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Abstract

subsequent recovery.

biomarker expression and above average FEV,.

Rationale: After 9/11/2001, most FDNY workers had persistent lung function decline but some exposed workers
recovered. We hypothesized that the protease/anti-protease balance in serum soon after exposure predicts

Methods: We performed a nested case—control study measuring biomarkers in serum drawn before 3/2002 and
subsequent forced expiratory volume at one second (FEV,) on repeat spirometry before 3/2008. Serum was assayed for
matrix metalloproteinases (MMP-1,2,3,7,8,9,12 and 13) and tissue inhibitors of metalloproteinases (TIMP-1,2,34). The
representative sub-cohort defined analyte distribution and a concentration above 75" percentile defined elevated
biomarker expression. An FEV; one standard deviation above the mean defined resistance to airway injury. Logistic
regression was adjusted for pre-9/11 FEV,, BMI, age and exposure intensity modeled the association between elevated

Results: FEV; in cases and controls declined 10% of after 9/11/2001. Cases subsequently returned to 99% of their
pre-exposure FEV; while decline persisted in controls. Elevated TIMP-1 and MMP-2 increased the odds of resistance by
54 and 4.2 fold while elevated MMP-1 decreased it by 0.27 fold.

Conclusions: Resistant cases displayed healing, returning to 99% of pre-exposure values. High TIMP-1 and MMP-2
predict healing. MMP/TIMP balance reflects independent pathways to airway injury and repair after WTC exposure.

Keywords: Biomarkers, Lung disease, Occupational exposure

Introduction

The collapse of the World Trade Center (WTC) on 9/11/
2001 produced a massive exposure to dust and products
of combustion [1-3]. The Fire Department of New York
(FDNY) bureau of health services rapidly responded to
this atrocity, initiating a medical monitoring program in
October of 2001. Over 13,000 exposed rescue workers
have been longitudinally followed by the FDNY-WTC-
Medical Monitoring and Treatment Program. Approxi-
mately 7,000 exposed workers had serum samples drawn,
stored and FEV, and FVC measured within six months of
9/11/2001. A vast majority of those exposed had an acute
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decline in lung function in the first six months followed by
stabilization. There was no recovery in lung function for the
group as a whole, but a minority of those exposed recovered
lung function over the following six and a half years.

We used serum obtained soon after the exposure to
measure serum biomarkers of lung injury during the
process of disease evolution. We reported that inflamma-
tory cytokines, lipids and other measure of metabolic syn-
drome as well as biomarkers of cardiovascular risk predict
abnormal lung function years later [4-6].

The balance of increased protease activity and reduced
anti-protease activity are components of many diseases in-
cluding cigarette-induced chronic lung disease and other
causes of accelerated lung function decline [7-10]. Genetic
association studies with matrix metalloproteinases (MMPs)
demonstrate a strong association with the development of
lung disease [7]. MMP-1 is induced in smokers with COPD
and its overexpression in mice causes emphysema [11,12].
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The destructive effects of MMPs are inhibited by tissue in-
hibitors of matrix metalloproteinases (TIMPs). Since most
clinical investigation focuses on disease, there is little data
on the role of MMPs and TIMPs in the resistance to the
damaging effect of dust exposure [13-16]. One carefully
done pathologic study demonstrated increased MMP-2
and TIMP-1 mRNA expression in surgically removed lung
and predicted improved FEV; in COPD patients [17].
Serum MMP and TIMP expression reflects the severity of
COPD supporting an investigation of a link between serum
MMP/TIMP balance and lung function in the WTC
exposed cohort [18].

This study investigates serum expression of MMPs and
TIMPs soon after damaging particulate matter exposure
and tests if protease/anti-protease balance is associated
with a subgroup that demonstrates an above average heal-
ing potential after WTC-LL. We report that elevated
TIMP-1 and MMP-2 predicts recovery of lung function
while elevated MMP-1 reduces the odds of recovery years
after WTC exposure.

Methods

Study participants and design

The Institutional Review Boards (IRB) of NYU and
Montefiore Medical Center approved this study and
patients signed consent at the time of serum draw within
6 months of 9/11/2001 (Montefiore Medical Center IRB;
#07-09-320 and New York University IRB; #11-00439).
The parent cohort for this investigation consists of 1,720
exposed workers who required subspecialty pulmonary
examination (SPE) prior to 3/10/2008.

A nested case—control study tested the association of
serum biomarkers and FEV; at SPE. The baseline cohort
N =801 was assembled to exclude patients with abnormal
pre-9/11 FEV; and tobacco use to eliminate these con-
founders of post exposure lung function [19]. Resistant
cases (N =100/801) had a FEV;% one standard deviation
above the mean (>107%) at SPE. Controls (N =171/801)
were randomly selected after stratification of the baseline
cohort for BMI and FEV;. Serum was available for N =
137/171 of the cohort controls, N = 77/100 of the resistant
cases. For this case—control study, the control subjects are
all individuals in the random sample cohort control who
did not meet criteria to be resistant cases. Analyte distri-
bution in the cohort controls identified the 75™ percentile
cut points used to define elevated biomarker expression.

Serum biomarker assays

Processing of blood has been previously described [6,20].
Biomarkers were assayed with a TIMP panel (R&D Sys-
tems, Minneapolis, MN), and MMP panel (Procarta/Afty-
metrix) using a Luminex 200-IS (Luminex Corporation,
Austin, TX). Each plate contained 1:2 ratio of resistant
cases to controls to account for batch effect.
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Chest computed tomography (CT)

We have reported on lung function and computed tomog-
raphy (CT) findings of this group. High-resolution chest
CT scans were obtained with 7-mm thick mages recon-
structed at 6-mm intervals. Images were read for airway
and parenchymal abnormalities by dedicated, board certi-
fied radiologists who had no knowledge of the subjects’
exposure status or clinical findings. Bronchial wall thick-
ening and air-trapping were interpreted qualitatively and
analyzed as a yes/no variable.

Statistical analysis

Database management and statistics used SPSS 20 (IBM,
Armonk, NY). Odd ratios were modeled with multivariate
binary logistic regression with case status as the outcome.
Analyte cutoff values were the 75™ percentile cohort con-
trol expression. The Hosmer-Lemeshow goodness-of-fit
test was used to assess calibration of the final model. The
model discrimination was evaluated using the receiver
operating characteristic area under the curve (AUC).

Results

Participants

Derivation of cases and controls is depicted in Figure 1. N
=111/171 cohort controls with serum available for study
were compared to N =77/100 resistant cases. Controls
were not significantly different from the baseline cohort in
arrival time, years of service, age, time to all pulmonary
examinations, or BMI, Table 1. Controls had higher BMI
than resistant cases. Time to medical monitoring entry
(MME), when spirometry was performed and serum
drawn, was 2 months in cases and controls. Time to sub-
specialty pulmonary evaluation SPE, when spirometry that
defined case status was performed, was 32 months in cases
and controls.

Longitudinal lung function in resistant cases and controls
Cases and controls underwent three longitudinal mea-
sures of lung function. The first spirometry documented
pre-exposure lung function; the second was immediately
after exposure at MME and the third was later at SPE,
Table 2 and Figure 2. Resistant cases had higher median
pre-9/11 FEV; than controls (117% vs 98% p < 0.001).
FEV; declined in cases and controls soon after exposure.
To test if group data represented individuals’ response the
ratio of FEV; pre-9/11 to FEV; at MME was calculated for
each case and controls. The mean (SD) of MME/Pre-911
ratio was 0.91(0.10) for resistant cases and 0.91 (0.12) for
controls (p=0.95 for cases vs control). Cases recovered
most of the lost FEV; (117% to 113%). Controls had less
improvement than cases in their median FEV; (98% to
93%). To test if group data represented individuals’ re-
sponse the ratio of FEV; pre-9/11 to FEV; at SPE was cal-
culated for each case and controls. The SPE/Pre-911 ratio
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1,720 had SPE

Baseline
Cohort
801 (47%)

Resistant Cases
FEV1>107%
N=100 (12.5%)

Inclusion Criteria
i.Serum available
ii.Model Parameters Available

Resistant Cases
N=77

Figure 1 Study design. Derivation of cases n=77 and controls n=11
.

Enrolled in FDNY-MMTP
12,781/13,934 (92%)

Cohort Controls

Case Cohort Control Study

Cohort Controls

1 from the FDNY-MMTP.

Inclusion Criteria for Baseline Cohort
i.Pre 9/11 Exam date that had FEV1%Pred = 75%
ii.Post 9/11 FDNY PFT exam date < 200 days from 9/11/01
iii.Pulmonary function study at NYU
iv.Arrived at the WTC site before 9/13/01
v.Never Smoking Male FDNY rescue workers
vi.Groups with accurate NHANES PFT normative data

N=171(21%)

N=111

was 0.99+/-0.09 for resistant cases and 0.91+/-0.12 for
controls (p <0.001 for cases vs control). Raw FEV,% pre-
dicted has also been shown in Figure 2.

Both groups had a decline in FEV;/FVC ratio SPE/MME,
with resistant cases having the less than controls (0.85 to
0.81 p <0.001). Both cases and controls had a high propor-
tion of individuals with bronchodilator response (22% vs
28% NS). Cases had less methacholine reactivity when mea-
sured as a continuous slope (0.64 vs 0.04 p <0.01); 9% of
cases reactive to a 10 mg/ml dose while 20% of controls
were reactive (p=0.11). Cases had less air trapping than
controls (111% vs 121% p < 0.02) when residual volume was
used to measure air trapping Table 3. At SPE, resistant
cases had the higher TLC, DLCO and alveolar volume than
controls (p < 0.001 for all comparisons), Table 2.

Table 1 Demographics

Chest CT of resistant cases and controls

Chest imaging was used to investigate if resistant cases
and controls had structural differences. In those with chest
CT images available, 14% of the resistant cases had bron-
chial wall thickening whereas 35% of the controls had this
evidence of airway inflammation (p < 0.03), Table 3. There
was no significant difference between cases and controls
in air trapping defined by mosaic attenuation (28% vs 46%
p =0.09). Both cases and controls have a high proportion
of pulmonary nodules (38% vs 36% p = 0.8).

Biomarker models

Analyte levels were compared between controls and resist-
ant cases, Table 4. We used logistic regression with analyte
expression above a pre-defined 75" percentile cut points

Date/event Baseline cohort Sub-cohort controls Resistant cases p
WTC Exposure, n(%) High 197 (25) 21 (19) 14 (18) 1.000
Intermediate 604 (75) 90 (81) 63 (82)
9/11 to PFT, months MME 2.7 (20-38) 25(20-32) 26(22-32) 0219
SPE 33.8 (24.8-57.0) 32.7 246-574) 32,5 (28.3-52.2) 0.755
BMI, kg/m2 MME 28.0 (26-30) 28.1 (26-31) 27.3 (26-29) 0.018
SPE 289 (27-31) 29.1 (27-31) 27.6 (26-30) 0.010
Years of service 9/11/01 13 (7-19) 14 (7-18) 14 (10-19) 0.249
Age 9/11/01 40 (36-45) 41 (36-44) 42 (38-46) 0.159

WTC World trade center, PFT Pulmonary function test, BMI Body mass index, MME Medical monitoring entry, SPE Subspecialty pulmonary exam.

Expressed as median (interquartile range.
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Table 2 Longitudinal lung function assessment of cohort

Time Variable Controls Resistant p

Pre-9/11 FEV1% 98 (90-108) 117(108-124) <0.0001
FEV1/FVC 84 (81-87) 87 (84-89) <0.0001

MME FEV1% 91 (81-96) 105(97-113) <0.0001
FEV1/FVC 84 (79-87) 85 (83-89) <0.0001

SPE FEV1% 93 (83-98) 113 (109-119) <0.0001
FEV1/FVC 77 (73-79) 81 (79-84) <0.0001
BD response 5(2-10) 5(2-9) 0.776
BD response > 12%, N (%) 13/46 (28) 5/23 (22) 0.772
MCT slope 0.64 (0.31-0.15) 0.04(0.02-0.07) 0.010
PC20 < 10 mg/mL MCT, N (%) 17/86 (20) 6/66 (9) 0.108
TLC 103 (95-109) 106 (103-116) 0016
RV,% Pred 125 (113-141) 111 (103-123) 0.015
DLCO 106 (99-114) 116 (108-131) 0.001
VA 93 (85-98) 100 (95-105) <0.0001
DLCO/NVA 120 (107-130) 110 (107-126) 0.358

FEV1 Forced expiratory volume in one second, FVC Forced vital capacity, MCT Methacholine, BD Bronchodilator, PC20 concentration of methacholine causing a
20% fall in FEV1, DLCO Diffusion capacity of the lung for carbon monoxide, VA Alveolar volume.

to test if protease or anti-proteases expression predicted
resistance to WTC-LI [21]. Models were adjusted for BMI,
age, exposure group and pre-9/11 FEV;. Reduced models
examined the ability of a single analyte to predict each case
definition. Analytes with significant odds ratios in single bio-
marker models were used to develop the final multi-analyte
model.

Using 75™ percentile of cohort expression, we calculated
OR with FEV1>107% at SPE as the outcome. Elevated
MMP-1 reduces the odds of FEV1 > 107% by 31%, elevated
MMP-2 increases the odds of FEV1 > 107% by 218% and el-
evated TIMP-1 increases the odds by 231%. After adjusting
for BMI, age, exposure group and pre-9/11 FEV; elevated

175 =
@ Cases

Controls
140 o ° o

105 4

FEV; %
Predicted
—t—
e+

70 o °

35 st —t +—t
Pre
9/11 MME SPE

Figure 2 FEV,% predicted of cases and controls over time.
Mean (SD) expressed for cases n=77 (green) and controls n=111
(grey) at Pre-9/11, MME and SPE.

MMP-1 reduces the odds of resistance to WTC-LI by 68%
while individuals with high MMP-2 and TIMP-1 were
300% and 350% more likely to resist WTC-LI, Table 4.
Combining MMP-1, MMP-2 and TIMP-1 in a multi-
analyte model improved the OR for each of these bio-
markers, Table 5. Elevated MMP-1 was a risk factor redu-
cing the odds of resistance to lung injury to 0.27 (95% CI
0.09-0.82 p =0.02). Elevated MMP-2 and TIMP-1 were
protective factors improving odds of resistance by 4.2 fold
(95% CI 1.6-10.8 p =0.003) and 5.4 fold (95% CI 1.9-14.9
p=0.001), Table 5. The area under the receiver operator
curve for the multi-analyte model was 0.90 (95% CI; 0.86-
0.94). (Figure 3) The sensitivity and specificity of the
model was 74% and 86% respectively.

Discussion

We report that elevated MMP-1, MMP-2 and TIMP-1 in
serum shortly after WTC exposure predicts subsequent
return of FEV] to pre-exposure values. All subjects in this
nested case control investigation had significant WTC
dust exposure, arriving at the collapse site within 2 days of
9/11/2001. The FDNY measured serial FEV; pre and post
9/11. We focused our current study on a subgroup of
highly exposed individuals who did not suffer persistent

Table 3 Chest CT abnormalities in cases and controls

CT Finding Controls Resistant cases pt

Bronchial wall thickening 23/65 (35) 5/36 (14) 0.022
Air trapping 30/65 (46) 10/36 (28) 0.090
Nodules 25/65 (38) 13/36 (36) 0.834

*Significance calculated by Chi-Squared.
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Table 4 Serum biomarkers
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Analyte 75th Controls Resistant OR (95% ClI)
pg/mL  percentile cutpiont Median (IQR) Proportion Median (IQR) Proportion

Proteases MMP-1 1239 689 (264-1210) 27/11 549 (233-1013) 14/77 0.691 (0.335-1.425)
MMP-2 4949 2933 (1570.01-4608.25) 22/111 3340 (2108.19-5682.13) 27/77 5 (1.128-4.231)
MMP-3 13345 7494 (2940-13358) 28/111 6906 (3457-11509) 17/77 0.840 (0.422-1.671)
MMP-7 355 217 (100-333) 25111 237 (95-375) 22/77 1.376 (0.707-2-77)
MMP-8 157 10 (10-156) 27111 10 (10-116) 16/77 6 (0.405-1.645)
MMP-9 62086 22559 (10596-40806) 24/111 23003 (12043-64398) 21/77 1.359 (0.692-2.670)
MMP-12 306 66 (18-306) 28111 55 (27-277) 19/77 0.971 (0.496-1.902)
MMP-13 138 75 (10-133) 26/111 71 (10-140) 20/77 7 (0.585-2.248)

Anti-proteases  TIMP-1 155003 125491 (100396-151151)  23/111 126292 (100483-164661) 29/77 2 (1.206-4.430)
TIMP-2 115905 102470 (89901-113738)  23/111 103199 (88959-119820)  22/77 1.530 (0.780-3.005)
TIMP-3 31922 7750 (7750-31922) 29/111 7750 (7750-33680) 21/77 1.060 (0.550-2.044)
TIMP-4 1585 1242 (9288-1562) 26/111 1342 (970-(1717) 27/77 1.765 (0.929-3.354)

MMP matrix metalloproteinase, TIMP Tissue inhibitor of matrix metalloproteinase, OR Odds RATIO (unadjusted), /QR Interquartile range.

FEV] decline. This resistant subgroup had greater than aver-
age reduction in FEV; immediately after exposure but
returned to pre-exposure FEV; over the next 6.5 years.
Because serum was drawn well before the pulmonary func-
tion test that demonstrated recovery, the biomarker infor-
mation reflected the evolving response to injury. MMP-2
and TIMP-1 expression above the 75™ percentile are pro-
tective biomarkers, significantly increasing the odds of re-
sistance between 4.2 and 5.4 fold. Alternately, elevated
MMP-1 is a risk factor, reducing the odds of resistance by
73%. The biomarker model using serum MMP-1, MMP-2
and TIMP-1 concentration predicted resistance with a sen-
sitivity of 74%, a specificity of 86% and a receiver operator
characteristic of 0.90.

As expected in this highly exposed group, both cases and
controls suffered an acute reduction in FEV; as a result of
WTC exposure. Resistant cases differed from controls be-
cause they returned to 99% of their pre-exposure FEV;.
Over the 6.5 years post 9/11 FEV; returned to only 91% of
their pre-exposure FEV;. The return of FEV; to pre-
exposure levels provides evidence that resistant cases have
above average capacity to heal after an acute injury.

Table 5 Model of resistance to WTC-lung injury
OR (95% CI)

Serum biomarker

75th percentile cutpoint Adjusted§
Single analyte MMP-1 > 1239 033 (0.11-0.93)
MMP-2 2 4949 3.00 (1.25-7.18)
TIMP-1 2 155003 3.52(1.41-8.81)
Multi-analyte MMP-1 21239 0.27 (0.09-0.82)
MMP-2 2 4949 4.16 (1.61-10.76)

TIMP-1 2 155003 5.38 (1.94-14.94)

§Models Adjusted for: BMI at SPE, exposure Group, Age at 9/11 and Pre-9/11
FEV,% Predicted; -2 Log Likelihood 144.081; Hosmer and Lemeshow
(Goodness of Fit) Sig 0.743.

Elevated TIMP-1 and MMP-2 expression increases the
odds of being resistant 4.1 and 5.3 fold respectively. These
results remain significant after adjusting for multiple com-
parisons. Although TIMP and MMP over expression have
been observed in COPD and are probably affected by
chronic injury secondary to cigarette smoke or other dam-
aging processes, interpreting the cause and effect relation-
ship between lung function and MMP/TIMP balance in
humans has been challenging [22-24]. A carefully done
study of 63 patients who had surgery for lung cancer or
lung transplantation demonstrated that increasing
TIMP-1 and MMP-2 mRNA in the small airways and/or
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Figure 3 Receiver operator characteristics (ROC) of final

multi-analyte model. Area Under the Curve (AUC) =0.901: 95%
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the parenchyma surrounding the small airway was posi-
tively associated with FEV; [17]. Our findings on par-
ticulate matter induced lung injury are consistent with
these findings in smoking related COPD patients. The
mechanisms involved in the protective effects of TIMP-
1 and MMP-2 in response to particulate matter induced
lung injury require further study.

Since resistant cases were defined by a FEV; of > 107%,
starting close to this threshold should increase the likeli-
hood of crossing this defining value. After adjusting
the logistic model for pre-9/11 FEV1, the association of
MMP-1 MMP-2 and TIMP-1 with better than average
post exposure FEV; markedly improved as quantified by
their ORs. This suggests that while pre-existing differences
in lung function is a confounder including them in the re-
gression allowed the biomarker-lung function association
to remain robust. We briefly examined if excluding indi-
viduals who failed their MCT by the 3™ level would alter
our results. We found that the ORs of MMP-1, MMP-2
and TIMP-1 remained significant and of the same magni-
tude (data not shown). Furthermore, we repeated the ana-
lysis in a population with their Pre-9/11 FEV% predicted
constrained; cases n = 58 had an FEV; of 96-146 and con-
trols n = 58 had an FEV; of 96—143. Using this constrained
population OR (95% CI) were as follows: MMP-1 0.318
(0.098-1.039), MMP-2 4.993 (1.664-14.983) and TIMP-1
8.061 (2.423-26.825). Importantly, patients with resistance
to WTC-LI had at subspecialty pulmonary evaluation
increased TLC measured on plethysmography, increased al-
veolar volume measured by methane dilution and increased
diffusion of carbon monoxide than controls. In animal
models, MMP-2 is required for normal lung development
and failure to produce MMP-2 leads to emphysema and
collagen deposition around the bronchioles [25-27]. Our
data is consistent with the hypothesis that MMP-2 and
TIMP-1 are biomarkers of an individual’s intrinsic capacity
to heal after irritant induced lung injury.

The resistant cases also had significantly less bronchial
wall thickening on chest CT. Accumulation of inflamma-
tory cells in the bronchovascular bundle likely accounts for
this radiographic finding [28]. Our Chest CT findings sug-
gest that the resistant group accumulates fewer inflamma-
tory cells around the bronchovascular bundle after dust
exposure. Interestingly, in rodent models of lung injury,
MMP-2 expression reduces bronchovascular inflammatory
cells and enhances repair [29,30]. Since the chest CT was
performed years after the insult, the mechanism that pro-
duced the bronchial wall thickening persists for years after
the original exposure that precipitated the inflammation.

Conversely, elevated MMP-1 reduced the odds of being
resistant to WTC-LI to 0.27. This association, however, be-
comes insignificant when adjusted for multiple comparisons.
We have maintained MMP-1 in the model because of the
overwhelming evidence that this protease is an important is
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disease pathogenesis. Over expression of MMP-1 leads to
emphysema in animal models [31]. In humans, MMP-1 is
expressed in type II pneumocytes of patients with COPD
but not controls [11,12]. The 73% reduction in the odds of
having above average FEV; is consistent with the damaging
effects of this protease on lung integrity.

Since we excluded ever smokers and individuals with
pre-9/11 lung disease, our results are not confounded by
these common causes of FEV; decline that are unrelated
to inhalation of WTC dust. Another advantage of this
study is the SPE PFT was performed during the initial pul-
monary evaluation prior to treatment initiation. Therefore
our results are not confounded by treatment effect. In
spite of our objective case definition, using FEV; as a sin-
gle measure did produce misclassification of disease. The
resistant group with FEV; >107% at SPE did have a indi-
viduals with evidence of airway injury. Up to 22% of the
resistant cases had airway reactivity on PFT or radio-
graphic evidence of bronchial wall thickening. This mis-
classification of disease should bias toward the null. In
spite of this bias, we observed highly significant associa-
tions between biomarkers in serum drawn soon after
exposure and above average lung function years later.

This nested case control study has several limitations. The
cohort was highly unusual, suffering an acute overwhelming
exposure to PM that overwhelmed normal protective mech-
anisms. The results therefore have limited generalizability.
The findings require replication in independent particulate
matter exposed cohorts. Even though the serum biomarkers
were expressed years before the FEV] that defined resistance
to lung injury, the results are correlations and do not imply
causation. It is possible that exposure lead to an alteration
in these biomarkers due to different mechanisms controlling
lung injury. Alternately, pre-existing attenuation of these
biomarkers may lead to differential healing. Further, investi-
gation in model systems and longitudinally followed cohorts
is required to better understand the role, if any, of MMP-1
and TIMP-1 in healing after PM induced lung injury. Fi-
nally, this study had no unexposed control group because
the few unexposed workers were markedly different from
the exposed group with poor health that prevented them
from working at the WTC collapse site. This restricts our
ability to assess the impact of WTC exposure to the ob-
served biomarker disease relationship.

This report documents the serum biomarkers that
predict better than average FEV; after massive dust
exposure. This group had evidence of healing with re-
turn to pre-9/11 FEV; after a significant drop immedi-
ately post exposure. The processes initiated by WTC
exposure impacted multiple distinct injury and repair
pathways. One interpretation of the findings is that
biomarkers of resistance reflect biological processes
leading to healing after particulate matter induced
injury.
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