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Abstract

Background: Each year, influenza virus infection causes severe morbidity and mortality,
particularly in the most susceptible groups including children, the elderly (>65 years-old) and
people with chronic respiratory diseases. Among the several factors that contribute to the
increased susceptibility in elderly populations are the higher prevalence of chronic diseases (e.g.
diabetes) and the senescence of the immune system.

Methods: In this study, aged and adult mice were infected with sublethal doses of influenza virus
(A/Puerto Rico/8/1934). Differences in weight loss, morbidity, virus titer and the kinetics of lung
infiltration with cells of the innate and adaptive immune responses were analyzed. Additionally, the
main cytokines and chemokines produced by these cells were also assayed.

Results: Compared to adult mice, aged mice had higher morbidity, lost weight more rapidly, and
recovered more slowly from infection. There was a delay in the accumulation of granulocytic cells
and conventional dendritic cells (cDCs), but not macrophages in the lungs of aged mice compared
to adult animals. The delayed infiltration kinetics of APCs in aged animals correlated with alteration
in their activation (CD40 expression), which also correlated with a delayed detection of cytokines
and chemokines in lung homogenates. This was associated with retarded lung infiltration by natural
killer (NK), CD4* and CD8* T-cells. Furthermore, the percentage of activated (CD69+) influenza-
specific and IL-2 producer CD8+ T-cells was higher in adult mice compared to aged ones.
Additionally, activation (CD69+) of adult B-cells was earlier and correlated with a quicker
development of neutralizing antibodies in adult animals.

Conclusion: Overall, alterations in APC priming and activation lead to delayed production of
cytokines and chemokines in the lungs that ultimately affected the infiltration of immune cells
following influenza infection. This resulted in delayed activation of the adaptive immune response
and subsequent delay in clearance of virus and prolonged illness in aged animals. Since the elderly
are the fastest growing segment of the population in developed countries, a better understanding
of the changes that occur in the immune system during the aging process is a priority for the
development of new vaccines and adjuvants to improve the immune responses in this population.
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Introduction

Influenza virus infects a variety of species, including
swine, horses, birds, and humans. Hemagglutinin (HA)
and neuraminidase (NA) are the important antigenic pro-
teins on the surface of the virus and both undergo two
types of antigenic variation: drift and shift. Antigenic drift
involves minor changes in these antigens, while shift
involves major changes in these molecules that result
from replacement of a gene segment(s). New viral vari-
ants, due to antigenic drift, emerge constantly and are
responsible for yearly epidemics. In contrast, antigenic
shifts can produce new virus strains to which most people
have no immunity resulting in pandemics. On average,
influenza virus infects 5-10% of the global population
and results in approximately 500,000 deaths annually. In
the United States, influenza virus infections account for
200,000 cases of hospitalizations and 36,000 deaths
[1,2]. Among the most susceptible populations are chil-
dren, pregnant women, the elderly (>65 years) and people
with chronic respiratory diseases.

The fastest growing segment of the United States popula-
tion is individuals over 65 years of age. The elderly have
an increased morbidity and mortality to due influenza, as
a result of secondary bacterial and viral infections [3]. Sev-
eral immunological changes occur in the senescent
immune system in humans, including impairments in ini-
tiation and activation of the immune response and induc-
tion and maintenance of immune memory [4,5]. In the
case of influenza infections, even though the hospitaliza-
tion rates for children less than 5 years and adults over 70
years of age are almost identical, individuals older than 70
years have a 35-fold increase in mortality [6,7]. Vaccina-
tion can reduce the rates of hospitalization, however pro-
tection induced by immunizations is diminished in the
elderly compared to the adults as demonstrated by lower
antibody titers and higher rates of respiratory illness [8].
Additionally, cell-mediated immune responses to vacci-
nations are decreased in the elderly [9,10].

Studies with sub-lethal virus infections in aged mice have
closely resembled the human situation indicating a delay
in virus clearance. This delay was accompanied by a delay
and decrease in T-cell responses [4,5,11,12]. Importantly,
age-associated changes in the innate response to virus
infection, such as production of interferons (IFN) alpha
and beta and the activation of innate cells (macrophages,
DCs, granulocytes and NK cells), has been poorly
explored.

The study presented in this report, globally evaluated the
kinetics of activation and infiltration of the primary
innate and adaptive immune cell populations in aged and
adult mice following influenza virus infection. There were
alterations in APCs in aged animals including the up-reg-
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ulation of activation markers, especially CD40, which cor-
related with delayed production of IL-12 and several other
cytokines including IFN-y and IL-6 in the lungs of aged
animals. Chemokine production was also altered, which
also correlated with a delayed infiltration of innate cells
and lymphocytes into lungs. Of these populations, the
activation of NK and B-cells was altered and the produc-
tion of neutralizing anti-influenza antibodies was
detected 2 days later in aged mice compared to adult mice.
Aged mice also had a significantly lower percentage of
activated influenza HA-specific CD8+ T-cells. The altera-
tions in the immune response correlated with a delay in
virus clearance and slower recovery in aged animals. In
summary, all these findings suggest that early alterations
in the innate immune system translate into delayed acti-
vation of the adaptive immune responses and conse-
quently in prolonged illness. As the elderly population
continues to increase, a better understanding of the
changes that the immune system undergoes with the
aging process is becoming a key factor for the develop-
ment of new vaccines and adjuvants to improve the
immune responses in this segment of the population.

Materials and methods

Virus infections and Animals

Female BALB/c mice (Harlan-Sprague, Indianapolis, IN,
USA) were infected with the mouse adapted influenza
virus, A/Puerto Rico/8/34 (H1N1) (PR8), at 12-16 weeks
of age (adult) or 72-76 weeks of age (aged). Mice were
anesthetized with a mixture of ketamine and xylazine and
intranasally instilled with 50 pl of PBS containing 50-100
pfu of PR8. Following infection, mice were monitored
daily for morbidity (weight loss and sickness score) and
mortality. Sickness score included evaluation of ruffled
fur, hunched back and activity (Table 1). Animals were
treated according to the guidelines of the IACUC of the
University of Pittsburgh. All the protocols used were
approved by the IACUC of the University of Pittsburgh.

Table I: Symptom Score

Score Symptoms 0 each I each 2 each

Ruffled Fur Absent Present

Hunched Back Absent Present

Activity Normal  Reduced  Severely Reduced

Mice were evaluated daily and scored for individual symptoms. Ruffled
fur (absent = 0; present = |), hunched back (absent = 0; present = 1)
and activity (normal = 0; reduced = |; severely reduced = 2) were
evaluated. The final score was the addition of each individual symptom
score (e.g. an animal showing ruffled fur (1), hunched back (I) and
reduced activity (I) was scored as 3). The minimum score was 0 for a
healthy mouse and -4 for illness, depending on severity.
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Tissue harvesting and cell isolation

Lungs were harvested (n = 3 - 6 per time point per experi-
ment) ondays O, 1,2,3,5,7,9,11, 15 and 19 post-infec-
tion. In some specific time points, a higher number of
animals were used to confirm results for some assays (see
legend on each figure for description on time points with
higher number of animals). Lungs were exposed by open-
ing the chest cavity and rinsed with cold 1x PBS (4 ml),
through the right heart ventricle. The lungs were then
removed and forced into suspension in 1x PBS (4 ml)
using a cell strainer (70 um) and a syringe plunger. Tissue
samples were then spun down (2500 rpm, 5 min, 4°C)
and the supernatants of the lung homogenates collected
and stored at -80°C until analysis. The remaining cell pel-
let was resuspended in 5 ml of red blood cell lysis buffer
(ACK buffer) and incubated for 5 min at room tempera-
ture (RT). Cells were then washed (2x - 2500 rpm, 5 min,
4°C) with 15 ml of 1x PBS and resuspended in 1 ml 10%
RPMI (Mediatech, Manassas, VA, USA). Total number of
viable cells was determined by trypan blue exclusion.

Plaque assay

Lung virus titers were determined by plaque assay using
Madin Darby canine kindey (MDCK) cells (ATCC, Manas-
sas, VA, USA). Briefly, MDCK cells were grown in 6 well
plates until 90% of the cell monolayer was confluent.
Cells were washed twice in DMEM (Mediatech, Manassas,
VA, USA). Lung supernatants were gently thawed on ice
and 100 pl of the different dilutions (10! to 10°) were
plated on MDCK cells and allowed to adsorb for 1 hour at
RT. Excess virus was washed away with DMEM (2x) and
cells were overlayed with a 2.5 ml of 1:1 mixture of 1.6%
agarose, 2x L-15 medium (Cambrex, East Rutherford, NJ,
USA) and 0.6 pg/ml trypsin (Sigma, St. Louis, MO, USA).
Plates were incubated for 48 hours (37 C, 5% CO2) and
then the agarose removed, cells fixed (70% ethanol) and
stained with 1% crystal violet. Virus plaques were counted
and the plaque forming units per ml (pfu/ml) were deter-
mined using the formula: (# plaques x dilution factor)/
0.1 ml. All samples were run in duplicate.

Multiplex and ELISA for detection of cytokines

Lung homogenate supernatants were assayed for a panel
of cytokines and chemokines (IL-1 a, IL-1f3, IFN-y, TNF-q,
IL-12 (p70), IL-6, KC, MIP-1B, RANTES and MCP-1) using
a multiplex-assay (Bio-Rad, Hercules, CA, USA) according
to the manufacturer's instructions. Briefly, 50 pl of a 1x
anti-cytokine bead dilution were added to activate 96-well
filter plates (100 pl of Bio-Plex Assay Buffer A) and then
the plates were washed (2x - 100 pl of Bio-Plex Wash
Buffer A). Lung cell suspensions were gently thawed, cen-
trifuged (1 min at 12,000 rpm) and added to the appro-
priate wells (50 ul). The plates were then incubated with
shaking (300 rpm) in the dark for 30 min at 25°C, fol-
lowed by washes (3x) and addition of the detection anti-
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bodies (25 pl/well). Plates were incubated in the dark (30
min, shaking at 300 rpm), followed by three washes, and
then 50 ul of a 1:100 dilution of Streptavidin-phyceryth-
rin (PE) was added. Following the 10 min incubation, the
plates were washed (3x) and then the beads in each well
were resuspended in 125 pl of Bio-Plex Assay Buffer A. The
plates were shaken for 30 sec (1,100 rpm) and immedi-
ately read using a Luminex® 200™ Total System machine
(Luminex Corp, Austin, TX, USA). A total of 100 beads per
region in a sample volume of 50 ul were counted. The data
were analyzed using the LDS1.7 Software. All samples
were assayed in duplicate.

Additional cytokines (IFN-a, IFN-B and TGF-a) were
assayed by sandwich ELISA (PBL Biomedical Laboratories,
Piscataway, NJ and eBioscience, San Diego, CA, USA).
Briefly, 100 pl of lung homogenate supernatants were
added to anti-cytokine coated plates and incubated at RT
for 1 hr. Plates were washed (200 pl) with the appropriate
wash buffer, followed by the addition of the appropriate
detecting anti-cytokine biotinylated antibody (100 pl).
Plates were incubated for 24 hr (IFN-a) or 1 hr (IFN-f and
TGF-a) at RT. Following 3 washes with the appropriate
buffers, avidin-HRP reagent (100 pl) were added and the
plates were incubated for 1 hr at RT. Finally, 100 ul of
TMB substrate was added to each well and the plates were
incubated in the dark for 20-30 min. The reaction was
stopped with 50 ul sulfuric acid (2N) and the colorimetric
analysis was determined by a spectrophotometer at an
optical density of 450. Cytokine concentrations were
determined by linear regressions using the standard curve
provided in the kit as reference. Each sample was assayed
at least in duplicate.

Flow cytometry

Isolated lung cells (1-2 x 10¢) were stained for flow
cytometry (FACS) analysis. Briefly, cells were resuspended
(1 x 107/ml) in FACS buffer (1x PBS, 3% FBS, 1% Sodium
Azide, 1 mM EDTA). Cells (100 pl) were plated in v-
shaped 96-well plates and gently centrifuged (1200 rpm,
3 min, 4°C) to pellet. Supernatants were removed and
then cells were blocked with mouse anti-Fc antibody (BD
Pharmigen, San Jose, CA) for 20 min. Cells were stained
with the appropriate antibody panels specific for cell sur-
face markers conjugated to specific flurochromes, CD19-
APC-Cy7, CD69-PE-Cy7, CD8-FITC, CD11b-PE, and
CD11c-PE-Cy7, (BD Pharmigen, San Jose, CA, USA) or
CD3-APC-Cy7, CD4-APC, CDG9-PE, CD49b-Pe-Cy?,
CD40-APC, MCH Class II-Alexa Fluor 700, F4/80-APC
and Ly-6G-FITC (eBioscience, San Diego, CA, USA), as
well as their isotype controls. Cells were then washed (2x)
with 200 pl of FACS buffer and stained for viability (Live/
Dead fixable blue-fluorescent reactive dye, Molecular
probes, Eugene, OR, USA) for 30 min. Samples were
washed PBS (2x) and then FACS buffer (1x). Finally, cells
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were fixed with 1% formalin and stored at 4°C. Samples
were collected in a BD LSR II flow cytometer and the data
were analyzed by FlowJo software (Tree Start Inc. Ashland,
OR, USA).

Influenza specific CD8+ cells were assayed using HAs, 5 556
(IYSTVASSL) and NP,,,.;55 (TYQRTRALV) MHC class I
(H-2K4d) restricted immunodominant peptides sequences
conjugated to Pentamers-PE (Prolmmune, Oxford, UK).

For intracellular staining 2 x 106 cells were plated and
stimulated with HA (IYSTVASSL) and NP (TYQRTRALY)
MHC class I (H-2Kd) restricted peptides (1 ug/ml) (Pep-
scan, Lelystad, The Netherlands) for 5 hours (37 C, 5%
CO2) in media containing Monensin (eBioscience, San
Diego, CA, USA) and Brefeldin A (Sigma, St Louis, MO,
USA). Following stimulation, the cells were surface
stained as described before and then permeabilized and
stained with intracellular antibodies: IFN-gamma-PE-Cy7
(BD Pharmigen, San Jose, CA, USA), TNEF-alpha-FITC
(eBioscience, San Diego, CA, USA) and IL-2-PE (eBio-
science, San Diego, CA, USA).

Myeloperoxidase (MPO)

MPO was assayed by ELISA (HyCult, Uden, The Nether-
lands) in lung supernatants of infected mice (three per
time point). Harvested lungs were harvested and forced
into suspension in 3 ml of lysis buffer (200 mM NacCl, 5
mM EDTA, 10 mM tris, 10% glycine, 1 mM PMSF), 1 ug/
ml leupeptide and 28 ug/ml aprotinine, at pH 7.4). A 1:16
dilution in 1x PBS was assayed following the suggestion
of the manufacturer.

Hemagglutination inhibition (HAI) Assay

HALI assay was used to assess functional antibodies to the
HA able to inhibit agglutination of turkey red blood cells
(TRBC). This assay was performed as described previously
[13]. Briefly, one part sera were treated with three parts of
receptor destroying enzyme (RDE) (37°C - overnight).
RDE was later inactivated by incubation at 56°C (30 min)
and six parts of PBS added. RDE-treated sera were two-
fold serially diluted in v-bottom microtiter plates. An
equal volume of PR8 virus, adjusted to approximately 8
HAU/50 ml, was added to each well. The plates were cov-
ered and incubated at room temperature for 20 min fol-
lowed by the addition of 1% TRBC (Lampire Biologicals,
Pipersville, PA, USA) in PBS. The plates were mixed by agi-
tation, covered, and the RBCs were allowed to settle for 30
min at room temperature. The HAI titer was determined
by the reciprocal dilution of the last well which contained
non-agglutinated RBC. Positive and negative serum con-
trols were included for each plate.
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Statistics

Differences in weight loss, sickness score, virus titer,
cytokine/chemokines and flow cytometry data between
mice of the same age group were analyzed by one-way
ANOVA, followed by Dunnett's post test. Analysis of
results from aged and adult mice at different time points
(multiparametric) was assessed by two-way ANOVA tests.
Significant was identified as p < 0.05, the data were further
analyzed by a Bonferroni post-test. Significant differences
in survival were measured using log-rank and Wilcoxon-
Gehan tests. Statistical analyses were done using Graph-
Pad software.

Results

Enhanced morbidity in aged mice following infection with
influenza virus

In order to develop a comprehensive understanding of the
immunological reaction to influenza infection by the
aged immune system, lungs from aged (72-76 weeks-old)
and adult (12-16 weeks-old) mice were collected follow-
ing a sublethal dose of influenza PR8 virus (50-100 pfu).
Following infection, both adult and aged mice had a rapid
drop in body weight until day 9 post-infection (Fig. 1A).
Adult mice rapidly recovered and returned close to their
original body weight by day 15 post-infection. This recov-
ery in body weight corresponded to a drop in morbidity
as defined by sickness score (Fig. 1B). In contrast, aged
mice had a slower recovery, a prolonged period of mor-
bidity, and did not return to pre-infection body weight by
day 19 post-infection. Despite higher viral lung titers in
adult mice (Fig. 1C), all adult and almost all aged mice
survived infection (100% vs 96.6%). Furthermore, viruses
were recovered for two extra days in aged animals (Fig.
1C).

The total number of cells in the lung began to increase in
adult mice at day 5 post-infection and peaked at 4 x 107
cells/gram on day 9 (Fig. 2). In aged mice, cells began to
increase in the lungs at day 7 post-infection. The total cell
number peaked at day 15 (~4.5 x 107 cells/gram) in aged
mice; 4 days later than in adult mice (Fig. 2).

Enhanced number of innate cells in the lungs of influenza
infected mice

Cells infiltrating the lung were phenotyped to identify dif-
ferent populations of innate and adaptive cells post-infec-
tion (Fig. 2B and Table 2). Among the innate cells,
granulocytes (CD11bhigh/CD11clow/Gr1high),  conven-
tional dendritic cells (cDCs) (CD11bhigh/CD11chigh) and
macrophages (CD11bhigh/CD11clow/Gr1med) were
assayed. Gating and characterization of these cell popula-
tions in the lung has previously been reported [14,15].
Granulocytes, cDCs and macrophages correspond to R5,
R3 and R6 gates on Fig. 2B. The last two populations rep-
resent antigen presenting cells (APCs) [16,17]. Expression
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Figure |

Mouse Morbidity and Lung Virus Titer. Following infection with a sublethal dose of PR8 virus, mice were eval-
uated daily for weight loss (A) and increase in sickness score (B). Adult mice initial weight was significantly
lower than aged animals (21.27 * 0.2785 vs 24.93 £ 0.5157; P < 0.01). Aged animals (white squares) lost weight
quicker, had a higher sickness score and recovered slower than adult mice (black circles). Mock infected ani-
mals (white circles -- adults; black squares - aged) did not lost weight or showed signs of disease. Influenza virus
titer was evaluated in lung supernatants of adult (black bars) and aged (white bars) mice by plaquing on MDCK
cells (C). Aged and adult mice had high virus titer in the lungs. Virus was recovered for a longer period of time
in aged animals (C), which correlated with the delayed weight recovery (A) from aged animals and delayed
reduction in sickness score (B). This suggested alterations in the immune system of elderly animals. Panels A
and B are composites of three different experiments and panel C of 2 experiments. In each graph, the arith-
metic mean £ SEM are displayed. The number of animals (N) used to generate each graph is displayed at the
bottom of each panel. Stars indicate statistical difference between aged and naive animals. *P < 0.05. **P <
0.01. **P < 0.001.
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of F4/80 was low on all these populations (data not
shown). Prior to viral infection, there was not a statistical
difference in the percentage of lung cells staining positive
for these populations in aged mice compared to adult
mice (Fig. 3A). However, there was a trend for a higher
percentage of granulocytes in aged mice. Following infec-
tion, there was a delay in the number of granulocytes and
cDCs cells, but not macrophages, infiltrating into the
lungs of aged mice compared to adult mice (Fig 3C-D).
cDCs peaked by day 7 in adults and day 9 in aged mice
(Fig. 3D). Finally, granulocytes had a biphasic increase in
cell numbers in the lungs. Initially in adult mice, cells
spiked on day 2 and again on day 11 (Fig. 3B). A similar
delayed pattern was detected in aged mice with the high-
est spikes in granulocytes by days 3 and 15 post-infection.

Activation markers of innate cells

Activation of APCs was determined by the up-regulation
of CD40 and MHC class 1II cell surface markers. The sur-
face expression levels of CD40 on lung macrophages and
cDCs collected from adult and aged mice was similar prior
to infection (Day 0) (Fig. 4A and 4D). Cell surface CD40
on lung macrophages was significantly up-regulated
within 2-3 days post-infection in adult mice, but did not
increase on the same cells from aged mice until day 5
post-infection (Figs. 4B). Similar CD40 up-regulation pat-
terns on lung cDCs from adult mice were detected (Figs
4E). MHC class II expression was also similar on lung
macrophages and cDCs of adult and aged animals at day
0. Despite that lung macrophages from adult mice
appeared to up-regulate MHC class II more quickly than
the same cells from aged animals, the differences were not
statistically significant, except for day 9. Similarly, no dif-
ferences were detected between lung cDCs from adult and
aged animals (Fig. 4D). For activation of granulocytes, the
production of myeloperoxidase (MPO) was assessed.
Both adult and aged mice produced similar levels of MPO,
except for day 9 post-infection, in which aged mice had a
significantly higher level of MPO (data not shown).

Cytokines and chemokines produced by macrophages and
cDCs

Activated immune cells produce various cytokine and
chemokines following influenza infection [18-20]. In
order to determine if the delay in activation of aged
immune cells may be a result of impairment cytokine
secretion, supernatants of lung homogenates were
assessed for a panel of cytokines/chemokines (Fig. 5, 6).
IL-12,;, (active form of [L-12) was detected at higher con-
centrations in the lungs of adult mice as early as day 5
post-infection (~400 pg/ml) compared to aged mice,
which had a slower rise and plateau at half the concentra-
tion (~200 pg/ml) (Fig. 5A). Adult mice maintained an
elevated level of IL-12,, between days 5 and 15 post-
infection before declining. In adult mice, IL-1B (pro-
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inflammatory cytokine) concentrations peaked at day 5
post-infection, but steadily increased in aged mice (Fig.
5B). Interestingly, TNF-a and IL-1a (pro-inflammatory
cytokines) concentrations increased similarly in both
adult and aged mice until day 5, when the levels of these
two cytokines declined over the 19 days of observation in
adult animals (Fig. 5C and 5D). In contrast, these two
cytokines continued to increase in aged mice with signifi-
cantly higher concentrations at day 7-9 post-infection
(Fig. 5C and 5D). This might reflect the increased ten-
dency to produce inflammatory mediators that has been
described in elderly individuals [21,22].

The concentrations of IFN-y and IL-6, both highly pro-
duced by lymphocytes, began increasing in the lungs of
adult mice at day 5 post-infection and 2-3 days later in
aged mice. Despite of the earlier increase of IFN-y in adult
animals, the peak of this cytokine was higher in aged ani-
mal (day 7 p < 0.01) (Fig. 5E). On the other hand, the
peak of IL-6 was similar in both ages of mice (Fig. 5F).
There were no differences in the levels of IFN-a and IFN-
B cytokines measured in the supernatants of lung
homogenates between adult and aged mice (data not
shown).

MIP-1p and KC (murine homologue of human functional
IL-8 [23]) are important chemokines for attraction of lym-
phocytes and granulocytes to the site of infection, respec-
tively [23,24]. The concentration of these chemokines,
increased in the lungs of adult mice 2-3 days post-infec-
tion, peaking at days 5-7 (Fig. 6A and 6B). In aged ani-
mals, the rise of MIP-1f3 was delayed by 2 days and peak
production of MIP-1p and KC were delayed by 2 days
compared to adult mice (Fig. 6A and 6B). Both chemok-
ines returned to baseline levels by day 19 post-infection.
MCP-1, a monocyte chemoattractant, was elevated in the
lung of aged mice (Fig. 6C), which followed a similar pat-
tern as TNF-a and IL-1a. There was a biphasic expression
pattern of RANTES (monocyte and lymphocyte chemoat-
tractant [25,26]) in the adult mice with a peak in concen-
tration at day 5 and then again at day 15 post-infection
(Fig. 6D). In aged mice, there was an increase in RANTES
between days 3-5 that was 2-4 fold lower than observed in
adult mice, which then plateau at ~1500 pg/ml for the
remainder of the experiment.

Lymphocytic immune cell phenotypes following infection

There were no significant differences in the baseline levels
of B cell (CD19+ CD3- DX5-) or natural killer (NK) cells
(DX5* CD3- CD19°) between aged and adult mice (Fig.
7A). NK cells in the lungs of adult mice increased 3 fold
between 3 and 5 days post-infection and peaked at day 9
(1.5 x 106 cell/gram), whereas there was no significant
increase in the number of NK cells in the lungs of aged
mice (Fig. 7B). B cells in both aged and adult mice began
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Lung Cell Infiltration. Isolated lung cells were evaluated for viability by trypan blue exclusion (A). The number
of cells was adjusted for the weight of the lungs and reported as cells per gram of tissue. Aged mice (white
squares) showed a delay in the kinetics of lung cell. The graph shows cumulative data of three sets of experi-
ments, a total of 9 mice were assayed at each time point, except for days 15 and 19, which contain 8 animals
each. (B) Gating strategy used to analyze innate cells in the lungs. Initially cells were gated in the non-lym-
phocyte area (R1), this was followed by selection in the live gate (R2). Two APC populations (R3 and R4 gates)
were selected based on CDIIb and CDI Ic expression. R3 gate corresponds to cDCs (CDI I chigh/CD | | bhigh),
Cells in R4 gate were further divided based on the diffential expression of Gr-1 (neutrophils (CDI |bhigh/
CD| I clov/Gr1high) and lung macrophages (CD | bhigh/CD| | c'o¥/Gr 1 med). MHC class Il and CD40 expression was
analyzed in R3 and R6 gates. An average of 500,000 events was collected for the analysis of these populations.
Stars indicate statistical difference between aged and naive animals.*P < 0.05. **P < 0.01. ***P < 0.001.

to increase in the lungs at day 11 post-infection, with
slightly higher number of B cells in the lungs of aged mice
(Fig. 7C). There was a delay in the number of activated
cells in these two cell populations in the lungs of aged
mice compared to adult mice, as indicated by surface
expression of CD69, with fewer percentages of activated
cells in aged than adult mice (Fig. 7D and 7E). Consistent
with a delayed activation of B-cells in aged animals,

hemagglutination-inhibition (HAI) specific antibodies
were detected later in aged mice than in adult mice (Fig.
8).

Influenza specific T-cell responses

Adult mice had a significantly higher baseline percentage
of lung CD8+ (CD3+ CD8+) and CD4+ (CD3+ CD4+) T-
lymphocytes compared to aged mice (Fig. 7A). However,
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Figure 3

Innate Cells in the Lungs. Naive mice (day 0) had no statistically significant differences in the innate populations analyzed by
flow cytometry (A); however, aged animals had the tendency to have a higher percentage of granulocytes. There was a delay in
the kinetics of granulocyte and cDCs infiltration in the lungs of aged mice (white squares) (B and D), which suggested altera-
tions in chemokine production. Lung macrophages did not show altered infiltration kinetics, but cleared more quickly from the
lungs of adult mice (black circles) (C), which correlated with a quicker recovery from adult mice. Stars indicate statistical differ-
ence between aged and naive animals.*P < 0.05. **P < 0.01. **P < 0.001.

Table 2: Adaptive Immune Cell Markers

Markers B Cells Activated B Cells CD4+ T Cells Activated CD4+ T CD8+ T Cells Activated CD8+ T NK Cells
Cells Cells

CDI9 Positive  Positive

CD3 Negative Negative Positive Positive Positive Positive Negative

CD4 Positive Positive Negative Negative

CDs8 Negative Negative Positive Positive

DX5 Negative Positive

CDé69 Positive Positive Positive

Isolated lung cells were immunophenotyped using various antibody panels. This table summarizes the basic definitions used for each population
studied in the adaptive compartment.
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there was a delay in the infiltration of new CD4+ and
CD8+ T-cells in aged mice compared adult mice (Fig. 9A
and 9B). Both subpopulation of T-cells increased in the
lungs of adult mice at day 5 and peaked at day 9 (Fig. 9A
and 9B). These same T-cell populations did not start
increasing in the lungs of aged mice until day 11 post-
infection. Despite differences in overall cell number in the
lungs between adult and aged mice, there was no signifi-
cant difference in the activation of either T-cell population
between adult and aged mice (Fig. 9C and 9D). To further
test this, immunodominant influenza MHC class I
(HA5 5506 IYSTVASSL and NP, ,ss TYQRTRALV)
restricted epitopes were used. There were significant dif-
ferences in influenza HA-specific activated CD8+ T-cells
between adult and aged mice between days 9 and 19 (Fig.
9E). There were no significant differences in the percent-
age of activated CD8+ T-cells specific to NP (Fig. 9F). No
statistically significant differences in the percentage of HA
or NP specific CD8+ T-cells producing IL-2, TNF-a or IEN-
v were detected between adult and aged mice by day 15.
Despite this, adult mice had the tendency to have a higher
percentage of cytokine producing CD8+* cells (Fig 10A - F).

Discussion

Influenza virus affects all ages of humans; however, the
elderly (>65 years-old) have increased susceptibility to
infections and are especially predisposed to complica-
tions [6]. The increased morbidity and mortality reported
in elderly populations are due to several factors that
include subjacent chronic diseases, such as diabetes and
cancer, as well as dysfunctions in the senescent immune
system. The mouse model has proven to be an important
tool to explore the pathogenesis of influenza, especially
due to the similarities to human infections [27]. The eld-
erly mouse model has also proven to be useful to explore
the effects of age on the immune responses to several res-
piratory infectious agents including Mycobacterium tuber-
culosis and influenza virus [18,28,29]. However, most of
the studies have focused on the T-cell compartment and
indicated that altered T-cell proliferation and memory
results in decreased and delayed CTL activity [4,28,30-33].
Few reports have addressed the role of the aging innate
immune system on the protection to influenza virus and
only few reports have explored phagocytic functions, NK
cell activity, and IFN-o/p production in the aged animals
using other pathogens [34-40]. In this study, the immune
responses to influenza virus in the lungs of aged animals
were evaluated. Alterations in APC up-regulation of CD40
correlated with delayed production of cytokines and
chemokines in the lungs, which correlated with infiltra-
tion of immune cells into these organs. Finally, this corre-
lated with a delayed activation of the adaptive immune
responses and subsequent delay in clearance of virus.

http://respiratory-research.com/content/10/1/112

The earlier weight loss and enhanced morbidity in aged
animals suggests less effective innate immune responses
against influenza virus in these mice. Among the cells of
the innate immune system, granulocytes, DCs and macro-
phages are critical players, since these are the first cells to
encounter a pathogenic microorganism. Among granulo-
cytes, neutrophils are the predominant population
(>90%) and the role of these cells in influenza infection
has recently been elucidated [39,41]. One mechanism of
granulocyte activity is the release of lytic proteins, such as
myeloperoxidase, from endocytic granules. Aged animals
had delayed lung infiltration kinetics following influenza
infection (Fig. 3B); however, similar levels of MPO were
produced by adult and aged mice, except for day 9, where
higher levels were detected in the aged group (p < 0.05)
(data not shown). This indicates that for the main part,
the neutrophil function was not altered in aged animals
infected with influenza virus. The higher MPO levels at
day 9 might contribute to the enhanced sickness score
detected in aged animals at this time point. The data also
suggest that the difference in infiltration kinetics may be
associated with impaired chemotaxis. Consistent with this
hypothesis, the secretion of the chemokine, KC (neu-
trophil chemoattractant), was delayed in aged mice fol-
lowing influenza virus infection (Fig. 9B).

Interestingly, the major differences in granulocyte infiltra-
tion kinetics were detected between days 11-19 (Fig. 3B),
which corresponds with the resolution phase of the dis-
ease. The higher granulocyte infiltration in aged animals
also correlated with a prolonged presence of macrophages
(Fig. 3C) and was associated with a higher sickness score
and prolonged disease. A prolonged infiltration of the
lungs with cells from the inflammatory phase might
account for the prolonged disease stage in the animals. To
further support this, MPO was higher at day 9 in aged ani-
mals and reports that aged populations have a higher ten-
dency to produce inflammatory cytokines, such as TNF-a
and IL-a, during infections have been published and cor-
relates with our data (Fig. 5C) [21,22]. In summary, all
these immune markers suggest that the immune system
can be contributing to the enhanced sickness score
detected in the aged group of animals.

APCs are among the first leukocytes to recognize infec-
tious microorganisms. DCs are especially responsible of
the surveillance in different tissues and subsequent migra-
tion to the lymph nodes where they interact with T-cells to
present antigens and trigger the adaptive immune
response. In the murine lung, different DC populations
have been recently described, one of the predominant
populations includes resident CD11bhigh/CD11chigh cells,
also known as conventional DCs (cDCs) (reviewed in
[17]). The other APC populations analyzed in these ani-
mals represent lung macrophages (CD11bhigh/CD11clow/
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Figure 4

Innate Cells Activation. The expression of CD40 and MHC class Il was assayed in lung macrophages and cDCs
(R6 and R3 in Fig 2B, respectively). Example of expression of CD40 by these cells is shown in adult (first col-
umn) and aged (second column) animals at different time points (A and D). An overlay of the histograms is
shown to compare differences in up-regulation (third column) of the marker. Panels B and C show upergula-
tion of CD40 and MHC class Il respectively. Panels B and C display the average of two different experiments,
on which of 3 mice were assayed at each time point (a total of 6 animals per time point), bars represent SEM.
Aged animals are represented in white squares and adult animals in black circles. Expression of CD40 on lung
macrophages and cDCs was similar in adult and aged animals at day 0. Up-regulation of this marker was
slower in aged animals and statistically significant differences were detected as early as day 3 (B and E). On the
other hand, MHC class Il expression at day 0 and up-regulation was similar between adult and aged animals in
both lung macrophages and cDCs (C and F). For expression of activation markers an average of 500,000
events were collected. *P < 0.05. **P < 0.01. **P < 0.001.
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Gr1high), Tt is important to note that lung (interstitial)
macrophages are different from alveolar macrophages.
The later cells suppress the functional characteristics of
lung DCs [17]. Alveolar macrophages in addition to
CD11c, express F4/80 [42]. Both APC populations ana-
lyzed in our experiments have low F4/80 expression (data
not shown), providing evidence that the analyzed cells
were not alveolar macrophages. Upon encountering the
antigen, APCs up-regulate several molecules, such as
MHC class I and CD40 in order to present antigens to
CD4+ T-cells and provide the required second signal to
fully activate these cells [43]. MHC class II up-regulation
was not altered neither in lung macrophages nor cDCs
from aged mice following influenza infection. However,
CD40 up-regulation was delayed in both lung macro-
phages and c¢DCs cells, suggesting differences in complete
priming of the APCs in aged mice. Fully primed APCs pro-
duce cytokines and chemokines that will attract cells to
the lungs and subsequently activate them during influ-
enza virus infection [44,45]. CD40 interaction with
CD40L, is important to fully activate APCs [46,47] and
the role of CD40 in stimulating the production of IL-12 is
well documented (reviewed in [43,48]) The concentration
of IL-12,;, the active form of IL-12, was not only signifi-
cantly higher in the lungs of adult mice, but also spiked
earlier compared to aged mice following influenza infec-
tion (Fig. 7A). Considering the importance of CD40 in the
induction of IL-12, the delayed CD40 up-regulation in
aged animals, most likely contributed to a retarded IL-
12,70 production and reduced activation of aged APCs.

In addition to IL-12, activated APCs can produce other
pro-inflammatory cytokines, such as IL-1B, IL-1a, and
TNF-a (Fig. 5) [19,20,49]. Interestingly, not all of these
cytokines showed higher concentrations in adult mice
compared to aged mice following influenza infection;
however, in all cases the peak of cytokine level occurred
earlier in adult animals. The higher peak of the pro-
inflammatory cytokines detected in elderly animals corre-
late with reports indicating that elderly populations have
enhanced basal levels of these cytokines (e.g. TNF-a) and
tendency to produce higher levels upon infection
[21,22,50]. Similar to cytokines, the peaks of chemokine
production by APCs (MIP-1B, MCP-1, RANTES and KC)
to influenza infection were delayed in aged mice. This cor-
related with the delayed CD40 up-regulation in aged ani-
mals, which further suggests a delay in full activation of
APCs.

IL-12,,7 produced by activated APCs stimulates NK cells
and CD4+ T-cells to produce IFN-y [48,51,52]. Consistent
with the delayed production of IL-12,;, in the lungs of
aged animals to influenza infection, IFN-y spiked two
days later (day 7 vs. day 5) in aged mice compared to
adults (Fig. 5E). Consistent with the delayed production

http://respiratory-research.com/content/10/1/112

of the chemokines, NK cells, CD4+ and CD8+ T-cells
showed delayed infiltration into the lungs of aged animals
(Figs. 7B, 9A and 9B). Furthermore, the up-regulation of
the early activation marker CD69 was delayed on NK cells
in aged mice (Fig. 7D). Previous reports had shown no
alterations of NK cells with age in humans and only small
changes in mice [53-57]. However, our data coincides
with a recent report that demonstrates alterations in the
NK compartment of aged animals infected with influenza
virus [40].

B-cells showed similar patterns of infiltration between
aged and adult mice following influenza infection (Fig.
7C). The kinetics of this population were delayed com-
pared to CD4+ and CD8* T-cells (Fig. 9), since B-cells
started to infiltrate the lungs between days 9 and 11, upon
which these cells significantly increased in adult and aged
animals (Fig. 8D). Despite this, surface expression of
CD69 was detected by day 3 in adults and day 5 in aged
mice (Fig. 7E), which coincided with an earlier detection
of anti-influenza neutralizing antibodies in adult mice
compared to aged mice (Fig. 8). Interestingly, CD69 up-
regulation by CD4+ T-cells was similar between adult and
aged mice (Fig. 9C and 9D), suggesting that the differ-
ences in IFN-y production detected between days 3 to 9
between aged and adult mice is primarily due to secretion
of this cytokine by NK cells.

There was a delay in the infiltration of CD4+and CD8+T-
cells into the lungs of aged mice compared to adult mice
(Fig. 9A and 9B), however, there was little difference in
the activation of these cells (Fig. 9C and 9D). Early CD69
up-regulation by T- lymphocytes in the lungs is dependent
on IFNs type I production [58,59]. Consistent with this,
no differences in IFN-o/p production in the lung superna-
tants of aged or adult animals were detected. Early CD69
up-regulation by T-cells most likely represented non-spe-
cific activation of these cells, which may have inefficiently
produced IFN-y. Furthermore, recent reports suggest that
the lung airway environment might also play an impor-
tant role in the up-regulation and maintenance of CD69
by lymphocytes [60]. In a primary infection, influenza
specific cells, might play a more prominent role than non-
specifically activated cells. To determine this, influenza
specific activated (CD69+) CD8+* T-cells were assayed
using HA and NP immunodominant epitopes [61,62]
conjugated to pentamers of MHC class I molecules. Con-
sistent with our hypothesis that early up-regulation of
CD69 by T-cells was not influenza-specific, activated
(CD69+) CD8+ influenza specific T-cells were detected
only after day 9 post-infection. Furthermore, the percent-
age of HAq 45,4 Specific activated CD8+ T-cells were con-
sistently higher in adult mice compared to aged mice (Fig.
9E). In contrast, the percentage of NP,,, ;55 specific acti-
vated CD8+* T-cells were not statistically different between

Page 11 of 19

(page number not for citation purposes)



Respiratory Research 2009, 10:112 http://respiratory-research.com/content/10/1/112

A B IL-1
L1270, B
600- Kkk * 3000+ -+ Adult
-+ Adult NN Aged ok
_ 400] 2 2000
E _
= (=]
2 [=1%
200 1000-
- T T T T T T T 0 1 L] L] T T L L] T T T
012 357 9 111519 0123579‘111519
Days Post-Infection Days Post-Infection
C D
TNF-a IL-1a
_ dekk _
2007 o Aduit 6007 o Aduit er
B Aged E=2
150+ g ek Aged
- _ 4001 -
E 100+ ‘E‘
g g
2001
501
0 T T T T T T 1 1 \ 1 0 T T T T T T T T T T
01 2 3 57 9111519 01 2 3 5 7 9111519
Days Post-Infection Days Post-Infection
E IFN-y F IL-6
40007 4 Aduit - 8007 o Adult  swx
& Aged & Aged
3000+ - 600+
E [
S 20004 £ |
g g 400
10004 2004
0 01 2 3 57 911519 0- | M N
Days Post-Infection § 123 8 7 9 111519

Days Post-Infection
* P<0.05; ** P<0.01; *** P<0.001

Figure 5

Pro-inflamatory and lymphocytic cytokines. The concentration of several pro-inflamatory and lymphocytic cytokines
was determined in the supernatants of lung homogenates. IL-12,;, (NK and CD4 T-cell stimulant) was produced earlier and at
significantly higher levels in adult mice (black circles) (A), which correlated with an earlier detection of IFN-y in adult animals.
IL-1B concentrations peaked at day 5 post-infection in adult mice (black circle), but steadily increased in aged mice (B). TNF-a
and IL-la concentrations increased similarly in both adult and aged mice until day 5 and then declined over the 19 days of
observation in adult animals (black circles)(C and D). In contrast, these two cytokines continued to increase in aged mice
(white squares) with significantly higher concentrations at day 7-9 post-infection (C and D). The lymphocytic cytokines, IFN-y
and IL-6, spiked earlier in adult mice (black circles) (E and F). The graphs represent cumulative results of two different experi-

ments. The arithmetic mean (x SEM) of the cytokine(s) concentration of 4-6 mice assayed at each time point was plotted. Stars
indicate statistical difference between aged and naive animals.*P < 0.05. **P < 0.01. **P < 0.001.
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Chemokines. Several chemokines were determined in the lung supernatants of aged and adult mice infected with influenza
virus. MIP-1f increased and peaked earlier in adult animals (black squares) (A). KC increased similarly in the lungs of adult
(black circles) and aged (white squares) mice, however peaked earlier in adult animals (B). MCP-1 had a mild early peak in adult
mice (black circles), while a higher delayed peak in aged animals (white squares) (C). There was a biphasic expression pattern
of RANTES in adult mice (black circles) with a peak in concentrations at day 5 and |5 (D), while aged animals (white squares)
had a very mild increase in this chemokine. The overall delayed production of chemokines correlated with delays in infiltration
kinetics of innate and adaptive cells the lungs. The graphs represent cumulative results of two different experiments. The arith-
metic mean (+ SEM) concentration of 4-6 mice assayed at each time point was plotted. Stars indicate statistical difference
between aged and naive animals. *P < 0.05. **P < 0.01. **P < 0.001.

aged and adult animals (Fig. 9F); nevertheless, adult ani-
mal had a higher percentage of CD8+/CD69+ NP-pen-
tamer* T-cells between days 9 and 11 post-infection (Fig.
9F). Considering the delay in virus clearance in aged mice
(Fig. 1C), HA specific CD8+* T-cells most likely play a
prime role in virus clearance and the late appearance of
these cells in aged mice most likely contributed to the pro-
longed recovery. Despite that no statistically significant
differences were noted by day 15, adult mice showed the
tendency to have a higher percentage IL-2, TNF-a. and
IFN-y producing CD8+T-cells regardless of HA or NP stim-
ulation (Fig 10). Since mature (fully primed) DCs effi-
ciently induce cytokine production by CD8+ T-cells and

the generation of cytotoxic T cells [63], the reduced
cytokine production by aged CD8+ T-cells might be the
result of reduced APC activation as suggested by alteration
in CD40 up-regulation. This could eventually lead to a
delayed virus clearance in the lungs.

Virus titration in the lungs of aged animals showed a
delayed virus clearance. However, the data also demon-
strated that despite a similar onset of virus between adult
and aged animals, the peak was lower in the later set of
animals. This might be the result of a reduced homeosta-
sis of epithelial cells of aged animals. Aging reduces the
division potential of cells (replicative senescence) both in
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Figure 7

Lymphocytic cells. Several innate and adaptive lymphocytic cells were analyzed in the lungs of aged and adult mice. CD4* and
CD8* T-cells were more abundant in adult mice (black bars) at day 0 (A). Adult mice (black circles) had a significantly higher
infiltration of NK (DX5) cells in the lungs (B). The kinetics of B-cell lung infiltration, on adult (black circles) and aged (white
squares) mice were similar (C). Expression of the early activation marker CD69 by NK and B-cells was detected earlier and at
a higher percentage in adult mice in (black circles) (E and F), which suggested that despite similar infiltration kinetics, adult B-
cells started to produce antibodies earlier. This was confirmed later when HAI were performed (Fig. 8). The graphs represent
cumulative results of two different experiments. The arithmetic means (+ SEM) of the number of cells (C and D) or percent-
ages (A, D and E) at each time point (4-6 mice per time point) were plotted. Stars indicate statistical difference between aged
and naive animals. *P < 0.05. **P < 0.01. **P < 0.001.
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Figure 8

Anti-Influenza Neutralizing Antibodies. Anti-influenza
neutralizing antibodies titers were assayed in sera samples by
HAI assay. Aged animals (black circles) developed antibodies
at neutralizing titer (1:40 -- dotted line) quicker than aged
mice (white squares). The arithmetic mean (+ SEM) of the
sera HAI titer at each time point was plotted. Six mice per
time point were assayed, except at days 7 and 15, where 10
mice were assayed. Stars indicate statistical difference
between aged and naive animals. *P < 0.05. **P < 0.01. ***P <
0.001.

vivo and in vitro. Some of these changes have been only
partially explored in the lungs; however, affect most
organs in the models used [64-67]. A reduced replication
capability can be translated in reduced virus production
by aged animals during peak days. Even with lower virus
titer in the lungs of aged animals, the alterations in the
immune responses (innate and adaptive) might account
for reduced virus clearance and the enhanced tendency to
produce inflammatory cytokines (e.g. TNF-a) [21,22] by
these animals might be responsible for the enhanced sick-
ness score.

The data in this study shows that age affects the global
immune responses to influenza infection. Alterations in
CD40 up-regulation by aged cDCs and lung macrophages
suggested impairments in their activation. Remarkably,
this correlated with altered levels of cytokines (especially
IL-1279) and chemokines, which also correlated with
delayed NK and T-cell infiltration. Furthermore, influenza
(HA)-specific T-cells were reduced in aged animals. These
findings correlated with several reports demonstrating
that age affects APC Toll-like receptors expression and
function, antigen presentation (defect in exogenous path-
way) and CD8+ stimulating capacity [50,68-71]. Some
studies, on the other hand, have not reported defects in
DC function in the elderly [72]. This might indicate that

http://respiratory-research.com/content/10/1/112

different populations of APCs at different tissues are
affected differently by age. Also, this may be the result of
genetic differences between mouse strains. Our data also
demonstrated altered humoral immune responses (B-cell
activation and HAI titers). Therefore, the alterations in the
APCs are most likely just one step in a large chain of alter-
ations present in the aging immune system. The final out-
come of delayed virus clearance and slow recovery is
probably the addition of various factors and not only
involve dysfunction in antigen presentation.

Conclusion

The current study provides an overview of the global
effects that aging has on the immune system following
influenza infections and demonstrates that alterations are
found in the innate, as well as acquired immune compart-
ment. Remarkably, alterations in lung APCs seem to trig-
ger a cascade of events that affected the acquired immune
responses. According to the US Census Bureau [73], dur-
ing 20t century, the rate of growth of the elderly popula-
tion has greatly exceeded the growth rate of the US
population as a whole. The elderly increased by a factor of
11, from 3 million in 1900 to 33 million in 1994, while
the total population and the population younger than 65
years of age tripled. It is expected that by 2030 the elderly
population will double. Considering the significant
increase in the elderly population and increased suscepti-
bility to certain infectious agents, it is becoming impera-
tive to determine the effects of age on the immune system.
Identifying the main groups of cell(s) affected by the aging
process may help to further explore the mechanisms
behind the immune alterations and design better vaccines
and adjuvants to boost the immune responses in this
important group of the population.
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Figure 9

T-lymphocytes. Correlating with a delayed detection of cytokines and chemokines in the supernatants of lung homogenates
(Figs. 5 and 6), CD4* and CD8* T-cell infiltration was delayed in the lungs of aged animals (white squares) (A and B). However,
up-regulation of CD69 was similar in aged and adult animals (C and D), which suggested non-specific up-regulation of this
marker by these cells. Confirming this, activated influenza specific cells were detected only after day 9 post-infection (E and F).
Plots A to D represent cumulative results of two different experiments. The arithmetic means (£ SEM) of the number of cells
(A and B) or percentages (C and D) at each time point (4-6 mice per time point) were plotted. In panels E and F, 5 mice per
time point were assayed bars represent the arithmetic mean (x SEM). Stars indicate statistical difference between aged and
adult animals. *P < 0.05. **P < 0.0]. ***P < 0.001.
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Figure 10

Intracellular Cytokine Staining. IL-2 (A and B), TNF-a (C and D) and IFN-y (E and F) production were assayed in CD8* T-
cells following stimulation with immunodominant influenza peptides at day |5. Even though not statistically significant differ-
ences between adult and aged animals were detected, adult animals had the tendency to have a higher percentage of cells pro-
ducing these cytokines regardless of HA or NP stimualtion. Five to eight mice per time point were assayed. Bars represent the
arithmetic mean (+ SEM). Stars indicate statistical difference between aged and naive animals. *P < 0.05. **P < 0.0]. **P <
0.001.
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