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Abstract

inflammatory mediators due to a lower expression.

Background: Toll-like receptors (TLRs) are part of the innate immune system, able to recognize pathogen-
associated molecular patterns and activate immune system upon pathogen challenge. Respiratory syncytial virus
(RSV) is a RNA virus particularly detrimental in infancy. It could cause severe lower respiratory tract disease and
recurrent infections related to inadequate development of anti-viral immunity. The reason could be inadequate
multiple TLRs engagement, including TLR8 in recognition of single-stranded viral RNA and diminished synthesis of

Methods: Intracellular TLR8 expression in peripheral blood monocytes from RSV-infected infants was profiled and
compared to healthy adults and age matched controls. Whether the observed difference in TLR8 expression is a
transitory effect, infants in convalescent phase (4-6 weeks later) were retested. Specific TLR8-mediated TNF-a.
production in monocytes during an acute and convalescent phase was analyzed.

Results: RSV-infected and healthy infants had lower percentage of TLR8-expressing monocytes than healthy adults
whereas decreased of TLR8 protein levels were detected only for RSV-infected infant group. Lower protein levels of
TLR8 in monocytes from RSV-infected infants, compared to healthy infants, negatively correlated with respiratory
frequency and resulted in lower TNF-a synthesis upon a specific TLR8 stimulation. In the convalescent phase, levels
of TLR8 increased, accompanied by increased TNF-a synthesis compared to acute infection.

Conclusions: Lower TLR8 expression observed in monocytes, during an acute RSV infection, might have a
dampening impact on early anti-viral cytokine production necessary to control RSV replication, and subsequently
initiate an adaptive Th1 type immune response leading to severe disease in infected infants.

Background

Respiratory syncytial virus (RSV), an enveloped ssSRNA
pneumovirus of the Paramyxoviridae family, is an impor-
tant cause of lower respiratory tract (LTR) infection in a
small percentage of infants, although virtually all infants
become infected. Frequent reinfections implicate inade-
quate development of immunological memory perhaps
due to the virus-mediated subversion of innate and/or
adaptive immune mechanisms [1-3]. In recent years,
more effort has been made to explore innate immune
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mechanisms involved in immunopathological processes
observed in severe LRT disease during primary infection
in infants [4-6].

Innate cellular defense can be triggered by a variety of
mechanisms, including host recognition of pathogen-
associated molecular patterns (PAMPs) through pattern
recognition receptors. Structural RSV glycoproteins are
recognized by surface TLR2 and TLR4 [7-9], while viral
RNA engages cytoplasmic retinoic acid inducible gene I
(RIG-I) in infected epithelial cells (primary RSV target)
[10-12]. However, in immune cells with ability to endo-
cytose viral particles and present antigens, such as den-
dritic cells (DC) and monocytes/macrophages, viral
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RNA could be sensed via endosomal TLR3, TLR7 and
TLRS [11,13-15].

The cellular recognition of a virus activates multiple
signaling pathways, such as NF-«<B transcription factor
and the interferon-regulatory factors (IRFs) [16], with
subsequent release of multiple and potent antiviral cyto-
kines, among them tumor necrosis factor alpha (TNF-a)
and type I interferons (IFN) [17,18]. Myeloid dendritic
cells (mDC) and monocytes/macrophages, activated via
endosomal or cytoplasmic RNA sensors, also release
IL-12p70 necessary for the activation of NK cells and
cytotoxic T-lymphocytes and IFN-y production [19-21].
IFN-y is required for driving the Thl type response, as
opposed to inappropriate Th2 response detected in RSV
infection [22].

Functional TLR studies in healthy newborns, a popula-
tion with a risk to develop LRT infection encountering
RSV, have revealed a decreased synthesis of antiviral cyto-
kines implying an inadequate TLR activation [23-25].
Moreover, cord blood mononuclear cells express lowered
levels of myeloid differentiation factor 88 [26], a central
signaling adaptor molecule for the majority of TLRs
(except for TLR3), that has a significant role in preventing
severe disease development in RSV-murine model [27]. It
seems that the absence of endosomal TLR-stimulation is
responsible for the development of low affinity anti-RSV
antibodies, causing severe disease upon infection upon
vaccination with formalin inactivated virus [28].

The aim of this study was to determine the expression of
TLRS in peripheral blood monocytes during an acute
severe RSV LRT infection and compare with a healthy
infant/adult controls and infants in the convalescent phase
4-6 weeks later. Ability of monocytes to produce TNF-a
upon short-time stimulation with specific TLR7/8 ligand
was measured in the acute and convalescent phase. Possi-
ble correlation between the severity of disease and TLR
expression in RSV-infected infants was also analyzed.

Methods

Subjects

Study encountered 15 infants, 10 boys and 5 girls (aged
1-8.5 months; median age 2.5 months), admitted to the
University Hospital for Infectious Diseases and Children’s
Hospital in Zagreb, Croatia (Table 1). The infants suf-
fered from RSV-caused bronchiolitis (defined as wheez-
ing, hypoxia with O, saturation < 95% and normal chest
radiographs) or pneumonia (defined as crackles on aus-
cultation with wheezing, and confirmed with chest radio-
graphs showing infiltrates). The samples of blood (with
and without heparin) and nasopharyngeal secretions
were simultaneously obtained within 7 days from the
onset of acute illness and 4-6 weeks after first sampling
(N = 10). Laboratory parameters such as the quantity of
C-reactive protein (CRP), erythrocyte sedimentation rate
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(ESR) and leukocyte count were used to exclude possible
non-viral infections [29]. None of the tested infants
received glucocorticoid drugs.

Control blood samples were obtained from healthy
infants and adults (N = 10, aged 21-39 years). A healthy
infant group consisted of 10 infants (aged 1-13 months;
median age 5 months) hospitalized for minor surgery,
free from allergic, immune and hematological disorders.

Patients and controls were included in the study after
written consent had been obtained from their parents/
guardians or from themselves. The study was approved
by the Medical Ethics Committees of both hospitals.

Virus identification

RSV infection was confirmed by detecting the virus in
nasopharyngeal secretion by direct immunofluorescence
test (Light diagnostics, Temecula, USA).

Isolation of PBMC and cryopreservation

For the analysis of TLR8 expression, cryopreserved periph-
eral blood mononuclear cells (PBMC) obtained from fresh
heparinized blood upon density gradient isolation were
used. Briefly, blood was diluted in PBS to 1:1 volume ratio
and centrifuged for 30 minutes at 800 g on Ficoll-Paque
Plus (GE Healthcare Bio-Sciences AB, Uppsala, Sweden).
Isolated PBMC were resuspended in ice-cold freezing
media (10% RPMI 1640, 80% fetal bovine serum and 10%
dimethyl sulphoxide) at 2 x 10° cells/mL concentration.
Aliquots of cell suspension (1.0 mL) were transferred to
Nalgene Cryo freezing containers (Nalge Nunc Interna-
tional, Rochester, NY) and placed overnight in an -80°C
freezer. The frozen specimens were transferred to liquid
nitrogen within 24 h and maintained until thawed. In
parallel, serum samples were obtained and kept frozen at
-20°C.

Intracellular TLR8 detection

The frozen PBMC were thawed in 37°C water bath with
continuous agitation until completely melted and resus-
pended slowly in warm RPMI 1640 media supplemented
with 10% FBS. The cells were centrifuged at 400 g for
5 minutes and then washed again in staining buffer (1%
fetal calf serum, 0.1% NaN3; and Dulbecco’s PBS) to
completely remove traces of DMSO. Viability was esti-
mated by trypan blue dye exclusion.

PBMC aliquots were placed in sterile 12 x 75-mm poly-
styrene round-bottomed tubes (Falcon, Becton Dickinson,
Lincoln Park, USA) and incubated for 15 min in the dark
at room temperature with antibodies for an anti-CD14
APC (Becton Dickinson, Heidelberg, Germany). The cells
were washed with staining buffer, fixed with fixation buffer
(4% formaldehyde in Dulbecco’s PBS) for 30 min at 4°C,
and washed with staining buffer. The cells were then
washed with permeabilization buffer (1% FCS, 0.1% NaNj3



Bendelja et al. Respiratory Research 2010, 11:143 Page 3 of 10
http://respiratory-research.com/content/11/1/143
Table 1 Patients and clinical findings
Clinical findings Controls (n = 10) Bronchiolitis (n = 12) Pneumonia (n = 3) Total (n = 15)
Age (months) 5 25 1 25
(1-13) (1-8.5) (1-5) (1-8.5)
Gestational age 40 40 38 40
(39-40) (36-40) (32-40) (32-40)
Birth weight (kg) 3.4 34 3.1 3.4
(3.2-4.0) (2.8-4.1) (24-34) (24-4.1)
Mode of delivery 91 111 2/1 13/2
(normal/caesarian surgery)
Apgar 10 10 10 10
(9-10) (9-10) (8-10) (8-10)
WBC count (x10/L) 8.2 12.1 1 11.8
(4.3-14.7) (4.6-18.7) (94-13.2) (4.6-18.7)
CRP (mg/L) - 4.8 2.1 4.7
(1.2-89) (14-11) (1.2-11)
ESR (mm/h) - 10 9 9
(5-30) (5-25) (5-30)
Wheezing (No. of cases) - 12 3 15
Wheezing duration (days) - 4.5 1 3
(1-6) (1-3) (1-6)
Hospital stay (days) - 7.5 9 8
(4-10) (7-10) (4-10)
MOS (%) - 91.5 90 91
(88-98) (83-91) (83-98)
MRR (/min) N 55 50 55
(40-60) (45-55) (40-60)
Oxygen supplementation - 6 2 8
(No. of cases)
Oxygen supplementation - 1.5 7 4
(days) (1-7) (6-8) (1-8)
Pulmonary X-ray scan
(No. of cases)
Negative - 12 0 12
Infiltrate - 0 3 3

Infants with pneumonia (defined as crackles on auscultation and chest radiographs showing infiltrates) had also developed bronchiolitis (defined as wheezing
with hypoxia and O, saturation < 95%). Medians, range (in parentheses) and the number of patients (n) were determined. Minimal oxygen saturation (MOS) was

measured by percutaneous oxymetry breathing ambient air.

WBC - white blood cells, CRP - C-reactive protein, ESR - erythrocyte sedimentation rate, MRR - maximal respiratory rate (frequency) during hospitalization period.

and 0.1% saponin in Dulbecco’s PBS) and stained with PE-
conjugated anti-human TLR8 PE (Imgenex, San Diego,
USA) for 30 min at 4°C. Unbound antibody was washed
away by centrifugation in permeabilization buffer and cells
were resuspended in staining buffer before analysis by
flow cytometer. Isotype-matched controls for the surface
and intracellular staining were included.

PBMC culture and intracellular TNF-o. production

The samples of fresh PBMC were resuspended in RPMI
1640 medium containing 10% autologus sera. Cell suspen-
sions were incubated in a cultivating medium alone or
with the addition of specific TLR-ligand. For TLR4 stimu-
lation (positive control), 0.1 pg/mL lipopolysaccharide
E. coli 0111:B4 (LPS; Sigma, St Louis, USA) was dissolved
in the cultivating medium, whereas TLR8 stimulation was

achieved using 5 pg/mL thiazoloquinolone derivate
(CLO75; Invivogen, San Diego, USA), respectively, for 6 h
at 37°C in 5% CO, atmosphere, in the presence of 10 pg/
mL brefeldin A (BFA; Sigma). Additionally, 100 pM chlor-
oquine (Sigma) was added to designated tubes one hour
before the activation to block TLR signaling and subse-
quent cytokine production.

After stimulation, the cells were fixed in fixation buffer
for 30 minutes and stored at -80°C until further pro-
cessed as follows: frozen fixed cells were thawed in 37°C
water bath with continuous agitation until completely
melted and resuspended slowly in staining buffer. The
cells were centrifuged at 400 g for 5 minutes. After
washed in permeabilization buffer, cells were labeled
intracellulary with APC-conjugated anti-TNF-a (Becton
Dickinson, Heidelberg, Germany) and FITC-conjugated
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anti-CD68 (AbD Serotec, Oxford, UK) monoclonal anti-
bodies for 30 minutes at 4°C. Myeloid maker CD68 over
CD14 staining was chosen since a robust monocyte sti-
mulation causes CD14 downregulation (Additional file 1:
Fig. S1 and Additional file 2: Fig. S2). Unbound antibody
was washed away by centrifugation in permeabilization
buffer and the cells were resuspended in staining buffer
before analysis by flow cytometer. APC- and FITC-
conjugated isotype-matched control antibodies were
included.

Flow cytometry

Cell samples were analyzed using CellQuest Software on
a FACSCalibur flow cytometer (Becton Dickinson,
Mountain View, USA). The forward and right-angle
scatters were used to establish leukocyte subpopulation
gates. The analysis included collecting 2 000 events in
monocyte gate. Monocytes were designated as CD14"
cells for the TLR8 expression analysis whereas CD68"
cells were acquired for TNF-o analysis. TLR mean fluor-
escence intensity (MFI) values were calculated as differ-
ence between TLR-specific and unspecific isotype
control antibody MFIs [30].

Statistical analysis

The non-parametric Kruskal-Wallis ANOVA and Mann-
Whitney U-test were used inter-group statistical analy-
sis. p-values were corrected for multiple inter-group
comparisons. Statistical relationship between variables
was assessed by means of the Spearman rank order
coefficient. Statistical tests were part of the software
package Statistica v6.0 (Statsoft Inc., Tulsa, USA).

Results

Anti-TLR8 antibodies recognize functional receptors

The protein expression of TLR8 in peripheral blood
monocytes was assessed by flow cytometer. TLR8 pro-
tein was expressed intracellulary (Figure 1) in the major-
ity of circulating monocytes, whereas cell surface
expression was not observed in ex vivo samples (data
not shown). Functional ability of TLR8 to trigger TNF-o
synthesis upon specific ligand binding was tested by
CL075 stimulation of fresh PBMCs. Monocytes rapidly
responded to LPS stimulation (positive control), as well
as to CLO75 (Figure 2) stimulation. The used concentra-
tions of TLR-ligands represent optimal doses for specific
stimulation of monocytes as extrapolated from optimiza-
tion experiments (Additional file 3: Fig. S3). To deter-
mine TLR-independent activation by CL075 ligands,
chloroquine pretreatment was introduced to inhibit
endosomal pH-depended TLR8 signaling. Chloroquine
addition completely abrogated TLR8-mediated TNF-a
production (Figure 2).
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Figure 1 Representative expression of TLR8 in monocytes.
Monocytes from healthy adults were stained with anti-CD14 APC-
conjugated antibody and intracellular with anti-TLR8 PE-conjugated

monoclonal antibody.

Decreased expression of TLR8 in monocytes from RSV-
infected infants

The study involved intracellular TLR8 staining coupled
with surface marker analysis for CD14" monocytes in
PBMC from RSV-infected infants, healthy infants and
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Figure 2 Functional ability of monocytes to respond to specific
TLR8 stimulation and produce TNF-alpha. The monocytes were
stimulated with 5 pg/mL CLO75 and 100 ng/mL LPS for 6 h.
Brefeldin A was added to inhibit cytokine release in the supernatant
and intracellular TNF-a. was stained with anti-TNF-oc APC-conjugated
antibody in CD68-positive monocytes. In separate experiments
PBMC were pretreated for 1 hour with chloroquine prior CLO75
stimulation.
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healthy adults. In comparison to healthy adults, healthy
infants had slightly lower percentages of peripheral
blood monocytes that expressed TLR8, while in RSV-
infected infant group percentages of TLR8-positive
monocytes were the lowest (Figure 3).

A possible difference in TLR8 expression was also
assessed by analyzing MFI values (which corresponds
to TLR8 protein expression level per cell) for RSV-
infected infants, healthy infants and adults. TLR8
expression levels in monocytes were significantly lower
in RSV-infected than in healthy infants and healthy
adults (Figure 4). Among all subject groups, monocytes
from healthy infants had the highest TLR8 expression
levels.

Lower TLR8-mediated TNF-o. synthesis in monocytes from
RSV-infected infants

Functional ability of TLR8 expressed in monocytes, to
trigger TNF-a synthesis upon specific TLR8 ligand
binding was tested by CLO75 stimulation of fresh PBMC
samples from infants in acute RSV infection, healthy
infants and adults. Monocytes rapidly responded to
CL075 and accumulated TNF-o during 6 h of culture.
Percentages of monocytes synthesized TNF-o. were sig-
nificantly lower in RSV-infected infant group than in
healthy infants and adults (Figure 5). However, TNF-a
expression levels in healthy adults were higher than in
healthy infants (MFI median 96.2 vs. 52.3) that further
decreased in RSV-infected infants (MFI median 12.2)
(Figure 6).
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Figure 3 Frequencies of monocytes expressing TLR8 among
healthy adults, healthy infants and RSV-infected infants. Isolated
PBMC from healthy adults (n = 10), age-matched healthy infants (n =
10) and infants with acute RSV infection (n = 15) were surface stained
for CD14 and intracellular for TLR8. Non-parametric Kruskal-Wallis
ANOVA test was acquired to confirm statistical significance and
Mann-Whitney U-test was applied for intergroup analysis. Bold lines
represent median values. Whiskers indicate statistically significant
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Figure 4 TLR8 expression levels in monocytes. Isolated PBMC
from healthy adults (n = 10), age-matched healthy infants (n = 10)
and infants with acute RSV infection (n = 15) were surface stained
for CD14 and intracellular for TLR8. CD14-positive monocytes were
analyzed for TLR8 level (mean fluorescence intensity). Non-
parametric Kruskal-Wallis ANOVA test was acquired to confirm
statistical significance and Mann-Whitney U-test was applied for
intergroup analysis. Bold lines represent median values. Whiskers

difference between marked groups.

indicate statistically significant difference between marked groups.

Higher TLR8 expression and TNF-a synthesis in the
convalescent phase

TLR8 expression levels in monocytes from 10 retested
infants in the convalescent phase (4-6 weeks after first
sampling) were significantly higher than from infants
with bronchiolitis (up to 7 days of disease onset) during
acute RSV infection (Figure 7). Although TLR8 median
expression level was higher in convalescent phase, it still
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Figure 5 Decreased percentages of monocytes producing TNF-
alpha in RSV-infected infants. Fresh PBMC from healthy adults (n
= 10), age-matched healthy infants (n = 10) and infants with acute
RSV infection (n = 10) were stimulated with 5 pg/mL CLO75 for 6 h
in the presence of brefeldin A. Intracellular TNF-a. was stained with
anti-TNF-a. APC-conjugated antibody in CD68-positive monocytes
upon permeabilization. Non-parametric Kruskal-Wallis ANOVA test
was acquired to confirm statistical significance and Mann-Whitney
U-test was applied for intergroup analysis.
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Figure 6 Decreased TNF-alpha levels in monocytes from RSV-
infected infants. Fresh PBMC from healthy adults (n = 10), age-
matched healthy infants (n = 10) and infants with acute RSV
infection (n = 10) were stimulated with 5 ug/mL CLO75 for 6 h in
the presence of brefeldin A. Intracellular TNF-a. was stained with
anti-TNF-o. APC-conjugated antibody in CD68-positive monocytes
upon permeabilization. Non-parametric Kruskal-Wallis ANOVA test
was acquired to confirm statistical significance and Mann-Whitney
U-test was applied for intergroup analysis.

was lower than in tested healthy infants (MFI median
22.6 vs. 33.2).

In the convalescent phase more monocytes produced
TNF-a than in acute infection which was in concordance
with observed difference in the TLR8 expression (Figure
8). However, lower percentages of monocytes from
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Figure 7 Higher TLR8 expression levels in the convalescent
phase. Isolated PBMC from infants with acute RSV infection (n =
10) and in convalescent phase 4-6 weeks after first sampling were
surface stained for CD14 and intracellular for TLR8. CD14-positive
monocytes were analyzed for TLR8 expression level (mean
fluorescence intensity). Non-parametric Kruskal-Wallis ANOVA test
was acquired to confirm statistical significance and Mann-Whitney
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Figure 8 Increased percentages of monocytes producing TNF-
alpha in the convalescent phase. Fresh PBMC from RSV-infected
infants (n = 10) in acute phase and convalescent phase 4-6 weeks
after first sampling were stimulated with 5 pg/mL CLO75 for 6 h in
the presence of brefeldin A. Intracellular TNF-a. was stained with
anti-TNF-a. APC-conjugated antibody in CD68-positive monocytes
upon permeabilization. Non-parametric Kruskal-Wallis ANOVA test
was acquired to confirm statistical significance and Mann-Whitney

U-test was applied for intergroup analysis.

U-test was applied for intergroup analysis.

infected infants in the convalescent phase than from
healthy controls produced TNF-o (median 49.1 vs. 77.8%).

TNEF-o expression levels in the convalescent phase fol-
lowed a positive trend observed for monocyte percen-
tages, reaching levels of healthy infants (MFI median
45.4 vs. 52.3), although still lower than healthy adults
(Figure 9).

Decreased TLR8 expression and TNF-a synthesis correlate

with disease severity

We also determined whether the severity of illness corre-
lated with observed variations in the TLR8 expression in
monocytes of infected infants. Severity of illness was
assessed by clinical parameters such as wheezing dura-
tion, minimal oxygen saturation, oxygen supplementa-
tion, heart rate, maximal respiratory frequency (referring
to respiratory pathway obstruction) and duration of hos-
pitalization. The levels of TLR8 in monocytes inversely
correlated to maximal respiratory frequency (Table 2),
emphasizing possible correlation with lung obstruction.
Moreover, analysis of the TLR8-mediated cytokine synth-
esis upon specific stimulation revealed positive correla-
tion between TNF-a productions with minimal oxygen
saturation in hospitalized RSV-infected infants (Table 2).

Discussion
RSV primarily infects respiratory epithelium where it can
be detected by different pattern recognition receptors
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Figure 9 Increased TNF-alpha levels in monocytes in the
convalescent phase. Fresh PBMC from RSV-infected infants (n =
10) in acute phase and convalescent phase 4-6 weeks after first
sampling were stimulated with 5 pg/mL CLO75 for 6 h in the
presence of brefeldin A. Intracellular TNF-ac was stained with anti-
TNF-a. APC-conjugated antibody in CD68-positive monocytes upon
permeabilization. Non-parametric Kruskal-Wallis ANOVA test was
acquired to confirm statistical significance and Mann-Whitney U-test
was applied for intergroup analysis.

[10,12,31]. In lungs, resident airway macrophages and DC
also enrolled the virus and initiate early innate immune
responses responsible for the virus replication control
[32,33]. In early infection phase, infiltrated monocytes
differentiate into macrophages, becoming the most abun-
dant mononuclear cells in lungs [34]. The importance of
macrophages in RSV infection was confirmed by their
depletion that increased RSV replication [33] and aug-
mented pathological response [35]. Therefore, monocytes
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entering infected lungs differentiate into macrophages or
myeloid DC might participate in RSV control, sensing
the virus via different receptors including the TLR-family.
Human monocytes/macrophages and myeloid dendritic
cells express TLR8 and could sense RNA viruses [36]. In
our study we showed lower percentages of peripheral
blood monocytes expressed TLR8 in RSV-infected infants
compared to other groups (Figure 3). TLRS8 levels were
significantly decreased during acute RSV infection com-
pared to healthy infants (Figure 4), indicating that defi-
cient virus recognition by monocytes/macrophage could
compromise efficient anti-RSV immune response and
development of more severe disease. Synthetic TLRS
ligands can induce Thl immune responses regardless of
whether monocytes/macrophages or monocyte-derived
DC were used [19,37-39]. Therefore, decreased TLRS8
expression in monocytes from RSV-infected infants
might explain lower Thl-polarizing cytokine production
i.e. TNF-a, IL-12p70 and IFN-y observed during acute
RSV-infection [22,40-42]. In our study, healthy infants,
compared to adults, had lower percentages of TLR8-
positive monocytes but higher TLR8 expression levels
that compensated for the total amount of intracellular
TLRS (Figure 4).

The functional relevance of decreased TLR8 expression
in monocytes from infected infants was analyzed measur-
ing intracellular TNF-a synthesis upon TLR8 stimula-
tion. As expected, significantly lower percentages of
monocytes from RSV-infected infants produced TNF-o
compared to healthy adults and infants (Figure 5).
Although Levy at all [25,43] shoved that in vitro TLR8
stimulation of newborn blood samples induce compar-
able TNF-a levels to adult blood measured by ELISA, we
tested amount of TNF-a production on a single cell level
by intracellular staining technique. We found that mono-
cytes from healthy infants produced less TNF-a than

Table 2 Correlations of clinical data and experimental findings

Clinical findings % TLR8* monocytes

TLR8 MFI in monocytes

% TNF-oi" monocytes TNF-o. MFI in monocytes

(n =15) (n =15) (n=10) (n=10)

Age (months) -0.40 -041 0.01 -0.27

WBC count (x10%/L) 0.23 0.34 -048 -0.09

Wheezing duration 0.02 032 -0.23 -0.55
(days)

MOS (%) -0.01 -0.05 0.73 0.66

Oxygen supplementation 0.22 0.10 0.16 0.31
(days)

Heart rate (/min.) -0.11 -045 -0.05 0.19

MRR (/min.) -0.05 -0.59 037 0.26

Hospital stay (days) -0.21 -0.16 0.18 0.55

Overall statistical correlations of clinical data from RSV infected infants and experimental findings were assessed by Spearman rank correlation test. Numbers
represent Spearman rank correlation coefficients and those with significant p-values (< 0.05) are in bold.

WBC - white blood cells, MOS - minimal oxygen saturation measured by percutaneous oxymetry breathing ambient air, MRR - maximal respiratory rate

(frequency) during hospitalization period.
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adults (Figure 6) that coincide with findings by Kollmann
et al [43]. Monocytes from RSV-infected infants pro-
duced even lower TNF-a levels compared to healthy
infants implicating acquired innate immunity suppression
frequently observed in acute viral infections, respectively.

To test whether a difference in TLR8 expression and
specific TNF-o production is the transitory effect occurred
during acute RSV infection, infants were retested in the
convalescent phase (4-6 weeks after first sampling) and
increase in TLR8 expression levels was observed but
haven’t reached levels from healthy infants (Figure 7). Per-
centages of TLR8-positive monocytes from RSV-infected
infants in the convalescent phase didn't statistically differ
to acute phase (data not shown). Moreover, specific TLR8
stimulation of monocytes from infants in acute infection
induced less TNF-a than in the convalescent phase, mea-
sured as percentage of monocytes producing TNF-a
(Figure 8) and TNF-a MFI (Figure 9) confirming func-
tional relevance of the observed lower TLR8 expression in
diseased infants.

Since only a fraction of all RSV-infected infants
develop severe LRT disease and virtually all children
become infected at least once by the age of two, it may
be that decreased TLR8 expression predisposes for
severe disease. In our study TLRS8 levels in monocytes
negatively correlated with disease severity, described as
tachypnea (Table 2). In concordance, percentage of
monocytes producing TNF-a during acute RSV infec-
tion positively correlated with minimal oxygen satura-
tion (Table 2) upon TLR8 stimulation. Both findings
implicate impaired early innate immune response in
infants with RSV-bronchiolitis linked to lower TLR8
expression and subsequent lower TNF-a release, that
has been associated with acute RSV infection [44,45].
Moreover, recently published analysis of TLR8 poly-
morphism linked to allergic asthma, indicate importance
of TLRS in type 1 vs. type 2 immune response balance
that has been also impaired in infants with severe RSV
infection [46].

Opposite to our findings, acute viral infections would
increase TLR8 expression via type I IFN autocrine
mechanism, respectively. Increased mRNA for TLR8
were detected in PBMC from infants with acute rota-
virus infection [47,48]. Interestingly, Th2 cytokines like
IL-4 and IL-13 downregulate toll-like receptors involved
in anti-viral immune response [49] and could explain
our findings of lower TLR8 expression, since RSV
causes significant Th2 cytokine production [22,42] ver-
sus Thl cytokine response predominantly found in
infants infected with rotavirus [48]. Whether the
observed decreased TLR8 expression is RSV-specific,
infants with other viral infections should be investigated.

Page 8 of 10

Conclusions

Lower TLR8 expression in monocytes during acute RSV
infection might have a dampening effect on the early
anti-viral cytokine production, upon RSV recognition,
necessary to control viral infection and leading to severe
LRT disease in infected infants. Depressed TLR8 expres-
sion in the convalescent phase might contribute to the
subsequent RSV reinfections, frequently observed in
infants.

Additional material

Additional file 1: Figure S1: Representative figure of unstimulated
and CLO75-stimulated monocytes stained with CD14 antibody. Fresh
PBMC from healthy adult were stimulated with 5 pg/mL CLO75 or
cultured in media only for 6 h, in the presence of brefeldin A. Surface
CD14 staining was performed. Staining with isotype matched control
antibody is also included.

Additional file 2: Figure S2: Representative figure of unstimulated
and CLO75-stimulated monocytes stained with CD68 antibody. Fresh
PBMC from healthy adult were stimulated with 5 pg/mL CLO75 or
cultured in media only for 6 h, in the presence of brefeldin A.
Intracellular CD68 staining was performed. Staining with isotype matched
control antibody is also included.

Additional file 3: Figure S3: Determination of optimal CLO75
concentration for in vitro culture. Optimization was performed using
fresh adult PBMC (n = 3) and increasing CLO75 concentrations (2.5-10
pg/mL). Production of TNF-o in monocytes, as well lymphocyte and
monocyte cell count ratio were acquired after 6 hours of culture.
Columns represent ratio between monocyte and lymphocyte counts,
expressed as monocyte percentages where 100% represent ratio in
PBMC cultured in media only. Dots within columns represent TNF-o
producing monocytes expressed as percentage. Values are median values
of three tested adults.
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