 3(TGFf) family pathway is finely regulated at many
levels. Outside the cell latent Transforming Growth Factor 3 (LTGFp) is activated by plasmin (uPA) among other unknown
extracellular proteases. Thrombospondin-| and (36 integrin play key roles in assembly and activation of the proteolytic com-
plex. Free TGF f ligand is bound extracellularly and may be sequestered by Decorin. Noggin and Gremlin play similar roles to
Decorin, but for Bone Morphogenetic Protein ligands. The TGF [ type Il receptor (llIR), also termed betaglycan, presents lig-
and to the preformed TGF f3 type | (IR) and type Il (IIR) receptor tetrameric signaling complex. This is particularly important
with TGFf 2, where betaglycan substantially increases its binding affinity for the receptor signaling complex. Non Smad signal-
ing pathways activated by ligand binding include Ras-ERK, Rho-JNK, RhoA-p160RCCK, TAKI-p38MAPK and PP2A-S6 kinase.
Ligand binding also facilitates phosphorylation and activation of the TGFp IR serine-threonine kinase domain by the TGFf IIR
serine-threonine kinase domain. TGFf IR in turn phosphorylates receptor Smads 2/3. The interaction of Smads with the TGFf3
IR is facilitated by SARA. BAMBI is a dominant negative, kinase deficient isoform of TGF[3 receptor. Smad 7 is an inhibitory
Smad that inhibits Smad 2/3 association with Smad4, the co-Smad. Smad7 is a rapidly inducible negative regulator of TGFp sig-
naling. Phosphorylated receptor Smads 2/3 then associate with the co-Smad4 and translocate to the nucleus, where they coac-
tivate or corepress certain specific target genes by binding to their respective transcription complexes, with or without directly
contacting DNA, depending on the promoter in question. Smurf mediate ubiquitination of preformed Smad complexes,
thereby negatively regulating Smad signaling to the nucleus. C-Ski and Sno-N are transcriptional factors that negatively regulate
Smad activity in the nucleus.
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VEGF is a target of hypoxia-inducible transcription factor-
20 (HIF-20). Hif-2 o deficient newborn mice die from res-
piratory distress syndrome [112]. In Hif-2 null mice the
expression of VEGF is dramatically reduced in alveolar
epithelial type 2 cells. Additionally we have recently noted
that addition of VEGF in early mouse embryonic explants
in culture markedly stimulates epithelial as well as vascu-
lar morphogenesis (unpublished results). Thus we specu-
late that VEGF signaling plays an important role in
matching the epithelial-capillary interface during lung
morphogenesis.

VEGF-C and VEGF-D are two additional members of the
VEGF family. These factors have a restricted expression
pattern, with high levels mainly in lung tissues [113].
VEGF-C and -D stimulate lymphoangiogenesis through
their cognate receptor VEGFR-3 [114]. Signaling via
VEGFR-3 has been shown to be sufficient for lymphoang-
iogenesis through null mutation. [115]. Finally, VEGE-C
also interacts with VEGFR-2 and is therefore able to
induce angiogenesis in vivo [116].

Thus, VEGF isoforms induce vasculogenesis, angiogenesis
and lymphoangiogenesis during lung development and
likely play a key role in coordinating epithelial morpho-
genesis with the developing vascular and lymphatic capil-
lary circulations.

The enigma: how does the lung branch millions
of times over, first stereotypically and then non-
stereotypically to make a large enough and thin
enough surface area to support respiratory gas
exchange?

The linked concepts of "morphogens" and "morphoge-
netic gradients" were coined by Morgan over a century ago
to provide a theoretical basis for pattern formation during
morphogenesis [117]. The morphogen concept was
advanced by Spemann's classical observation of an
"organizer" within the dorsal tip of the blastopore in early
Xenopus embryos, whose activity is mediated by a diffusi-
ble "morphogen” [118]. A mathematical theory explain-
ing how two morphogens might interact to determine
form during organ development was proposed by Alan
Turing, the World War II Naval Enigma code breaker
[119]. His mathematical reaction-diffusion hypothesis
states that two homogeneously distributed substances will
interact to produce stable patterns during morphogenesis
and will thus induce an ordered structure out of a ran-
domly chaotic system [120]. This provides a potential clue
to solving the biological enigma of repetitive branching.

The discovery that morphogens, specifically peptide
growth factors, can instruct lung morphogenesis through
tyrosine kinase signaling, and hence gene induction in tar-
get cells, supports Turing gradients as a possible
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mechanistic solution to lung morphogenesis [121]. How-
ever, while binary reaction-diffusion systems may be ade-
quate to explain relatively simple repeating patterns, it
now seems likely that in the lung dual parameter reaction-
diffusion is an over simplification. Instead, in more com-
plex polydimensional biological systems such as the lung,
we must consider how the several diffusible ligands men-
tioned herein may set up repeating morphogenetic fields.
Further, as discussed above, the bioactivity of each single
morphogen is simultaneously modified by its own system
of checks and inducible balances such as the binding pro-
teins and the negative Smads in the BMP signaling
pathway and the Spry gene family in the FGF pathway.
Moreover each of these pathways can respectively posi-
tively and/or negatively regulate its fellows through intra-
cellular signaling cross talk.

The developing limb bud is another well-studied system
where morphogen gradients such as certain FGF ligands
arising from the distinct apical ectodermal ridge (AER)
have been proposed to initiate proximal-distal patterning
of the long bones as well as antero-posterior patterning of
the digits. Long bone and wrist bones are postulated to
arise respectively, based upon the time progenitor cells
spend and their orientation within the "progress zone"
subjacent to the AER [122]. To the extent that the lung has
a recognizable proximal-distal pattern to the airways and
alveoli, it is tempting to speculate that inductive and
progress zones may also exist in the peripheral lung dur-
ing morphogenesis. We have recently noted that the
peripheral domain of FGF10 expression at the edge of
embryonic lung lobes bears a striking resemblance to the
domain of FGF expression in the limb AER. Thus it is
tempting to speculate that the FGF10 domain in embry-
onic lung may form an Apical Pulmonary Ridge (APR),
which has a pattern forming function analogous to that of
the AER in the limb [17].

The decision of the embryonic airway to branch or not to
branch is therefore determined by the integration of mul-
tiple peptide growth factor mediated as well as other kinds
of signals within automatically repeating morphogenetic
signaling centers. This novel concept is diagramed sche-
matically in Figure 5.

A noteworthy predictive feature of this model is the shape
of the FGF10 morphogenetic gradient as it decays proxi-
mally away from the high level source of FGF10 in the
APR. As diagramed, the model predicts that in monopo-
dial lateral branches, such as the lobar bronchial buds at
E11, the decaying FGF10 gradient will be symmetrical. In
contrast, in the bipodial branch sites at the periphery, the
decay of the FGF10 will be asymmetrical. Thus we specu-
late that the shape of the FGF10 morphogen gradient may
play an important role in determining monopodial versus
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Morphogenetic "Turing" gradients and some of their major regulators in murine early airway branching. This
conceptual figure shows some of the key morphogens and their major regulators diagramed as putative "Turing" gradients,
within a branching early embryonic mouse lung lobe. In the bottom panel, both lateral (monopodial) and terminal (dipodial)
epithelial branches are diagramed, within a coating of mesenchyme and pleura. In the 5 panels shown above this one, concen-
trations or activities of key morphogens and their respective regulator molecules are shown as arbitrary relative expression/
activity "Turing" gradients. In the top panel Fibroblast Growth Factor|0 (FGFI0) is shown as a solid line. The FGF10 "Turing"
gradient is highest near the pleura and its concentration/activity gradient decays through the peripheral mesenchyme and forms
an asymmetrical gradient across the distal bipodial branch induction domain. FGF10 then remains low until it peaks once more
within the proximal monopodial branch induction domain. The expression/activity of mSPRY2, shown as the dotted line, is
induced by FGF10 within the epithelial branch tips. In contrast, the expression/activity of mSPRY4 peaks in the peripheral mes-
enchyme and in the mesenchyme between the branch tips. The net result is that FGFI0 expression/activity is powerfully nega-
tively regulated between branches, but is increased within branch tips. FGF10 expression/activity is symmetrical within
monopodial branch tips, but within dipodial distal tips it is asymmetrical. We suggest that the relative symmetry of the FGFI0
expression/activity "Turing" gradient may play a key role in determining whether a specific branch will be mono or dipodial.
Also the relative activity of FGFI0 and mSPRY2 may play a key role in determining interbranch length and setting up subse-
quent branch points. In the second panel, SHH is shown as the hatched line and HIP is shown as the solid line. The sharp induc-
tion of Hedghog Interacting Protein (HIP) within the branch tips serves to inhibit Sonic hedghog (SHH) expression/activity. As
noted in the text, SHH expression/activity is highest in between branch tips, i.e. in places where branches are not supposed to
occur. SHH likely plays a major role in negatively regulating FGFI0 expression/activity at these inter-branch sites. Conversely,
negative regulation of SHH expression/activity by HIP may facilitate FGF10 expression/activity at points where branches are
genetically programmed to arise. In the third panel, Bone Morphogenetic Protein4 (BMP4) expression/activity is shown as the
solid line. BMP4 expression/activity is relatively low between branches but is increased at branch tips. The activity/expression
of Noggin, shown as the dotted line, is the inverse of BMP4. Noggin expression/activity is high between branches and low at
branch tips. Gremlin expression/activity is shown as the hatched line. Gremlin follows the contour of BMP4. Thus, the net
BMP4 concentration/activity "Turing" gradient peaks in branch tips and is relatively suppressed between them. BMP4 signaling
elements however show a more complicated picture. In the fourth panel BMP Smads | and 5 concentration/activities are
shown. Smad| peaks within branch tips and is low between them. Smad 5 on the other hand is expressed within small clusters
of cells out in the mesenchyme. In the fifth panel, Transforming Growth Factorf 2 (TGFf 2) is shown as the solid line, while its
signaling Smads 2, 3 and 4 are shown together as the hatched line. TGFf 2 expression/activity is quite widespread throughout
both mesenchyme and epithelium, but peaks within branch tips. Smads 2, 3 and 4 peak within branch tips. Therefore it is likely
that TGFJ 2 only signals to any significant extent within branch tips. We suggest that morphogenesis of the branching airway is
determined by genes responding to the hard wired temporospatial net integration of the "Turing" gradient distribution of the
above morphogens and probably others as well. This conceptual framework represents our latest model for considering this
hypothesis.
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Schematic diagram drawn after Mailleux et al, 2001, of Fibroblast growth factor 10 (Fgfl0) and murine Sprouty2
(mSpry2) expression respectively adjacent to and within the epithlium of an epithelial branch tip in the periph-
ery of an early embryonic mouse lung. In panel a., Fgfl 0 is beginning to be expressed in the mesenchyme at a point where
a bud is about to arise. Note that there is a gap between the epithelium and the locus of Fgfl 0 expression. At that time mSpry2
is either not expressed or is expressed at low levels. In panel b., an epithelial bud has begun to arise and is moving towards the
chemoattractive source of FGF10 located in the mesenchyme near the adjacent pleura. At this time mSpry2 expression is
increasing within the distal epithelial tip. In panel c., the bud has extended to a point close to where it will begin to branch. The
Fgf10 expression domain is beginning to spread out towards the sides of the tip and mSpry2 is expressed at a high level. In panel
d., the bud is extending into the Fgfl 0 expression domain, which has by now thinned between the bud tip and the adjacent
pleura and extends downwards on either side of the bud tip between it and the adjacent bud tips (not shown). The level of
mSpry2 expression within the bud tip epithelium is now high and the bud has stopped extending and is about to split. In panel
e., a tip-splitting event has occurred and the two daughter buds have just begun to diverge towards the lateral sources of
FGF10 expression. The expression of mSpry2 continues within the daughter bud epithelial tips, but at a lower level. It should be
noted that the expression ofmSpry2 is extinguished between the two daughter bud tips, implying that FGFI0 signaling is no
longer inducing mSpry2 at the latter location. This pattern of bud extension and gene expression is then repeated as the bud
tips migrate towards the band of Fgf/ 0 expression located along the edge of the primitive lobe, which we have termed herein

the APR or apical pulmonary ridge.

dipodial branching and hence stereotypy of the proximal
airway branches.

The model also predicts that the dynamically changing
relative activity of SHH, FGF10 and mSPRY2 may impart
automaticity to the branching process. SHH is high and
FGF10 is low where branching is not supposed to take
place. In contrast, SHH is suppressed locally by PTC and
HIP, so that FGF10 is therefore high where a branch is
supposed to occur. FGF10 in turn dynamically induces its
inhibitor mSpry2 as branches lengthen. Thus, the net rela-
tive activities between SHH, FGF10 and mSPRY2 may
determine FGF signal strength in the epithelium and
hence the relative rate of bud outgrowth rate at a given
point and hence inter-branch length.

The temporospatial relationship between Fgfl0 and
mSpry2 during bud outgrowth and branching is dia-
gramed in Figure 6. Fgf10 is expressed locally in the mes-
enchyme close to a point where a branch will arise from
the main epithelial bronchial stem. As the bud begins to
elongate, mSpry2 begins to be expressed in the distal tip.
During subsequent elongation, Fgf10 continues to be

expressed in the distal mesenchyme and the level of
mSpry2 gradually increases as the bud lengthens. When
the bud finally approaches the pleura, the Fgf10 expres-
sion domain adjacent to the distal tip appears to thin out
and some of it appears to be pushed laterally to lie
between adjacent branch tips. At this time mSpry2 expres-
sion in the distal tip is at its highest level, and this may
mediate bud outgrowth arrest. A tip-splitting event then
occurs. Of note is that mSpry2 expression is extinguished
between the daughter bud tips, but continues to be
expressed within the tips of the daughter bud epithelia.
This cycle of interaction is then repeated during subse-
quent branching events.

These hypothetical models do potentially explain auto-
maticity and symmetry of early airway branching, but they
do not explain stereotypy, antero-posterior orientation or
left-right laterality.

We speculate that proximal-distal, antero-posterior and
left-right stereotypy must be superimposed on the auto-
matic morphogenetic branching mechanisms just
proposed. Hox family genes are likely to play a key role in
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this process, since in Hoxa-5-7/- mice, tracheal occlusion
and respiratory distress is associated with marked decrease
in surfactant protein production together with altered
gene expression in the pulmonary epithelium [123]. Since
Hoxa-5 expression is restricted to the lung mesenchyme,
the null mutant phenotype strongly supports the infer-
ence that Hoxa-5 expression is necessary for induction of
epithelial gene expression by the underlying mesen-
chyme. Could Fgf10 be a Hox gene target?

Likewise, retinoic acid receptors, Gli-2, Lefty-1, Lefty-2 and
Nodal are preferentially expressed on the left side of wild
type mouse embryos and are implicated in determination
of left-right laterality. Lefty-1 null mutant mice show a
variety of left-right isomerisms in visceral organs, but the
most common feature is thoracic left isomerism. The lack
of Lefty-1 expression results in abnormal bilateral expres-
sion of Nodal, Lefty-2 and Pitx2 (a homeobox gene nor-
mally expressed on the left side). This suggests that Lefty-
1 normally restricts Lefty-2 and Nodal expression to the left
side, and that Lefty-2 or Nodal encode a signal for "left-
ness" in the lung [124].

Conclusion

Further investigation will be required to discover the full
complement of additional components of the "hard wir-
ing" in the genetic program that determines stereotypy,
antero-posterior and lateral symmetry of lung branching.
A good start was recently made using differential gene
expression comparing proximal versus distal endoderm of
E11.5 embryonic mouse lung [125]. Among the 20 genes
identified as being preferentially transcribed in distal
endoderm, Erm an Ets-related transcriptional factor of the
Pea3 subfamily looks like an interesting candidate.

Abbreviations
AER apical ectodermal ridge

Alk activin receptor-like kinase
APR apical pulmonary ridge

BMP Bone Morphogenetic Protein
bnl Branchless

BPD Bronchopulmonary Dysplasia
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CC10 Clara cell protein 10

E embryonic day

EGF Epidermal Growth Factor
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FGF Fibroblast Growth Factor

FLK-1 Fetal liver kinase-1

FLT-1 Fetal liver tyrosinase-1

HGF Hepatocyte Growth Factor

HIF-2a Hypoxia-inducible transcription factor-2a
Hip Hedgehog interacting protein
hSpry Human Sprouty

ICs, Inhibitory concentration

MLE Mouse lung epithelial cells

mSpry Murine sprouty

PAI-1 plasminogen activator inhibitor-1
PDGEF Platelet-Derived Growth Factor
PTC patched

SHH Sonic Hedgehog

SMO Smoothened

SP-C Surfactant Protein-C

Spry Sprouty

TGF Transforming Growth Factor

VEGEF Vascular Endothelial Growth Factor
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