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Abstract
Background Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition 
characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, 
the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine 
senescence within these cells, and elucidate the genes responsible for regulating senescence.

Methods Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures 
in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. 
Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which 
included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples.

Results The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type 
in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages 
from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of 
SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed 
similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in 
airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration 
identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in 
ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in 
regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged 
as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO.

Conclusion The findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial 
role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions 
aimed at modulating senescence-associated processes in ACO.Key words ACO, Asthma, COPD, Macrophages, 
Senescence, PPARγ.
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Introducton
Asthma and chronic obstructive pulmonary disease 
(COPD) are two of the most prevalent obstructive lung 
diseases. Asthma-COPD overlap (ACO) is a term used 
to describe a complex condition characterized by shared 
clinical and pathophysiological features of both diseases, 
typically observed in older individuals with a long his-
tory of disease and exposure to environmental factors 
[1–3]. ACO is estimated to affect approximately 10–30% 
of individuals with asthma and around 25% of those with 
COPD [4]. Cumulative environmental exposures, such 
as exposure to allergens and toxic particles or gases (e.g., 
smoking and indoor biomass), are believed to play a cru-
cial role in the development and progression of ACO [1, 
5]. Additionally, asthma and atopy have been identified as 
potential risk factors for the development of COPD and, 
consequently, ACO [6]. More importantly, patients with 
ACO often experience increased rates of exacerbations 
and clinical symptoms, posing a significant challenge 
for clinical treatment and management [7, 8]. However, 
managing ACO patients can be intricate due to the over-
lapping nature of these diseases.

The inflammatory mechanisms in asthma and COPD 
are distinct. In asthma, inflammation is primarily driven 
by Th2 cell-mediated responses, leading to eosinophilic 
inflammation and an increase in cytokines like IL-4, IL-5, 
and IL-139. On the other hand, COPD is characterized by 
inflammation with a higher presence of neutrophils and a 
dominance of Th1 and Th17 cell-mediated responses [9]. 
In both conditions, macrophages, the primary immune 
cells in the lungs, play crucial roles in the immune 
response, defense against infections, tissue homeosta-
sis, and inflammation resolution [10]. Macrophages in 
asthma and COPD can contribute to airway inflamma-
tion and remodeling by releasing pro-inflammatory cyto-
kines, proteases, and reactive oxygen species [11, 12]. 
Therefore, it is reasonable to believe that macrophages 
also play a vital role in the inflammatory processes and 
pathophysiology of ACO.

ACO is more commonly diagnosed in older indi-
viduals, and its prevalence tends to increase with age, 
as supported by various studies [13, 14]. Age has been 
identified as a significant risk factor for ACO in asthma 
patients [15]. Consequently, the aging process and senes-
cence appear to play substantial roles in the development 
of lung inflammation in individuals with ACO. Senes-
cence represents a complex cellular state characterized 
by cellular stress, DNA damage, cell cycle arrest, and 
the release of senescence-associated secretory pheno-
type (SASP) factors [16–18]. These SASP factors encom-
pass chemokines, cytokines, growth factors, adhesion 

molecules, and lipid components that can contribute to 
multiple age-related disorders with both local and sys-
temic consequences [19–26]. It’s worth noting that cel-
lular senescence has been associated with both asthma 
[27, 28] and COPD [29–31]. Consequently, senescence 
may exert a significant influence on the development and 
management of ACO. However, it is essential to recog-
nize that senescence is a complex process influenced by 
factors such as cell type, age, and specific diseases [28, 
32]. Therefore, it is crucial to investigate whether senes-
cence in lung macrophages contributes to the inflamma-
tory processes and pathophysiology unique to ACO.

In our current research, we conducted an analysis using 
publicly available single-cell RNA sequencing (scRNA-
Seq) data obtained from human lung tissues, comparing 
individuals with and without ACO. Our primary focus 
was on identifying the major cell types and identified 
monocytes/macrophages as the predominant cell types 
in patients with ACO. We delved into gene signatures 
associated with senescence, specifically within mono-
cytes/macrophages. The findings were further validated 
through another independent cohort (IMSA) with a spe-
cific emphasis on investigating the relationship between 
cellular senescence features and the severity of asthma. 
Additionally, we explored differentially expressed genes 
and pathways within alveolar macrophages of individuals 
with ACO and identified PPARγ as a key regulatory factor 
in driving cellular senescence in alveolar macrophages.

Methods
Data source
The scRNA-Seq data was publicly available and was gen-
erated from human lung tissues of a patient with ACO 
who died with exacerbation and two transplant donors 
[33]. The Bulk RNA-Seq and mass cytometry (cytometry 
by time of flight, CyTOF) data were derived from bron-
choalveolar lavage fluid (BALF) samples and downloaded 
from the Gene Expression Omnibus (GEO) database with 
the accession number GSE136587, and the Flow Reposi-
tory (FR) database with the identifier FR-FCM-Z39535. 
The data were collected as a part of the Immune Mech-
anisms Severe Asthma (IMSA) study and involved the 
analysis of bronchoscopically obtained distal airway 
and alveolar cells. The study included a total of 39 sub-
jects consisting of 6 healthy controls, 17 mild/moderate 
asthma patients, and 16 severe asthma patients.

Single cell RNA-seq processing and analyzing
Quality Control
The raw counts matrixes downloaded were loaded to 
R workspace to initiate a Seurat workflow. A series of 
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critical preprocessing steps were performed to ensure 
data quality before the analysis. Specifically, cells with a 
count of unique molecular identifiers (UMIs) below 500, 
cells expressing fewer than 200 genes with a log10Gene-
sPerUMI value below 0.75, and cells with mitochondrial 
gene expression contributing to over 20% of the total 
gene expression were removed.

Dimension reduction and cell annotation
Following the quality control procedures, the processed 
data underwent integration using distinct strategies: the 
complete dataset was integrated utilizing Seurat [34], 
while the Monocytes/Macrophages subset was inte-
grated using the Harmony approach [35]. The dimen-
sionality reduction and visualization were achieved using 
the Uniform Manifold Approximation and Projection 
(UMAP) algorithm. UMAP not only captures inter-cel-
lular distances but also provides a holistic view of the 
data’s global structure [36]. Cell clusters were identified 
by Leiden algorithm, an automated algorithm tailored for 
effectively clustering cells in scRNA-seq data [37]. Cell 
markers were these with differentially expressed genes 
(DEGs) identified by the FindAllMarkers function from 
the Seurat package. Cellular annotations were identified 
by SingleR or manually based on specific marker expres-
sion, which allows us to get the composition and dynam-
ics of cells within the dataset [38].

Differential expressing analyses
Differential expressing analyses were conducted using the 
Libra R package (Version 1.0.0). Within this framework, 
the “run_de” function was employed, applying Wilcoxon 
rank sum tests to assess statistical differences between 
groups. Genes with an adjusted P value < 0.05 and abso-
lute log2-fold change (|log2FC|) > 0.5 were termed as 
statistical significance. Moreover, the Seurat package’s 
“FindMarkers” and “FindAllMarkers” functions were also 
utilized to identify markers that distinguish cell clusters 
with Wilcoxon rank sum tests.

Enrichment analyses
The enrichment analyses included geneset scoring 
through the AUCell algorithm, and over-representation 
analysis (ORA). The AUCell algorithm was employed to 
gauge cellular senescence enrichment. This algorithm 
calculated an enrichment score by juxtaposing the input 
data against the SenMayo senescence geneset, an opti-
mal choice for senescence screening since it consistently 
aligns with results from biological validation experi-
ments [39]. The ORA analysis function RunEnricher was 
embedded within the High-Dimensional Weighted Gene 
Co-Expression Network Analysis (hdWGCNA) R pack-
age. It was employed to investigate the biological charac-
teristics of selected co-expression modules.

Trajectory analyses
A partition-based graph abstraction (PAGA) based tra-
jectory analysis was used to investigate the trajectory 
of monocytes/macrophages within single-cell RNA 
sequencing (scRNA-seq) data. This procedure was per-
formed using Scanpy version 1.9.1 in Python 3.10.9., 
which revealed the intricate relationships and transitions 
among different cell states. This workflow simplified the 
dataset’s graph representation by clustering similar cells, 
enabling the identification of connected and discon-
nected regions. By combining well-defined paths rooted 
in high-confidence connections and leveraging a ran-
dom-walk-based distance metric, cells are systematically 
ordered within each partition according to their proxim-
ity to a designated reference cell [40].

High-dimensional weighted gene co-expression network 
analysis (hdWGCNA)
To explore the hub genes and the underlying expression 
network associated with cellular senescence and related 
biological processes, we harnessed the power of hdW-
GCNA (Version 0.2.18). This algorithm is a refinement of 
the traditional WGCNA designed specifically for scRNA-
Seq data. It operates by computing a sparsity-reduced 
expression matrix termed metacell, akin to the concept of 
pseudobulk to mitigate the influence of undetected genes 
and facilitate the identification of gene co-expression 
modules with clinical or biological information [41, 42].

Transcription factor analyses
Transcription factors are crucial for the initial stage 
of decoding DNA sequencing and regulation of gene 
expression [43]. To initiate this process, we employed 
PySCENIC (Version 0.12.1) [44] to identify cell cluster-
specific transcription factors. Moreover, we extended 
our investigation by extracting a gene list from the cel-
lular senescence-related gene module identified using 
hdWGCNA. Subsequently, this gene list was subjected 
to transcription factor enrichment analysis using the 
Transcriptional Regulatory Relationships Unraveled by 
Sentence-based Text mining (TRRUST) database on the 
metascape website (metascape.org) [45, 46].

Bulk RNA-seq processing and analyzing
Data preprocessing
The expression matrix encompassing raw counts and 
pertinent phenotype information was procured from the 
GEO website, facilitated by the GEOQuery R package 
(Version 2.66.0) [47]. The raw counts with batch details 
were downloaded for differential expressing analysis. 
Furthermore, the raw counts were normalized and then 
transformed into log2-transformed transcripts per mil-
lion (log2TPM) values. To mitigate the batch-induced 
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discrepancies, the Combat algorithm embedded within 
the sva R package (Version 3.44.0) [48].

Unsupervised clustering and differential expressing analyses
Due to heterogeneity of asthma, we did not make direct 
comparisons for senescence signature between different 
asthma groups. Instead, we employed an unsupervised 
clustering approach that focused on the expression pro-
files of genes associated with cellular senescence [49]. 
For the clustering process, we utilized the k-means algo-
rithm, which groups data points based on their similarity 
as measured by the Euclidean distance with the Consen-
susClusterPlus R package (Version 1.60.0) [50, 51]. The 
differential expressing analysis was performed to explore 
the variations in gene expression across these clusters by 
following the limma-voom approach with batch informa-
tion adjusted in the model [52].

CyTOF processing and analyzing
Data preprocessing
An outlier sample displaying an unusually high intensity 
value of 3 in the live_dead channels was identified and 
subsequently excluded from the CyTOF analysis. Cells 
exhibiting extremely low CD45 expression were also fil-
tered out using Flowjo. The resultant fcs data was then 
transferred to an R workspace for subsequent analysis. 
To ensure accurate analysis, the data underwent a bead-
based normalization process utilizing the “normCytof” 
function within the CATALYST R package (Version 
1.20.1) [53].

Dimension reduction and cell annotation
Similar to scRNA-Seq, dimension reduction for visualiza-
tion and cell annotation were required for CyTOF core 
analyses. Especially, the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) algorithm was employed [54]. 
For automated cluster identification, the FlowSOM [55] 
was used. Cell type annotations were based on expres-
sion profiles of major cell type markers similar to that 
described in relevant publications [56].

Differential abundance (DA) and Differential States (DS) 
analyses based on CyTOF Data
Differential cell proportion (abundance) and cytokine 
expression (states) between cellular senescence clusters 
identified by unsupervised clustering were calculated 
with diffcyt R package (1.16.0). Both limma based DA 
(diffcyt-DS-voom), and DS (diffcyt-DA-trend) param-
eters were chosen for differential expression analyses [52, 
57].

Statistical analysis and data visualization
All analysis and visualizations were processed with 
R (Version 4.1.2 for scRNA-Seq and Version 4.2.1 for 

CyTOF and Bulk RNA-Seq), Python (Version 3.10.9) and 
GraphPad (Version 9.3). Wilcoxon rank sum tests were 
employed for continuous variables between two groups; 
Chi-Square tests were performed for the comparisons of 
categorical variables. Correlation analyses (Pearson) were 
based on Single-Cell Variational Inference (scVI-tools, 
Version 0.20.2) imputed expression data to avoid spar-
sity influence [58]. Data visualizations were performed 
with ggplot2 (Version 3.4.1), genekitr (Version 1.0.5), 
ggVennDiagram (Version 1.2.2) and ComplexHeatmap 
(Version 2.10.0) R packages.

Results
Alveolar macrophages were the major cell types in patients 
with ACO
To better understand the pathogenesis of ACO, we ana-
lyzed the existing scRNA-Seq dataset generated from 
human lung tissues of a patient with ACO and two trans-
plant donors without ACO [33]. By using the Leiden 
algorithm, an automated algorithm designed to effec-
tively cluster cells in scRNA-seq data [37], we identified 
a total of 12 cell clusters within dataset (Fig. 1, A). These 
cell clusters were further annotated as different cell types 
by using the SingleR algorithm with manual adjustments. 
Cell markers were these differentially expressed across 
different cell types identified by the FindAllMarkers func-
tion from the Seurat package [34]. A total of nine differ-
ent cell types were identified within the dataset, which 
included monocytes/macrophages, T cells, NK cells, AT2 
alveolar type II cells, endothelial cells, airway epithelial 
cells, B cells, fibroblasts, and mast cells (Fig.  1, B). The 
top-ranking differentially expressed genes for each cell 
type were presented in Fig. 1, C and Figure E1). For exam-
ple, complement-related genes (C1QA, C1QB), CD68, 
and APOC1 were highly expressed in monocytes/macro-
phages (Figure E1, A), while genes like SFTPB, SFTPA1, 
and SFTPA2 were uniquely and significantly expressed in 
AT2 airway epithelial cells (Figure E1, B). Tryptase genes 
(TPSAB1, TPSB2) were highly expressed in mast cells 
(Figure E1, C). To identify the distribution of different 
cell types in the samples from ACO and control group, 
we performed cell proportion analysis as defined by rela-
tive percentages (Fig. 1, D). Of these, monocytes/macro-
phages were a predominant cell type, constituting more 
than 50% of the cells in the different groups being ana-
lyzed. Furthermore, the proportion of monocytes/macro-
phages was significantly higher in ACO patient compared 
to control group (p < 0.001). Next, we focused on those 
monocytes/macrophages specifically and re-clustered 
them by using the Leiden algorithm. A total of seven 
clusters were identified (Fig.  1, E). These cell clusters 
were further annotated as different sub-types of mono-
cytes/macrophages (Fig. 1, F), including alveolar macro-
phages (AM), cycling cells, interstitial macrophages (IM), 
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Fig. 1 Alveolar macrophages were the major cell types in patients with ACO. A, A total of 12 cell clusters were identified within the scRNA-Seq dataset 
generated from human lung tissues of patients with ACO (n = 1) and without ACO (n = 2). B, Cell clusters in (A) were further annotated as different cell 
types by using the SingleR algorithm. C, Heatmap represents the top-ranking differentially expressed genes for each cell type in (B). D, Relative percent-
age of each cell type in ACO and controls. E, A total of seven clusters were identified within monocytes/macrophages by using the Leiden algorithm. 
F, Cell clusters in (E) were further annotated as different sub-types of monocytes/macrophages. G, Heatmap represents the top-ranking differentially 
expressed genes for each cell type in (F). ACO: asthma-COPD overlap. Chi-Square tests were performed for the comparisons of category variables
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and monocytes. The top-ranking differentially expressed 
genes for each cell type were presented in Fig. 1, G and 
Figure E2). Similar to monocytes/macrophages, the sub-
type AMs express the complement-related genes C1QA, 
C1QB (Figure E2, A). Additionally, several other genes 
RBP4, CD9, SERPING1, and CES1 are also significantly 
expressed in AMs. The proliferation markers PCLAF, 
TOP2A and MKI67 were highly expressed in cycling cells 
(Figure E2, B). IMs were in an intermediate state in the 
UMAP plot and expressed high levels of molecules such 
as LGMN, RNASE1, and CCL2 (Figure E2, C). While CFP, 
FCN1, and S100A8,were highly expressed in monocytes 
( Figure E2, D). Taken together, the results suggest that 
monocytes/macrophages in ACO are major cells that 
may drive airway inflammation.

Decreased cellular senescence in monocytes/macrophages 
of patients with ACO
Cellular senescence has gained considerable attention 
across various diseases, including respiratory condi-
tions such as asthma [28]. To determine whether senes-
cence contributes to the development of ACO, we 
specifically assessed the enrichment of genes associated 

with senescence within lung monocytes/macrophages. 
Employing the AUCell algorithm, we computed enrich-
ment scores against a senescence-related gene set known 
as SenMayo [39]. Among all the subtypes, AMs/mono-
cytes showed the higher enrichment sore as assessed 
by the density of AUCell enriched SenMayo senescence 
scores (Fig. 2, A). Next, we investigated the distribution of 
ACO and control group among monocytes/macrophages 
(Fig. 2, B) and enrichment scores of SenMayo senescence 
in ACO and control group (Fig.  2, C). As illustrated in 
Fig.  2, C, the senescent signatures are enriched in the 
control group as compared to ACO group. Among them, 
AMs were a predominant cell type, constituting more 
than 50% of the cells among all these subtypes (Fig.  2, 
D). The proportion of AMs was significantly higher in 
ACO patients as compared to control group (p < 0.001). 
Additionally, cell cycle arrested in the G1 phase is one 
of the important features of cellular senescence [59]. We 
found that monocytes/macrophages that were in the G1 
phase of the cell cycle were more abundant in the control 
group compared with ACO group (Fig. 2, E). These find-
ings were further supported by the expression of cellular 
senescence markers, CDKN1A (p21) and CDKN2A (p16) 

Fig. 2 Deceased cellular senescence in monocytes/macrophages of patients with ACO. A, Density of AUCell enriched SenMayo senescence score within 
lung monocytes/macrophages. B, Distribution of ACO and control group among monocytes/macrophages. C, Enrichment scores of SenMayo senes-
cence in ACO and control group. D, Relative percentage of each monocyte/macrophage subtype in ACO and controls. E, Relative percentage of each cell 
cycle phases in ACO and controls. F-G, Expression of cellular senescence markers CDKN1A (p21, F) and CDKN2A (p16, G) in ACO and controls. Chi-Square 
tests were performed for the comparisons of category variables. Wilcox rank sum tests were used for the comparison of numerical variables. A p < 0.05 
was considered as statistical significance
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[60]. The expression of CDKN1A was much lower in the 
ACO group as compared to the control group (Fig.  2, 
F). In contrast, no significant change was observed for 
CDKN2A (Fig.  2, G). These findings suggest a lower 
prevalence of cellular senescence within lung monocytes/
macrophages among patients with ACO.

A lower prevalence of senescence observed in patients 
with severe asthma
We further validated the results through another inde-
pendent cohort (IMSA) [56] and analyzed the relation-
ship between cellular senescence features in BAF cells 
and the severity of asthma. After stringent quality con-
trol, a total of 39 subjects were finally included for analy-
sis: 6 healthy controls (HC), 17 mild/moderate asthma 
patients (MMA), and 16 severe asthma patients (SA). 
Definition of these subjects has been previously reported 
[61]. Consensus clustering analysis with the Consensus 
Cumulative Distribution Function (CDF) identified cel-
lular senescence clusters for immune cells from IMSA. 
Consensus clustering analysis involves repeated cluster-
ing of the data with different values of k (from 2 to 5) 
within a dataset to identify stable and meaningful clus-
ters (Fig. 3, A). Based on the consensus CDF (Fig. 3, B), 
it is evident that cellular senescence clusters 2 provides 
the most consistent and stable clustering solution for 
the IMSA dataset. According to the ssGSEA SenMayo 
Senescence score, the cluster 2 was divided into senes-
cence clustering low and high group (P = 0.002, Fig. 3, C). 
Senescence clustering low group showed lower expres-
sion of senescence markers CDKN1A as compared to 
senescence high group (P = 0.011, Fig. 3, D). No difference 
was noted for CDKN2A between senescence clustering 
low and high group (P = 0.29, Fig. 3, E). In contrast, senes-
cence low group showed higher expression of cell prolif-
eration marker MKI67 (P = 0.0015, Fig. 3, F). Intriguingly, 
among the analyzed subjects consisting of HC, MMA, 
and SA participants, the large proportion of severe asth-
matic patients was observed in senescence low group as 
compared to senescence high group (P < 0.05, Fig. 3, G). 
These findings indicate that cellular senescence may be 
negatively associated with the severity of asthma.

Airway CD206+macrophages show a lower prevalence of 
senescence and increased cytokines
To further explore the relationship between cellular 
senescence and airway inflammation in asthma, we 
focused on the CyTOF dataset that targets lineage mark-
ers for the adaptive and innate immune systems [56]. 
Unsupervised cell clustering was performed in BAL flu-
ids from HC, MMA, and SA participants using the Flow-
SOM algorithm [62, 63]. Cell types in those clusters were 
determined by the surface marker staining intensities 
across t-SNE spaces. A total of 7 different cell clusters 

were annotated using a combination of surface marker 
genes, including B lymphocytes (CD19+), CD206− mac-
rophages (CD11C+CD206−), CD206+ macrophages 
(CD11C+CD206−), CD4 T lymphocytes (CD3+CD4+), 
CD8 T lymphocytes (CD3+CD8+), γδ T lymphocytes 
(TCRγδ+), and NK cells (CD56+) (Fig. 4, A, B, and Figure 
E3). To identify the link between these airway immune 
cells and cellular senescence, the percentages of those 
identified cell populations were compared in senescence 
high and low groups. Among all these populations, a sig-
nificant difference was found for CD206+ macrophages, 
which showed a higher proportion in senescence low in 
relative to senescence high group (Fig.  4, C). Interest-
ingly, the senescence low group showed elevated levels of 
cytokines IL-5, IL-13, IL-10, and IL-22 in BAL fluids of 
the IMSA cohort (Fig.  4, D). Particularly, CD206+ mac-
rophages showed increased expression of IL-4, IL-13, 
and IL-22 in senescence low group as compared those in 
senescence high group (Fig.  4, E). Taken together, these 
data suggest that CD206+macrophages are major airway 
immune cells associated with cellular senescence and cel-
lular senescence is negatively correlated with cytokines in 
airway CD206+Macrophages.

Differentially expressed genes and pathways in Alveolar 
macrophages of ACO
Given the significance of CD206+macrophages in cel-
lular senescence, we re-visited the ACO dataset and 
determined whether the specific subtype of monocytes/
macrophages drive the difference in cellular senescence 
between ACO and control group. To explore this, we 
used trajectory analysis to infer the relationships and 
distances between different subtypes of monocytes/
macrophages. Analyses were started with cycling cells, 
we identified a specific cluster that has the highest dis-
tance (pseudo-time) and is in the upper right corner of 
a two-dimensional scatter plot (Fig.  5, A). This clus-
ter was mostly composed of cells from Leiden cluster 1 
(Fig.  5, B) and was predominantly found in the control 
group (Fig.  5, C), suggesting that cells in Leiden cluster 
1 may contribute to the difference in biological processes 
between ACO and control group. To further characterize 
the Leiden cluster 1, we employed the FindAllMarkers to 
investigate the highly expressed marker genes for cluster 
1 against other cell clusters. A total of 47 genes were iden-
tified specifically for the Leiden cluster 1, such as SERP-
ING1, CES1, HLA-DQA1, INHBA, FABP4, LGALS3BP, 
AKR1C3, CITED2, TERM1, FN1, EVL, ALDH1A1, and 
PDLIM1 (Fig.  5, D and see Table E2). Additionally, we 
checked the lineage markers that are commonly used 
for monocytes/macrophages (Fig.  5, E). we found that 
PPARγ, FCGR1A, FCGR3A, MSR1 (CD205), and MRC1 
(CD206) were enriched in Leiden cluster 1. Further-
more, we used AUCell scoring to analyze the biological 
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characteristics of Leiden cluster 1 in comparison to 
other clusters. Especially, the KEGG enrichment analysis 
(Fig.  5, F and see Table E3) indicated that Leiden clus-
ter 1 had significant enrichments in several pathways, 

such as antigen processing and presentation, Peroxi-
some Proliferator-Activated Receptor (PPAR) signaling 
pathway. Next, we investigated the differences in cellular 
senescence between ACO and control groups specially 

Fig. 3 A lower prevalence of senescence in patients with severe asthma in an IMSA dataset. A, Identification of stable and meaningful clusters by re-
peated consensus clustering analysis with different values of k (from 2 to 5) within a IMSA dataset. B, Consistent and stable cellular senescence clusters 
identified by Cumulative Distribution Function (CDF). C, Two clusters were assigned senescence low and high group according to the ssGSEA SenMayo 
Senescence score. D-F, Relative expression of senescence markers CDKN1A (p21, D), CDKN2A (p16, E), and proliferation marker MKI67 (F) in senescence 
clustering low and high group. G, Relative percentage of health control (HC, n = 5), mild/moderate asthma patients (MMA, n = 17), and severe asthma (SA, 
n = 16) participants in senescence clustering low and high group. Fisher’s Exact test was performed for the comparisons of category variables. Wilcox rank 
sum tests were used for the comparison of numerical variables between 2 groups. A p < 0.05 was considered as statistical significance
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Fig. 4 Airway CD206+macrophages show a lower prevalence of senescence but increased cytokines. A, Density scatter plots showed the distribution 
of relative expression of markers for cell type annotation. B, A total of 7 different cell clusters annotated using a combination of surface marker genes. C, 
Relative percentage of each cell type in senescence clustering low and high group. D, Levels of cytokines in BAL fluids in senescence clustering low and 
high group of the IMSA cohort. E, Heatmap represents cytokine expression in CD206+ macrophages of senescence clustering low and high group. Vari-
ables. Limma based multiple linear regressions were performed for abundance and expression comparisons between senescence high and low groups. 
A p < 0.05 was considered as statistical significance
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Fig. 5 (See legend on next page.)
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in Leiden cluster 1. Consistent with our previous analy-
ses among all the monocytes/macrophages, the SenMayo 
senescence score was remarkably lower in ACO groups 
compared with control group (Fig.  5, G). This was fur-
ther supported by the expression of cellular senescence 
marker CDKN1A (Fig. 5, H), which also showed reduced 
expression in the ACO group. No statistical difference 
was observed for CDKN2A (Fig.  5, I). Additionally, to 
further display the characteristics of cellular senescence, 
we identified differentially expressed genes related to oxi-
dation-reduction, cytokines, and growth factors between 
ACO and control groups in Leiden cluster 1. Of those, 
TGFB1 was increased but several chemokines such as 
CXCL2, CXCL3, CXCL8, and CCL18 were decreased in 
ACO group compared with control group (Fig.  5, J and 
see Table E4). These results suggest correlations between 
cellular senescence and cytokine expression in alveolar 
macrophages of Patients with ACO. Furthermore, strong 
correlations were identified for CDKN1A expression 
levels and those identified genes in Leiden cluster 1 and 
traditional lineage markers for monocytes/macrophages 
(Fig. 5, K and see Table E5 in this article’s Online Reposi-
tory at www.jaci.org). For example, CDNK1A expression 
was correlated with genes with either positive regula-
tion (e.g., CD14, CD68, CD86, CD163, FCGR3A, MSR1, 
SERPING1, HLA-DQA1, INHBA, LGALS3BP, AKR1C, 
TREM1, FN1, and ALDH1A1) or negative regulation 
(e.g., MARCO, FCGR1A, ITGB2, and MRC1). Collec-
tively, the results indicate that these identified genes and 
biological pathways may be involved in regulating cellu-
lar senescence in alveolar macrophages of patients with 
ACO.

PPARγ, a key regulating factor of cellular senescence in 
alveolar macrophages
To delve deeper into the underlying regulatory mecha-
nisms of biological changes, we first utilized the hdW-
GCNA analysis focused on Leiden cluster 1 to explore 
the expression network associated with senescence signa-
tures. The algorithm discerned six gene modules: green, 
blue, red, brown, cyan, and tan (Fig. 6, A). Within these, 
CDKN1A (p21) was pinpointed in the brown module, 
and the module feature gene score was positively corre-
lated with the difference in cellular senescence between 
ACO and control groups (R = 0.669, p < 0.0001, Fig.  6, 

B). Prominently, the top 30 hub genes with high correla-
tion in this module encompassed those related to growth 
arrest and proliferation (e.g., GADD45B, PPP1R15A, and 
DUSP2), TP53-mediated cell senescence-associated heat 
shock proteins (DNAJA1, DNAJB1, and HSPA5), DNA 
damage and repair (e.g., MYL12A), and energy, pro-
tein, and lipid metabolism (e.g., GLUL, PLIN2, RPS4Y1, 
PDIA3, and SOD2). Furthermore, genes associated with 
SASP and its upstream regulators (e.g., CCL20, CXCL3, 
CXCL5, CXCL8, JUN, NFKB1A, and NFKBIZ) and those 
tied to antigen presentation, antibody response, and 
macrophage activation (e.g., C83, CD68, FCGR3A, and 
B2M) were also included in these hub genes (Fig. 6, C). 
These genes or biological processes are directly or indi-
rectly involved in senescence processes of alveolar mac-
rophages. Subsequent enrichment analyses of entire 
module genes showed that the brown module was mainly 
associated with macrophage markers and cellular senes-
cence (Fig.  6, D), cytokine signaling in immune system 
(Fig. 6, E), and antigen processing and presentation and 
PPAR signaling (Fig.  6, F). These biological character-
istics are closely related and mutually regulated. To 
pinpoint the central regulator of senescence in alveo-
lar macrophages, we leveraged SCENIC to discern the 
most specific transcription factors for each Leiden 
cluster. Notably, for Leiden cluster 1, PPARγ emerged 
as the predominant regulator (Fig.  6, G). This was fur-
ther supported by the transcription factor enrichment 
analysis with the brown module against the TRRUST 
database. PPARγ was identified to be one of the top 10 
pivotal transcription factors modulating gene expres-
sion within this module (Fig. 6, H). Intriguingly, each of 
these transcription factors had the potential to regulate 
CDKN1A expression. Taken together, these findings indi-
cate that the brown module had the core impact on cel-
lular senescence, and PPARγ is one of the predominant 
regulators modulating the senescent signature of alveolar 
macrophages.

Discussion
Both asthma and COPD can co-exist in older individu-
als with clinically overlapping phenotypes [1–3]. ACO 
has recently been a focus of interest because patients 
with ACO often experience poor health-related qual-
ity of life, increased rates of exacerbations, and severe 

(See figure on previous page.)
Fig. 5 Differentially expressed genes and pathways in alveolar macrophages of ACO. A, A two-dimensional scatter plot of trajectory estimation of all cells 
from monocytes/macrophages. B, Distribution of cell clusters identified by Leiden matching trajectory analysis. C, Distribution of cells strata by groups 
matching trajectory analysis. D, Relative expression of lineage markers commonly used for monocytes/macrophages. E, Top-ranking high expressed 
marker genes across 7 cell clusters identified by FindMarkers. F, Difference of AUCell KEGG enrichment scores between Leiden cluster 1 and other clus-
ters. G, Difference in SenMayo senescence score between ACO and control group. H-I, Relative expression of senescence markers CDKN1A (p21, H) and 
CDKN2A (p16, I) in ACO and control group. J, Heatmap representing the differential expression of genes linked to oxidoreductases, cytokines, and growth 
factors between ACO and control group. K, Correlations between CDKN1A expression and differentially expressed genes in Leiden cluster 1 and lineage 
markers for monocytes/macrophages. Wilcox rank sum tests were used for the comparison of numerical variables between 2 groups; Pearson’s correla-
tions were used for computing coefficients between imputed expression values. A p < 0.05 was considered as statistical significance

http://www.jaci.org
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Fig. 6 PPARγ as a key regulating factor of cellular senescence in alveolar macrophages. A, Six gene modules identified by the hdWGCNA analysis focused 
on Leiden cluster 1. B, Brown module was positively correlated with the difference in cellular senescence between ACO and control groups. C, Top 30 
hub genes with high correlations in the brown module. D-F, Different pathways in the brown module were identified by WikiPathways (D), Reactome (E) 
and KCGG (F). G, Top 10 specific regulons for Leiden cluster 1 ranked by score value generated from PySCENIC. H, Transcription factor enrichment analysis 
within the brown module against the TRRUST database
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clinical symptoms [7, 8]. While the exact pathophysiol-
ogy of ACO is not fully understood, it is thought to result 
from various features of both asthma and COPD [64, 65]. 
Both asthma and COPD involve chronic airway inflam-
mation, but they have different underlying mechanisms. 
In asthma, there is typically eosinophilic inflammation 
driven by a Th2 immune response [65], while COPD is 
characterized by neutrophilic inflammation associated 
with Th1 and Th17-driven inflammation [9, 66, 67]. In 
both conditions, macrophages play a central role in the 
recruitment and activation of neutrophils and eosinophils 
[10–12, 68]. Indeed, a very recent cross-sectional explor-
atory study was performed to investigate cellular changes 
(e.g., macrophages, neutrophils, eosinophils, mast cells, 
CD8+, and CD4+T lymphocytes) in the airway wall of 
ACO compared with asthma, COPD current smokers, 
and ex-smokers, normal lung function smokers, and non-
smoker controls. They found that the ACO airway tissue 
inflammatory cellular profile differed from the contribut-
ing diseases of asthma and COPD with a predominance 
of macrophages [65]. The results were supported by our 
analyses on an existing scRNA-Seq dataset generated 
from human lung tissues of patients with ACO. Mono-
cytes/macrophages were a predominant cell type among 
all cell type to be analyzed (monocytes/macrophages, 
T cells, NK cells, AT2 alveolar type II cells, endothelial 
cells, airway epithelial cells, B cells, fibroblasts, and mast 
cells), constituting more than 50% of the total cells, and 
the proportion of monocytes/macrophages was signifi-
cantly higher in patients with ACO in relative to control 
group. Importantly, our further study identified several 
sub-types of monocytes/macrophages, including alveolar 
macrophages, cycling cells, interstitial macrophages, and 
monocytes. Of these, alveolar macrophage was the most 
predominant cell type with the increased expression of 
complement-related genes C1QA, C1QB, and several 
other genes RBP4, CD9, SERPING1, and CES1. Thus, 
our findings provide further evidence that monocytes/
macrophages, particularly alveolar macrophages, are 
major cells that may contribute to airway inflammation 
in patients with ACO.

Next, we explored how monocytes/macrophages drive 
airway inflammation with the emphasis on cellular senes-
cence that has been implicated in the pathophysiology of 
various diseases, including asthma [28]. Cellular senes-
cence is an extremely complex and dynamic biological 
process induced by several factors, including aging, oxi-
dative stress, DNA damage, mitochondrial dysfunction, 
epigenetic modifications, and telomere shortening [28, 
69, 70]. Cellular senescence has been associated with 
both asthma [28] and COPD [29–31]. Several stimuli 
causing cellular senescence have been associated with 
asthma, such as telomere shortening, oxidative stress, 
inflammation, and autophagy/mitophagy. Therefore, 

senescence may exert a significant influence on the func-
tion and activation of ACO-associated target cells and 
subsequently development and management of ACO. 
Here we investigated the relationship between senes-
cence and ACO by analyzing gene signatures associated 
with senescence in all the subtypes of monocytes/macro-
phages. We demonstrated for the first time a lower prev-
alence of cellular senescence in alveolar macrophages of 
patients with ACO. While both CDKN1A and CDKN2A 
are well-recognized markers for cellular senescence, 
their significance may not always align based solely on 
their expression levels or other factors. Here we showed 
that the expression of CDKN1A was much lower in the 
ACO group as compared to the control group. In con-
trast, while both CDKN1A and CDKN2A showed the 
same direction, no statistically significance was observed 
for CDKN2A and senescence, indicating that the rela-
tionship between these markers and cellular senescence 
might be nuanced and influenced by their expression and 
other various biological factors.

To strengthen our findings on the role of cellular senes-
cence in ACO, we analyzed the relationship of cellular 
senescence features with the severity of asthma in a total 
of 39 individuals from IMSA [56]. Specifically, senes-
cence in those individuals were clustered into senes-
cence low and high group and then the distribution of 
healthy controls, mild/moderate asthma, and severe 
asthma was analyzed in these two groups. Intriguingly, 
the large proportion of severe asthmatic patients was 
observed in senescence clustering low group compared 
with senescence clustering high group. Furthermore, we 
focused on the CyTOF dataset from BAL fluids that tar-
gets lineage markers and identified a total of 7 different 
cell clusters, including B lymphocytes, CD206− macro-
phages, CD206+ macrophages, CD4+ T, CD8+ T, γδ T, 
and NK cells. Of these, CD206+ macrophages were dis-
tributed in senescence clustering low group and showed 
increased expression of Th2 cytokines IL-4, IL-13 and 
Th17 cytokine IL-22, suggesting that, CD206+ mac-
rophages may drive both Th2 and Th17 populations 
commonly seen in patients with ACO [64, 65]. CD206 
expression is a characteristic feature of some tissue-res-
ident macrophages, including alveolar macrophages [10, 
71], and CD206+ macrophages represent a large propor-
tion of alveolar macrophages. Collectively, these inde-
pendent data provide evidence that patients with severe 
asthma have a lower prevalence of cellular senescence, 
and CD206+macrophages may contribute to the sever-
ity of asthma, possibly ACO, by releasing inflammatory 
cytokines.

We also explored the underlying mechanisms as for 
how cellular senescence is regulated in macrophages. 
We investigated the differentially expressed genes and 
pathways in alveolar macrophages in Leiden cluster 1, 
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a population mostly likely contributing to the differ-
ence in cellular senescence between ACO and control 
group. Several pathways were also identified, such as 
antigen processing and presentation, PPARγ signal-
ing pathway. Additionally, several markers commonly 
used for monocytes/macrophages also showed differ-
ent expression, including PPARγ, FCGR1A, FCGR3A, 
CD205, and CD206. As expected, most of these differen-
tially expressed genes were either positively or negatively 
associated with senescence as defined by the expression 
of CDNK1A and enrichment scores of SenMayo senes-
cence (data not shown). To further delve deeper into the 
underlying regulatory mechanisms of biological changes, 
we utilized the hdWGCNA analysis focused on alveolar 
macrophages and identified several expression networks 
associated with senescence signatures, including growth 
arrest and proliferation, TP53-mediated cell senescence-
associated heat shock proteins, DNA damage and repair, 
and energy, protein, and lipid metabolism. These genes or 
biological processes are directly or indirectly involved in 
senescence processes of alveolar macrophages.

Importantly, we identified PPARγ as one of the top 10 
pivotal transcription factors modulating senescent signa-
tures of alveolar macrophages. Interestingly, PPARγ as a 
transcription factor has been shown to play a crucial role 
in various physiological processes, including adipogen-
esis [72, 73], glucose homeostasis [74], inflammation [75, 
76], and metabolism and function of macrophages [77]. 
Studies have implicated that PPARγ regulates senescence 
in various cell types, including fibroblasts and endothelial 
cells [78, 79], and macrophages [77]. PPARγ activation 
can promote senescence by upregulating the expression 
of specific senescence-associated genes and inducing cell 
cycle arrest [79]. PPARγ activation can also have anti-
senescent effects by reducing senescence and improve 
metabolic function [79–82].

Taken together, we present groundbreaking findings, 
demonstrating for the first time that monocytes/macro-
phages, particularly alveolar macrophages, are the pre-
dominant cell types in patients with ACO. Our research 
reveals a lower prevalence of senescence within alveo-
lar macrophages in both ACO patients and those with 
severe asthma. Mechanistically, our in-depth exploration 
of differentially expressed genes within alveolar macro-
phages has identified PPARγ as a crucial regulatory fac-
tor driving senescence in ACO. Notably, there are several 
limitations, including small sample size, lack of mouse 
model to mimic patients with ACO, and complicated 
and context-dependent role of PPARγ in cellular senes-
cence. Especially, while we recognized the limitation of 
the sample size at the beginning, we took advantage of 
the availability of the rare and precious dataset to explore 
the potential inflammatory cells in ACO, examine senes-
cence within these cells, and elucidate the genes and 

pathways responsible for regulating senescence. These 
findings will severe as a basis for future investigations 
aimed at a comprehensive understanding of the mecha-
nisms for ACO. Importantly, we are encouraged by the 
findings from the current dataset, we will perform similar 
scRNA-seq study on ACO patients in the future, which 
will strengthen the study’s conclusions and enhance its 
generalizability. In this study our observations provide a 
solid foundation for future investigations aimed at a com-
prehensive understanding of the mechanisms through 
which PPARγ regulates senescence. Furthermore, it 
opens doors for exploring PPARγ as a potential therapeu-
tic target for interventions aimed at modulating senes-
cence-associated processes in ACO–a condition marked 
by mixed features of both asthma and COPD, known for 
its increased severity.
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