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Abstract
Background Chronic obstructive pulmonary disease (COPD) is a frequently diagnosed yet treatable condition, 
provided it is identified early and managed effectively. This study aims to develop an advanced COPD diagnostic 
model by integrating deep learning and radiomics features.

Methods We utilized a dataset comprising CT images from 2,983 participants, of which 2,317 participants also 
provided epidemiological data through questionnaires. Deep learning features were extracted using a Variational 
Autoencoder, and radiomics features were obtained using the PyRadiomics package. Multi-Layer Perceptrons 
were used to construct models based on deep learning and radiomics features independently, as well as a fusion 
model integrating both. Subsequently, epidemiological questionnaire data were incorporated to establish a more 
comprehensive model. The diagnostic performance of standalone models, the fusion model and the comprehensive 
model was evaluated and compared using metrics including accuracy, precision, recall, F1-score, Brier score, receiver 
operating characteristic curves, and area under the curve (AUC).

Results The fusion model exhibited outstanding performance with an AUC of 0.952, surpassing the standalone 
models based solely on deep learning features (AUC = 0.844) or radiomics features (AUC = 0.944). Notably, the 
comprehensive model, incorporating deep learning features, radiomics features, and questionnaire variables 
demonstrated the highest diagnostic performance among all models, yielding an AUC of 0.971.

Conclusion We developed and implemented a data fusion strategy to construct a state-of-the-art COPD diagnostic 
model integrating deep learning features, radiomics features, and questionnaire variables. Our data fusion strategy 
proved effective, and the model can be easily deployed in clinical settings.
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Introduction
Chronic obstructive pulmonary disease (COPD), a preva-
lent and preventable chronic lung ailment, is a well-estab-
lished risk factor for lung cancer [1–3]. In 2019, COPD 
resulted in approximately 3.23 million global deaths [4], 
with a reported prevalence of 13.7% in individuals aged 
40 and above in China [5]. The insidious onset, atypical 
symptoms, and limited public awareness contribute to a 
low success rate in early diagnosis and a high case-fatality 
rate [6, 7]. Strategies to enhance early COPD diagnosis 
are therefore in urgent demand [8, 9].

Conventional diagnostic methods, primarily relying 
on pulmonary function tests, exhibit limitations in accu-
racy, demonstrating a sensitivity of 79.9% (74.2–84.7%) 
and specificity of 84.4% (68.9–93.0%) [10] due to the 
subtle clinical symptoms and modest pulmonary func-
tion changes in early-stage COPD [10, 11]. In contrast, 
Computed Tomography (CT) imaging emerges as a more 
objective, precise, and efficient tool for the early diagno-
sis and assessment of COPD [12, 13], and improves sen-
sitivity to 83.95% (73.0–89.0%) and specificity to 87.95% 
(70.0-95.6%) [14]. However, the disease’s heterogeneity 
poses practical challenges for conventional manual read-
ing methods, including subjective interpretation vari-
ability among medical personnel and time-consuming 
processes [12–15].

To address these challenges, artificial intelligence (AI) 
techniques, particularly machine learning, have been 
applied in the analysis of CT-based radiomics features 
and demonstrated favorable performance [16]. In recent 
years, deep learning, a subset of machine learning known 
for its ability to handle complex problems, has further 
expanded the application of AI across various fields, 
including medicine [17, 18]. Within the context of COPD, 
deep learning algorithms such as convolutional neural 
networks (CNNs) have significantly improved diagnos-
tic performance [19–25]. Notably, an AUC of 0.82 was 
achieved for COPD detection using DenseNet [26], a 
robust deep learning network. Additionally, leveraging 
radiomics features extracted from deep learning models 
to predict survival for COPD patients resulted in a con-
cordance index of 0.73 (95% CI, 0.70–0.73) [27]. Further-
more, some recent studies have utilized deep learning 
approaches to model respiratory sound for COPD diag-
nosis, achieving an accuracy of 0.953  [28], an AUC of 
0.966  [29] and an accuracy of 0.958 [30], respectively. 
These deep learning models were able to autonomously 
extract intricate features from CT images, and provide 

exceptional precision in image analysis and alleviate the 
workload of clinical practitioners [18–20, 26].

Fusion strategies were recently introduced where 
radiomics features and abstract deep learning features 
were simultaneously extracted from CT images, and 
computational algorithms such as Multi-Layer Per-
ceptron (MLP) [31]  were then employed to seamlessly 
integrate these cross-modal features, leading to the con-
struction of fusion models [32]. Leveraging the comple-
mentary nature of radiomics and deep learning features, 
this fusion approach holds promise in enhancing preci-
sion and reliability in diagnosis and risk prediction [32]. 
Moreover, as efforts continue in constructing large popu-
lation cohorts, questionnaire data are becoming more 
widely available. Existing research has demonstrated that 
adding radiomic features to epidemiological information 
can improve the predictive capacities of machine learn-
ing models for COPD progression and mortality [33, 34].
However, whether these questionnaire data can enhance 
the diagnostic performance of deep-learning based mod-
els of COPD remains unclear.

In this study, we combined deep learning with 
radiomics profiles from CT images using MLP to build 
a COPD diagnostic fusion model. The epidemiological 
questionnaire data were then incorporated to develop a 
comprehensive model. A comparative analysis was con-
ducted to assess the performance of standalone, fusion, 
and comprehensive models.

Materials and methods
Study design and COPD ascertainment
We obtained a CT dataset from Lanxi People’s Hospital, 
comprising 23,552 chest CT scans from 12,328 adults, 
with each adult contributing a varying number of scans. 
A team of respiratory specialists at the hospital reviewed 
CT diagnostic reports and related symptoms, and con-
firmed the presence of normal lung radiographic find-
ings or imaging manifestations indicative of COPD in 
2,983 adults. Specifically, normal lung radiographic 
findings were defined as the absence of obvious patho-
logical lesions in both lungs, as indicated in the imaging 
reports. Imaging manifestations of COPD were charac-
terized by the presence of chronic bronchitis combined 
with emphysema or bullae, or a definitive diagnosis of 
COPD. These manifestations could also be accompanied 
by pulmonary nodules, calcified lesions, fibrotic changes, 
minor inflammation (all less than 1 cm), or minor pleu-
ral effusion (less than 3 cm), as well as localized bronchial 
dilation. CT imaging reports showing other pathological 

Trial registration Not applicable. This study is NOT a clinical trial, it does not report the results of a health care 
intervention on human participants.
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abnormalities, as well as asthma patients, were excluded 
from the study. Furthermore, 2,317 of these 2,983 indi-
viduals had responded to a comprehensive epidemio-
logical questionnaire as part of the Healthy Zhejiang One 
Million People Cohort, a newly established prospective 
cohort in Zhejiang province, China. No patients were 
excluded based on gender or ethnicity.Although pulmo-
nary function tests (PFTs) are commonly recommended 
for the diagnosis of COPD, they possess certain limita-
tions in early detection of COPD, and some patients 
with severe symptoms may be unable to tolerate or fully 
complete these tests, resulting in incomplete PFT results 
in our daily practice. Using clinicians’ actual diagnoses 
as the criteria aligns with our goal of creating a reliable, 
non-invasive, and practical diagnostic tool.

Questionnaire data acquisition
The epidemiological questionnaire gathered data on 
participants’ demographic variables, lifestyles, and 
health status. All questions were asked and answered in 
Chinese.

Demographic variables included age, gender, residence 
(urban or rural), marital status (married, divorced/sepa-
rated, widowed, not married, or others), years of educa-
tion (0, ≥ 1 and ≤ 6, ≥7 and ≤ 12, or ≥ 13 years), annual 
income rounded in thousands (< 50, 50–100, 101–200, 
201–300, or > 300, thousand Chinese Yuan), and number 
of cohabitants in the household (< 2, 2, 3, 4, > 4).

Body Mass Index (BMI) was calculated by divid-
ing weight (in kilograms) by the square of height (in 
meters). Subsequently, individuals were categorized 
into different BMI groups, including underweight 
(< 18.5  kg/m2), healthy weight (18.5 ≤ BMI < 24  kg/m2), 
overweight (24 ≤ BMI < 28 kg/m2), and obesity (≥ 28 kg/m2) 
categories.

Smoking status was classified based on participants’ 
self-reported smoking history in the questionnaire. Spe-
cifically, participants who reported smoking fewer than 
100 cigarettes in their lifetime were classified as “never 
smokers”. Those who reported smoking more than 100 
cigarettes in their lifetime and had quit smoking at the 
time of the questionnaire survey were classified as “for-
mer smokers”. Lastly, participants who reported smoking 
more than 100 cigarettes in their lifetime and were still 
smoking at the time of the survey were classified as “cur-
rent smokers”. Smoking addictiveness was categorized as 
none, moderately addicted or highly addicted based on 
the Fagerstrom Test for Nicotine Dependence (FTND). 
Participants also provided information on the weekly 
frequency of secondhand smoke exposure, categorized 
as never, sometimes, 1–2 days/week, 3–5 days/week, or 
almost daily. Drinking status was categorized as never, 
former drinker or less than once per week, more than 

once per week for less than 12 years, or more than once 
per week for 12 or more years.

Diet preferences, habits, and frequency of behaviors 
were also collected. Preferences included food tem-
perature, dryness, texture, saltiness, spiciness. Habits 
included speed of eating, meal regularity, and balance of 
diet (rich in meat, rich in vegetables, or balanced). Fre-
quencies of dietary behaviors per week included intake of 
red meat, vegetables, whole grains, oil-rich food, sugar-
rich food, sugar-sweetened beverages, tea, and leftovers, 
along with the frequency of dining out, and breakfast. 
Participants also disclosed whether they were vegan.

Weekly work intensity was classified based on the work 
duration (< 20 h, 20–40 h, currently working and ≥ 40 h, 
retired and ≥ 40 h).

Participants were asked to report the intensity, fre-
quency, and duration of physical activity that they did 
during the past weeks, and then divided as inactive (0 
metabolic equivalent (MET) hours /week), > 0 and < 7.5 
MET hours/week, ≥ 7.5 and < 15.0 MET hours/week, and 
≥ 15.0 MET hours/week.

Sleep quality was assessed based on items from the 
Pittsburgh sleep quality index (PSQI); depressive symp-
toms was evaluated based on the Center for Epidemio-
logical Studies Depression-10 (CES-D-10) scale; and 
cognitive function was assessed based on the AD8 scale.

Health status data including prevalence of tumors, 
coronary heart disease, stroke, diabetes mellitus, osteo-
arthritis, Helicobacter pylori infection, gastritis, uremia, 
rheumatoid arthritis, and alcoholic fatty liver were also 
collected.

In modelling phase, Z-score normalization was applied 
to numerical questionnaire variables, while categorical 
questionnaire variables were encoded manually as binary 
(0 and 1) or ordinal values.

Chest CT Image Acquisition and Preprocessing
This study utilized two CT scanners, the GE Optima 
CT680Q and the GE Optima CT540, for CT scanning. 
The scans were performed in a supine position after com-
plete inspiration, from the lung apex to the lung base. 
Scanning parameters: tube voltage 120KV, adaptive tube 
currents according to the body size (ranging from 60 to 
350  mA), detector configuration 64 × 0.6  mm, gantry 
rotation time 0.5s/rotation, pitch 1.0, matrix 512 × 512. 
The CT scanning had an attenuation coefficient range 
of -1024 to 3072 HU. Slice thickness was 1.25 mm. The 
scanned CT data were stored in DICOM format. For 
image preprocessing, we initially normalized the pixel 
density values of all CT scans to a range between 0 and 
1. Subsequently, we employed the LungMask tool [35], 
which is specifically designed for automated lung seg-
mentation in chest CT scans, and can be used as a python 
module, to obtain the lung parenchyma, with pixel values 
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outside this region being set to zero. Its robust perfor-
mance has been validated across diverse datasets and dis-
ease contexts. Finally, the resulting images were resized 
to a dimension of 128 × 256 × 256.

Model development and evaluation
We propose a two-stage multimodal prediction model-
ling framework, wherein the first stage focused on fea-
ture extraction from various modalities. Specifically, 
epidemiological features were derived from preprocessed 
raw questionnaire data, while deep learning features were 
extracted from preprocessed CT images using self-super-
vised learning generative model, and radiological features 
were obtained via lung image analysis tools. In the second 
stage, multimodal features were fused. Initially, features 
from different modalities were dimensionally reduced to 
preset dimensions using different shaped multilayer per-
ceptron (MLP). Subsequently, these features were con-
catenated to construct multimodal feature utilized for 
prediction. Finally, the multimodal features were fed into 
the stacked MLP to output the final prediction.

Radiomics feature extraction
The radiomic features were extracted from the resultant 
CT images using the PyRadiomics [36] package. Each CT 
image was resampled to (1,1,1) before feature extraction. 
The extraction parameters were configured as follows: 
‘minimumROIDimensions’ set to 2, ‘minimumROISize’ 
left as None, ‘normalize’ set to False, ‘normalizeScale’ set 
to 1, ‘removeOutliers’ left as None, ‘resampledPixelSpac-
ing’ set to (1,1,1), ‘interpolator’ specified as ‘sitkBSpline’, 
‘preCrop’ set to False, ‘padDistance’ set to 5, ‘distances’ 
configured as (1), ‘force2D’ set to False, ‘force2Ddi-
mension’ set to 0, ‘resegmentRange’ left as None, ‘label’ 
assigned as 1, and ‘additionalInfo’ left as True.

In addition to the original image, we applied a range 
of filters including the Wavelet, Laplacian of Gaussian 
(LoG), Square, Square Root, Logarithm, Exponential, 
Gradient, and Local Binary Pattern (LBP) filters to the 
images. Features were extracted using First order, Gray 
Level Cooccurrence Matrix (GLCM), Gray Level Size 
Zone Matrix (GLSZM), Gray Level Run Length Matrix 
(GLRLM), Gray Level Dependence Matrix (GLDM), 
Neighboring Gray Tone Difference Matrix (NGTDM), 
and Shape methods. A total of 2,983 participants had 
extractable CT imaging radiomics features using the 
PyRadiomics package, with a consistent yield of 1,409 
radiomics features for each subject. In constructing the 
model, Z-score normalization was applied.

Self-supervised deep learning feature extraction
We initially utilized Variational Autoencoder (VAE) [37], 
a large-scale unlabeled self-supervised model to extract 
deep learning features with dimensions of 16 × 32 × 32 

from the 23,552 images. Among them, we subsequently 
employed 3D convolutional kernels to down-sample 
the deep learning features in 2,983 CT images contain-
ing available radiomics features. The down-sampling was 
achieved using 3D convolutional kernels with a kernel 
size of (3, 3, 3) and a stride of (1, 1, 1), while maintain-
ing the same number of input and output channels. After 
passing through this convolutional kernel, the output 
feature map’s dimensions are halved compared to the 
input feature map. This down-sampling resulted in deep 
learning features with dimensions of 8 × 16 × 16. Finally, 
we flattened these reduced-dimension features, yielding 
2,048 deep learning features for each participant.

The optimization objective during the training of the 
unlabeled 3D VAE aimed to maximize the Evidence 
Lower Bound (ELBO), which consists of two compo-
nents: the reconstruction loss and the prior matching 
loss. Additionally, to ensure the effectiveness of the fea-
ture representations, we incorporated patch adversarial 
loss and perceptual loss to enhance the quality of image 
reconstructions. These added components were instru-
mental in preserving the quality of the reconstructed 
images while optimizing the feature variables.

Feature fusion strategy
We employed the MLP model for feature fusion. The 
fusion strategy was feature-specific, meaning a uniform 
fusion approach was applied to participants concurrently 
exhibiting different features. Therefore, we utilized MLP 
models in two subsets: one comprising 2,983 participants 
with both radiomics and deep learning features for the 
fusion model, and another with 2,317 participants pos-
sessing radiomics, deep learning, and epidemiological 
features for the comprehensive model.

To reduce dimensionality, we employed a down-sam-
pling process that reduced the deep learning features 
from 2,048 to 256 dimensions and the radiomic features 
from 1,409 to 139 dimensions. Here the down-sampling 
process was achieved by setting the output dimension 
of the MLP, which was a hyperparameter. However, 
the original dimension of 49 epidemiological features 
remained unchanged.

These features were subsequently concatenated and 
processed through a three-layer MLP module. Each mod-
ule within the MLP architecture was composed of linear 
transformation layers, batch normalization, rectified lin-
ear unit (ReLU) activation, and dropout layers. Figure 1 
shows the workflow of our fusion strategy.

Hyperparameters selection
VAE Our VAE model was trained with a carefully cho-
sen set of hyperparameters to optimize performance. 
For model construction, we set the number of groups 
for group normalization to 32, and allocated 64, 128, and 
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128 feature channels per layer within the encoder. In the 
loss function, we assigned coefficients of 1e-3, 1e-2, and 
1e-6 to the perceived loss, confrontation loss, and Kull-
back-Leibler loss, respectively. We utilized the Adaptive 
Moment Estimation (Adam) optimizer with an initial 
learning rate of 1e-4 for generator and 5e-4 for discrimi-
nator. Finally, training was conducted over 100 epochs to 
ensure comprehensive model training and convergence.

MLP Our MLP model underwent training with a set of 
hyperparameters to optimize performance. We employed 
the Stochastic Gradient Descent (SGD) optimizer with 
an initial learning rate of 0.01 and momentum of 0.9. 
The learning rate was decayed every 30 epochs by a fac-
tor of 0.3 to facilitate convergence. To prevent overfitting, 
L2 weight decay with a coefficient of 0.01 was applied. 
A batch size of 200 and a hidden layer width of 64 were 
chosen for enhanced computational efficiency and model 
capacity. Furthermore, a dropout ratio of 0.5 was intro-
duced to mitigate overfitting. Finally, training was con-
ducted over 160 epochs to ensure comprehensive model 
training and convergence.

Time complexity analysis
We utilized the big O notation to show the time complex-
ity of models above. The time complexity of the convolu-
tion module is

 

T ime ∼ O(
∑L

l=1
(Gl · Cl−1 · Fh · Fw · Fd)

+ (Fh · Fw · Fd) · K3
l · Cl · Cl−1)

Where G  represents the number of groups in group nor-
malization, Fh, Fw, Fc, C  represents the length, width, 
height and number of channels of the feature map, K  
represents the size of the convolutional kernel and L  
represents the number of convolutional kernel modules; 
The time complexity of the down sampling module is

T ime ∼ O(
∑Ld

l=1 (Fh · Fw · Fd) · K3
l · Cl · Cl−1)))

The time complexity of the self-attention module is.
T ime ∼ O(N2 + Nd )
Where N represents the sequence length and D repre-

sents the feature dimension.

Fig. 1 Flowchart of standalone, fusion, and comprehensive models. Model 1: standalone model based on radiomics features; Model 2: standalone model 
based on deep learning features; Model 3: fusion model; Model 4: comprehensive model. Note: VAE: Variational Autoencoder; Feature EF: epidemiological 
features; Feature DL: deep learning features; Feature RA: radiomics features; MLP: Multi-Layer Perceptron
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Other statistical methods
Continuous variables were presented as mean ± SD 
and categorical variables were presented as count and 
percentages. Model performance was evaluated using 

metrics such as accuracy, precision, sensitivity, F1-score, 
Brier score, receiver operating characteristic curve 
(ROC), and area under the curve (AUC). All metrics were 
obtained using weighted methods except for the Brier 
score.  Additionally, bootstrap resampling was used to 
compute the 95% confidence intervals for accuracy, pre-
cision, sensitivity, and F1-score, with 1000 randomized 
tests. Accuracy indicates overall correctness, sensitivity 
measures true positive rate, precision assesses positive 
prediction accuracy, and F1-score balances both preci-
sion and sensitivity through harmonic mean [38]. These 
metrics are prevalent in classification performance evalu-
ation [39–42], where higher values of AUC denote mod-
el’s superior discrimination ability between positive and 
negative classes. A two-tailed P-value of less than 0.05 
indicated statistical significance. Statistical analysis was 
conducted using Scipy packages in Python 3.9. The CT 
images were processed with SimpleITK for preprocess-
ing and Lungmask for radiomics feature extraction. Self-
supervised 3D- VAE and MLP models were implemented 
in Python 3.9 using Pytorch 1.13.1.

Results
Patients characteristics
The study included a total of 2,983 participants, which 
comprised 497 COPD patients and 2,486 participants 
with normal lung radiographic findings. Questionnaire 
data were available for 2,317 participants, where 477 
were COPD patients.

To improve the comparability of models, the 2,317 
participants with available questionnaire variables were 
randomly divided into training and testing datasets at 
an 8:2 ratio. The training set encompassed 1,853 partici-
pants, including 373 individuals with COPD and 1,480 
individuals without COPD; and the testing set comprised 
464 individuals, with 104 having COPD and 360 with-
out COPD. Then, for the additional 666 individuals in 
the total 2,983 individuals, a same division strategy was 
applied to establish another training and testing sets. As 
a result, the final training set included 2,385 individuals, 
comprising 389 with COPD and 1,996 without COPD; 
and the final testing set comprised 598 participants, 
with 108 having COPD and 490 without COPD. Table 1 
provided a detailed overview of the basic epidemiologi-
cal characteristics of both the training and testing sets. 
Importantly, statistical analysis revealed no significant 
differences between them.

Diagnostic performance
We conducted a thorough assessment of the diagnostic 
performance of both standalone and fusion models. For 
COPD diagnosis, the AUC was 0.844 for the model uti-
lizing deep learning features, and 0.944 for the model 
employing radiomics features. Notably, the fusion model 

Table 1 The basic characteristics of training and test sets of the 
2,317 participants
Characteristics Train set Test set
Age, years 62.1 ± 12.6 61.9 ± 12.4
BMI, kg/m2

 BMI < 18.5 126(6.8%) 37(8.0%)
 18.5 ≤ BMI < 24 1009(54.4%) 248(53.4%)
 24 ≤ BMI < 28 561(30.3%) 143(30.8%)
 BMI ≥ 28 157(8.5%) 36(7.8%)
Gender
 Male 876(47.3%) 238(51.3%)
 Female 977(52.7%) 226(48.7%)
Residence
 Rural 1521(82.1%) 370(79.7%)
 Urban 332(17.9%) 94(20.3%)
Education years, years
 0 496(26.8%) 107(23.1%)
 1–6 616(33.2%) 161(34.7%)
 7–12 650(35.1%) 176(37.9%)
 ≥ 13 91(4.9%) 20(4.3%)
Annual income in thousands, Chinese Yuan
 < 50 645 (40.1%) 162(40.2%)
 50–100 646(40.2%) 175(43.4%)
 110–200 276(17.2%) 57(14.1%)
 210–300 25(1.6%) 6(1.5%)
 > 300 16(0.9%) 3(0.7%)
Marriage Status
 Married 1630(88.0%) 398 (85.8%)
 Divorced/Widowed 163(8.8%) 44(9.5%)
 Never Married 60 (3.2%) 22(4.7%)
Smoke Status
 Current smoker 279(15.1%) 79(17.0%)
 Former smoker 123(6.6%) 36(7.8%)
 Non-smoker 1451(78.3%) 349(75.2%)
Second-hand smoke exposure
 Never 1290(70.3%) 321(69.3%)
 Sometimes 308(16.8%) 72(15.6%)
 1–2 days/week 33(1.8%) 3(0.6%)
 3–5 days/week 51(2.8%) 16(3.5%)
 Almost every day 152(8.3%) 51(11.0%)
Drinking status
 Never 1316(71.0%) 326(70.3%)
 Sometimes 157(8.5%) 41(8.8%)
 < 12 years 29(1.6%) 9(1.9%)
 ≥ 12 years 351(18.9%) 88(19.0%)
COPD
 COPD 373(20.1%) 104(22.4%)
 Non-COPD 1480(79.9%) 360(77.6%)
Note: Data are mean ± SD or N(%), COPD: chronic obstructive pulmonary disease, 
CHD: coronary heart disease
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outperformed the independent models, achieving an 
AUC of 0.952. In the comprehensive model, which incor-
porated deep learning, radiomics and epidemiological 
features, the performance was further enhanced, yielding 
an AUC of 0.971. Furthermore, the comprehensive model 
outperformed all other metrics, including accuracy, pre-
cision, recall, F1-score, and Brier score, which were sepa-
rately 0.886, 0.909, 0.886, 0.891 and 0.080.

Figure 2 was a visual representation of the ROC curves 
and their corresponding AUC values for various models 

under consideration. Higher AUC value indicated a supe-
rior discriminatory capacity of a model.

Table  2 provided a comprehensive summary of the 
diagnostic metrics, including AUC, accuracy, precision, 
recall, F1 score and Brier score, for the different models 
assessed in the testing set. Our observations consistently 
indicated that among the two independent models, the 
radiomics-based model exhibited superior performance.

Across all metrics, the fusion model consistently out-
performed the independent models, reaffirming its effec-
tiveness in enhancing diagnostic accuracy. Notably, the 

Table 2 Performance of various models for COPD diagnosis in test set
Models(n) AUC Accuracy Precision Recall F1-score Brier score
DL (n = 2,983) 0.844 0.782(0.747,0.782) 0.822(0.822,0.829) 0.782(0.747,0.782) 0.792(0.771,0.792) 0.154
RA (n = 2,983) 0.944 0.882(0.882,0.908) 0.882(0.882,0.906) 0.882(0.882,0.908) 0.882(0.882,0.907) 0.085
DL + RA (n = 2,983) 0.952 0.869(0.869,0.886) 0.887(0.887,0.909) 0.869(0.869,0.886) 0.873(0.873,0.893) 0.091
DL + RA + EF (n = 2,317) 0.971 0.886(0.856,0.886) 0.909(0.900,0.909) 0.886(0.856,0.886) 0.891(0.867,0.891) 0.080
RA: Radiomic Feature, DL: Deep Learning Feature, EF: Epidemiological Feature

Fig. 2 The ROC curves and their corresponding AUC values of various COPD diagnostic models. (A) standalone model based on deep learning features. 
(B) standalone model based on radiomics features. (C) fusion model integrating deep learning and radiomics features. (D) comprehensive model incor-
porating deep learning, radiomics and epidemiological features. RA: Radiomic Feature, DL: Deep Learning Feature, EF: Epidemiological Features
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most remarkable performance was achieved by the com-
prehensive model.

Model interpretability
We employed SHAP values to evaluate the relative 
importance of the epidemiologic variables in our com-
prehensive model, and the results were illustrated in 
Fig. 3. The SHAP values represented the average impact 
of each variable on the magnitude of the model output, 
with higher SHAP values indicating a more substantial 
role played by the respective variable.

Discussion
We established and validated a robust AI-driven data 
fusion-based COPD diagnostic model. Leveraging deep 
learning features, radiomics, epidemiological data, and 
MLP, our fusion model achieved an AUC of 0.971 for 
diagnosis of COPD. Moreover, our modelling framework 

can be readily deployed in assisting COPD diagnosis in 
clinical practices. To the best of our knowledge, we are 
among the first studies that successfully applied a multi-
modal data-fusion strategy in COPD diagnosis in a Chi-
nese population.

In recent years, large population cohorts such as 
COPDGene [43], ECLIPSE [44], and SPIROMICS [45] 
have been established in western countries, and these 
initiatives have significantly advanced the research on 
COPD. However, it is essential to acknowledge certain 
drawbacks, including the need for robust validation and 
potential challenges in generalizing findings to diverse 
populations. Notably, there remains a substantial gap in 
research related to COPD in Chinese population. The 
COMPASS (Investigation of the Clinical, Radiologi-
cal and Biological Factors, Humanistic and Healthcare 
Utilisation Burden Associated with Disease Progres-
sion, Phenotypes and Endotypes of COPD in China) is a 

Fig. 3 The SHAP values of epidemiological variables in the comprehensive model
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prospective multi-center study started in 2019, which has 
marked a recent effort in understanding the relevance of 
COPD biomarkers identified in Western cohorts to Chi-
nese patients [46]. Our study bears unique significance as 
it employed an extensive dataset of CT scans from indi-
viduals residing in the eastern region of China, present-
ing a COPD diagnostic model tailored specifically for the 
Chinese population.

Owing to COPD’s slow progression and complex 
pathophysiology [47, 48], traditional lung function indi-
cators like FEV1 [49, 50] have proven inadequate for early 
detection of COPD. For example, in a follow-up study, 
it was reported that approximately half of the 332 indi-
viduals with COPD at the end of the observation period 
exhibited normal FEV1 values by the age of 40 (P < 0.001) 
[49]. Conversely, CT scans offer the advantage of detect-
ing structural lung changes at an earlier stage [51]. Pre-
vious studies have attempted to utilize mathematical 
models [52, 53] to assess emphysema, which largely rep-
resents lung parenchymal destruction [54]. In a study 
using integrated CT metrics, radiomics, and standard 
spirometry measurements, the investigators were able 
to estimate the presence and severity of emphysema at 
AUCs of 0.86 and 0.88, respectively [53]. However, these 
methods relied on manual annotation, which led to time 
consumption and issues related to observer variability 
[32, 48, 55]. The advent of deep learning has revolution-
ized the data extraction process and alleviated observer 
variability concerns [56]. Studies that employed deep 
learning algorithms with CT data for COPD detection 
had achieved notable success with AUCs of 0.87, 0.90 
[57], and 0.927 [58], which were relatively good. How-
ever, previous studies have predominantly focused on 
radiomics features. For instance, one study aimed to pre-
dict COPD progression by combining radiomic features 
and demographics with a machine learning approach, 
achieving an AUC of 0.73 [59]. Another study extracted 
radiomics features for COPD survival prediction using a 
deep learning approach, resulting in a concordance index 
of 0.716 [27]. While the results were promising, whether 
adapting a multimodal feature fusion strategy would 
enhance the model performance remains unclear.

In the field of multimodal data fusion, MLP emerges 
as a strong deep learning tool, renowned for its robust 
modeling capabilities and adeptness at autonomous fea-
ture extraction  [31], particularly well-suited for han-
dling high-dimensional and heterogeneous data [60]. In 
the current study, we observed that both deep learning 
and radiomics models emerged as promising indepen-
dent diagnostic tools, boasting respective AUC values 
of 0.844 and 0.944, respectively. Furthermore, the fusion 
model that combined radiomics and deep learning fea-
tures yield a higher AUC of 0.952, proving the effective-
ness of incorporating epidemiological questionnaire 

data to assist CT-based diagnosis. Our study presented 
a holistic diagnostic method that integrates deep learn-
ing, radiomics and epidemiological data, and empiri-
cally demonstrated the capacity of MLP in the context 
of COPD diagnosis. This exceptional performance could 
be attributed to MLP’s proficiency in capturing intricate 
and nonlinear data relationships [61], a critical advantage 
in the complex domain of COPD diagnosis. Additionally, 
the high dimensionality of our dataset resulting from the 
integration of various features might have provided the 
MLP model with an advantage in discerning subtle inter-
actions that linear models like LASSO [62] may overlook. 
Early diagnosis plays a crucial role in improving patient 
prognosis in COPD management, and our strategy 
proves to be a useful tool in assisting healthcare provid-
ers to integrate epidemiological data such as demograph-
ics, lifestyles, and health status of the patients into their 
diagnostic frameworks, especially in scenarios where 
COPD is suspected but not definitively diagnosed.

Moreover, our model can be easily deployed to clinical 
settings. Following chest CT scans acquisition, our all-
encompassing workflow, including preprocessing, deep 
learning feature extraction, and radiomic feature extrac-
tion, supplies clinicians with a reference AUC for diag-
nosing COPD, regardless of the availability of patients’ 
epidemiological data. While multi-modal data have been 
collected routinely in clinical practice, how to utilize 
these data has been elusive. Our approach greatly facili-
tated this process and provided an example as utilizing 
the full potential of health big data.

Due to technical constraint, we were only able to 
investigate the SHAP values of the included predictors 
in each modal separately. Since both deep learning and 
radiomics features were abstract and hard to understand, 
we only investigated the variable importance of the epi-
demiological questionnaire data. Here we identified age, 
smoking, and tea intake as the top significant contribu-
tors to the model’s performance. It should be noted that 
these SHAP values were conditional on deep learning 
and radiomics features. To certain extend, our findings 
on these variables aligned with prior research on COPD 
risk factors. For instance, the influence of aging on COPD 
development might be attributed to factors like cellular 
senescence and heightened basal levels of inflammation 
and oxidative stress [63]. Smoking is widely recognized 
as the primary risk factor for COPD [64], with potential 
mechanisms of its role in airway inflammation [65] and 
vascular endothelial cell apoptosis [66]. Additionally, 
existing studies have indicated that the green tea con-
sumption was associated with a decreased likelihood of 
developing COPD [67], potentially due to the tea extracts 
like catechin, which can reduce lung tissue inflammation 
[68]. These insights provided a robust foundation for the 
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improved performance observed in our comprehensive 
models.

The strengths of our model include its high accuracy 
and potential for early intervention, which can improve 
patient outcomes in clinical practice. Additionally, the 
present model integrates readily accessible variables 
derived directly from CT images, thereby streamlining 
the diagnostic procedure, and rendering it user-friendly 
for healthcare practitioners. This accessibility promotes 
early intervention and enhances the management of 
COPD.

Despite its strengths, there are some limitations. The 
use of data from a single center necessitates external 
validation for model generalizability and stability. Future 
multi-center studies are needed to confirm the robust-
ness of our modeling strategy. Additionally, optimizing 
feature selection and hyperparameter tuning as well as 
improving model interpretability are ongoing challenges 
that warrant further investigation.

Conclusion
We successfully developed and demonstrated a compre-
hensive COPD early detection model by integrating deep 
learning and radiomics features from CT imaging, along 
with epidemiological data from questionnaires. Our pro-
posed model provided clinicians with novel AI tools for 
COPD diagnosis, and can improve the prediction accu-
racy by incorporating epidemiological data, shedding 
lights on utilizing multi-source epidemiological and clini-
cal data in diagnosis of COPD. This modelling strategy 
holds significant promise for practical implementation in 
clinical settings and serves as a valuable tool for COPD 
research.
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