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Abstract 

Background Idiopathic pulmonary fibrosis (IPF) is a progressive disease with a five-year survival rate of less than 40%. 
There is significant variability in survival time among IPF patients, but the underlying mechanisms for this are not clear 
yet.

Methods and results We collected single-cell RNA sequence data of 13,223 epithelial cells taken from 32 IPF 
patients and bulk RNA sequence data from 456 IPF patients in GEO. Based on unsupervised clustering analysis 
at the single-cell level and deconvolution algorithm at bulk RNA sequence data, we discovered a special alveo-
lar type 2 cell subtype characterized by high expression of CCL20 (referred to as ATII-CCL20), and found that IPF 
patients with a higher proportion of ATII-CCL20 had worse prognoses. Furthermore, we uncovered the upregulation 
of immune cell infiltration and metabolic functions in IPF patients with a higher proportion of ATII-CCL20. Finally, 
the comprehensive decision tree and nomogram were constructed to optimize the risk stratification of IPF patients 
and provide a reference for accurate prognosis evaluation.

Conclusions Our study by integrating single-cell and bulk RNA sequence data from IPF patients identified a spe-
cial subtype of ATII cells, ATII-CCL20, which was found to be a risk cell subtype associated with poor prognosis in IPF 
patients. More importantly, the ATII-CCL20 cell subtype was linked with metabolic functions and immune infiltration.

Introduction
Idiopathic pulmonary fibrosis (IPF) is a severe chronic 
interstitial lung disease [1]. IPF patients have a poor 
prognosis, with most patients dying within 2–3  years 
after diagnosis [2, 3] and a survival rate of less than 40% 
at 5 years [4, 5]. IPF patients experience the destruction 
of alveolar structures, resulting in decreased lung func-
tion, interrupted gas exchange, respiratory failure, and 

ultimately death [6]. Despite increasing research on 
IPF [7–11], the factors that impact the prognosis of IPF 
patients remain unclear. Currently, only two drugs, Nin-
tedanib and Pirfenidone are used to slow down the pro-
gression of IPF [12, 13], however, the administration of 
these two drugs is standardized, with little consideration 
given to the severity of the disease and individual molec-
ular, genetic, and genomic variations [14]. It was known 
that the clinical progression of IPF patients was hetero-
geneous, with some progressing rapidly leading to poor 
prognosis and early death, while others showed very lit-
tle deterioration and better prognosis [15, 16]. The rea-
sons for these differences in IPF progression were not yet 
clear. Therefore, it is imperative to identify effective bio-
markers for early identification of IPF patients with poor 
prognoses.
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Pulmonary epithelial cells play a critical role in 
the pathogenesis of IPF. In IPF patients, the epithe-
lial cells undergo phenotypic and functional changes, 
which “reprogram” their normal repair response to 
injury, involving fibroblast activation, extracellular 
matrix remodeling, ultimately leading to fibrosis [17]. 
These changes in pulmonary epithelial cells can lead 
to permanent scar formation and organ dysfunction, 
ultimately resulting in premature death. Recently, sin-
gle-cell RNA sequencing (scRNA-seq) technology has 
been used to capture the RNA of individual cells and 
sequence it, providing a finer resolution to describe 
the transcriptional heterogeneity of cell populations in 
IPF as well as the biological processes and pathogenesis 
associated with IPF [18–21]. scRNA-seq can discover 
new cell types and molecular mechanisms, and reveal 
cell heterogeneity. Bulk RNA sequencing (bulk RNA-
seq) technology can reveal the overall characteristics 
and average gene expression levels of many patient tis-
sues. Therefore, combining bulk RNA-seq data from 
a large number of patients with extensive scRNA-
seq data can provide a clearer understanding of the 
dynamic process of IPF development, more accurate 
identification of biological factors affecting the progno-
sis of IPF patients, and ultimately promote the develop-
ment of clinical treatments.

Clinical and experimental evidence indicated that IPF 
represented an epithelial-driven disorder [22–25]. So, 
we hypothesized that there may be unknown epithelial 
cell subtypes that can affect survival as the cell propor-
tion increases in IPF patients. To address this, unsu-
pervised clustering analysis of epithelial cells from IPF 
patients was first performed based on scRNA-seq data, 
followed by deconvolution analysis of IPF bulk RNA-
seq data based on the unsupervised clustering results 
to reveal the impact of epithelial cell subtype propor-
tion on the survival time of IPF patients. Finally, we 
discovered a special subtype of ATII cells, named ATII-
CCL20, which is characterized by abnormal expression 
of metabolic and immune-related genes. Many previous 
studies have analyzed epithelial cells in IPF [26–28], 
but they didn’t identify the epithelial cell subtype asso-
ciated with survival. In contrast, our study has discov-
ered a new subtype of epithelial cells, ATII-CCL20, IPF 
patients with a higher proportion of ATII-CCL20 have 
significantly worse survival outcomes in multiple data-
sets. In summary, our study reveals a risk cell subtype 
ATII-CCL20 and elucidates its functional changes in 
IPF. More importantly, we generated a comprehensive 
decision tree and nomogram model to optimize the risk 
stratification of IPF patients, providing a reference for 
accurate prognosis evaluation of IPF patients and a new 
direction for treatment.

Materials and methods
Data processing of single‑cell RNA‑sequencing (scRNA‑seq) 
data
To investigate the heterogeneity of epithelial cells from 
IPF patients, we collected two scRNA-seq datasets 
GSE136831 [20] and GSE135893 [29] in the GEO [30], 
while GSE136831 was utilized as the discovery dataset, 
GSE135893 served as the validation dataset. Raw UMI 
count data was used and epithelial cells were extracted 
for subsequent analysis. The R package Seurat [31] was 
extensively utilized for the systematic processing of 
scRNA-seq data in this study. First, we removed the 
genes that were not expressed in all cells. The scRNA-seq 
expression profiles were log-normalized using the Nor-
malizeData function. To improve the accuracy of down-
stream unsupervised clustering analyses, we performed 
highly variable gene selection using the FindVariableFea-
tures function based on the mean.var.plot (MVP) method 
and 966 high variant genes were identified from 18,088 
genes. Next, the R function “ScaleData” was used to scale 
the expression of highly variable genes to balance the 
weight of genes in the downstream analysis. The RunPCA 
function was performed to principal component analy-
sis (PCA) [32] on the highly variable genes and selected 
the optimal number of principal components (PC) using 
a combination of the JackStraw method and Elbow 
method. 45 PCs were selected, then, we used the Find-
Clusters function to perform unsupervised clustering of 
the epithelial cells with a resolution of 1. The clustering 
results were visualized using the t-distributed stochastic 
neighbor embedding (tSNE) method [33]. The FindAll-
Markers function was used to identify marker genes for 
each epithelial cell subtype, with a significance threshold 
set at |avg_log2FC|> 2 and p_val_adj < 1e-2. The DimPlot 
and VlnPlot functions were used to visualize marker gene 
expression and distribution.

Data processing of bulk RNA‑sequencing (bulk RNA‑seq) 
data
Two datasets of peripheral blood mononuclear cell 
(PBMC) from IPF patients were selected from the GEO 
database, GSE27957 [34] and GSE28042 [34], as well as 
one dataset of bronchoalveolar lavage fluid (BALF) from 
IPF patients, GSE70866 [35]. For data preprocessing, the 
ComBat function from the R package sva [36] was used 
to remove the batch effect between the three datasets. 
The clinical characteristics of patients in each dataset 
were shown in Additional file 1: Table S1. The lung tissue 
of 160 IPF samples were selected from GSE47460 [37].

Identification of risk cell subtype
To expand the epithelial cell subtypes composition anal-
ysis to a larger number of IPF patients, we performed 
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deconvolution analysis employing CIBERSORTx [38] 
on the aforementioned four bulk RNA-seq datasets, set-
ting the perm to “1000” and QN to “TRUE”. The feature 
matrix was constructed from the expression profile of 
DEGs of each epithelial cell subtype.

To investigate the effect of epithelial cell subtypes on 
the survival outcomes of IPF patients, we performed the 
associations between survival outcomes and epithelial 
cell subtypes estimates. The associations were carried 
out with the surv_cutpoint function from the R package 
survminer [39] to determine the optimal cutoff values 
for cell subtype proportion in IPF patient grouping in 
GSE70866, GSE27957, and GSE28042 datasets. Kaplan–
Meier analysis was performed using the R package sur-
vival [40] to compare the differences in survival time 
between IPF patient groups.

Biological characteristics analysis of ATII‑CCL20 cell 
subtype in single‑cell data
Through the prognostic analysis, we found that the pro-
portion of the ATII-CCL20 cell subtype significantly 
affected the prognosis of IPF patients. To understand the 
evolutionary relationship between the ATII-CCL20 cell 
subtype and other cell subtypes, we performed a single-
cell pseudo-time analysis using the R package Monocle 
[41]. Logarithmically normalized data was used as input 
and DEGs for cell subtypes were used as the ordering 
genes. The learn_graph function and order_cells func-
tion were used for cell trajectory inference, with both 
using default parameters. To analyze the metabolic func-
tional differences between the ATII-CCL20 cell subtype 
and other epithelial cell subtypes, the R package scMe-
tabolism [42] was used to evaluate single-cell metabolic 
activity with the “VISION” method and KEGG pathways 
[43] built into scMetabolism as input. To analyze the 
interaction between the ATII-CCL20 cell subtype and 
other epithelial cell subtypes, the R package NicheNet 
[44] was used to perform the cell communication, using 
common databases (KEGG, ENCODE, PhoshoSite) to 
track downstream effectors such as transcription factors 
and receptor targets in the provided dataset. The pre-
dict_ligand_activities function was used to calculate the 
expression levels of ligands in each cell subtype, and the 
prepare_ligand_target_visualization function was used to 
visualize the strength of interactions between receptors 
and ligands.

To understand the functional differences between 
ATII-CCL20 and other ATII cell subtypes deeply, we used 
the FindMarkers function in the R package Seurat [31] to 
identify DEGs between ATII-CCL20 and other ATII cell 
subtypes, with a threshold set at |avg_log2FC|> 2 and 
p_val_adj < 1e-2. The R package clusterProfiler [45] was 

employed to perform enrichment analysis on DEGs, with 
a threshold set at adj p < 0.05.

Functional analysis of a high proportion of ATII‑CCL20 IPF 
patients in bulk RNA‑seq data
In order to further reveal the biological functions 
related to the ATII-CCL20 cell subtype using bulk RNA-
seq data, we divided all IPF patients from GSE27957, 
GSE28042, and GSE70866 datasets based on the propor-
tion of ATII-CCL20 into two groups (high-ATII-CCL20 
and low-ATII-CCL20). The R package limma [46] was 
used to identify the DEGs between high ATII-CCL20 
and low ATII-CCL20 IPF patients, with a threshold set 
at |logFold Change(logFC)|> 1 and adj p < 0.05. Addition-
ally, the R package clusterProfiler was used to conduct 
functional enrichment analysis on DEGs, with a thresh-
old set at adj p < 0.05. Simultaneously, the proportion of 
ATII-CCL20 in the GSE47460 dataset was sorted, with 
the top 30% in terms of high proportion selected as the 
high ATII-CCL20 group, and the top 30% in terms of 
low proportion selected as the low ATII-CCL20 group. 
To determine potential signaling pathways associated 
with ATII-CCL20 proportion, we collected 50 hallmark 
pathways (h.all.v7.1.symbols) in the Molecular Signatures 
Database (MSigDB) [47], using the R package GSVA [48] 
to perform gene set variation analysis (GSVA) on high 
ATII-CCL20 and low ATII-CCL20 IPF patients, and got 
the GSVA enrichment scores for 50 hallmark pathways 
[47–49]. Kaplan–Meier analysis was further performed 
to demonstrate the prognostic impact of the 50 hall-
mark pathways. Venn diagram analysis was performed 
to determine overlapping hallmark pathways in GSVA 
and Kaplan–Meier analysis. To study the infiltration of 
immune cells in high ATII-CCL20 and low ATII-CCL20 
IPF patients, we implemented the ssGSEA algorithm 
[50] to quantify the relative infiltration of 28 reported 
immune cell types [51], box plot showed the results. 
Pearson correlation coefficient (PCC) was calculated to 
determine the correlation between the 28 immune cells 
in high ATII-CCL20 and low ATII-CCL20 IPF patients, 
respectively.

Construction of a predictive nomogram
Univariate Cox regression and multivariate Cox regres-
sion were used to estimate the hazard ratio (HR) of cell 
subtypes proportion and other clinical indicators. A 
clinical prediction nomogram was constructed using the 
R package rms [52]. To quantify the performance of the 
nomogram, a calibration curve was generated by com-
paring the predicted values of the nomogram with the 
observed actual survival rates. The calibration curve was 
used to evaluate the consistency between our predicted 
values and the reality. Decision curve analysis (DCA) was 
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performed using the R package ggDCA [53], and a clini-
cal impact curve was plotted to evaluate whether nom-
ogram-based decisions were beneficial for IPF patient 
prognosis.

Result
The epithelial landscape of IPF patients revealed 
by scRNA‑seq analysis
The overall study design was displayed in Additional 
file  1: Figure S1. To systematically reveal the character-
istics of IPF epithelial cells, we collected 13,223 epithelial 
cells from 32 IPF patients in GSE136831 and employed 
the R package Seurat to process the scRNA-seq data and 
perform unsupervised clustering. 13,223 epithelial cells 

were classified into 10 major cell types: aberrant basaloid 
cells, alveolar type 1 (AT1) cells, alveolar type 2 (AT2) 
cells, basal cells, goblet cells, ionocytes, mesothelial 
cells, pulmonary neuroendocrine cells (PNEC), ciliated 
cells, and club cells (Fig.  1A). Differential analysis was 
performed on the 10 major cell types and 7714 marker 
genes were identified (adj p < 0.05, Fig. 1B). Among them, 
ATI cells highly expressed typical marker AGER, while 
Goblet significantly upregulated SCGB3A1, SCGB1A1, 
and BPIFB1 (Fig.  1B). At the same time, 13,223 epithe-
lial cells were clustered into 19 independent cell sub-
types, and ATII cells were divided into 3 cell subtypes, 
ciliated cells into 7 cell subtypes, basal cells into 2 cell 
subtypes, and club cells into 2 cell subtypes (Fig.  1C). 

Fig. 1 Analysis of the epithelial cell landscape in 32 IPF patients using scRNA-seq data in GSE136831. A, B tSNE plots of 10 major epithelial cell types 
and dot plots of their corresponding marker genes. C, D tSNE plots of 19 cell subtypes and the violin plots of their corresponding marker genes
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Meanwhile, differential analysis was performed on the 
19 cell subtypes and 8442 marker genes were identified 
(adj p < 0.05, Fig. 1D). We found that there were multiple 
cell subtypes in a major cell type, but the marker genes 
among these cell subtypes were different. Meanwhile, we 
found that there were differences in the composition of 
10 major epithelial cell types or 19 independent cell sub-
types in IPF patients (Additional file 1: Figure S2), which 
indicated that the epithelial cells of IPF patients exhibited 
obvious heterogeneity, which might be the primary rea-
son for the significant clinical differences observed in IPF 
patients.

The ATII‑CCL20 cell subtype is associated with IPF patients’ 
survival outcomes
Due to the significant differences in prognosis among 
IPF patients and the large heterogeneity of epithelial 
cells observed in previous analyses, we hypothesized 
that there might be one or more epithelial cell subtypes 
associated with IPF patient prognosis. To determine the 
clinical significance of epithelial cell subtypes, first, we 
performed deconvolution analysis using CIBERSORTx 
on the bulk RNA-seq datasets and got the proportion of 
19 epithelial cell subtypes in IPF patients. It was found 
that there were significant differences in the proportion 
of 19 cell subtypes, which confirmed the heterogeneity in 

IPF patients again. Then we correlated the proportion of 
the 19 epithelial cell subtypes with the survival outcomes 
of 176 IPF patients in GSE70866. Interestingly, the result 
showed that a high proportion of the ATII-3 cell subtype 
was associated with poorer survival outcomes (HR = 1.79, 
95%CI: 1.17–2.74, p = 0.0062, Fig.  2A). Next, we repli-
cated the effect of the ATII-3 cell subtype on survival out-
comes in GSE27957 and GSE28042, we found that a high 
proportion of the ATII-3 cell subtype was also associated 
with poorer survival outcomes (in GSE27957, HR = 4.46, 
95%CI: 1.39–14.3, p = 0.0064, Fig.  2B and in GSE28042, 
HR = 2.33, 95%CI: 1.13–4.77, p = 0.018, Fig.  2C). These 
findings indicated that ATII-3 was a risk cell subtype 
associated with IPF patients’ prognosis.

496 ATII cells were divided into three cell subtypes, 
namely ATII-1(210 cells, 46%), ATII-2(181 cells, 40%), 
and ATII-3(64 cells, 14%) (Fig.  1A, C). SFTPC and 
LAMP3 were typical markers for ATII cells [20], which 
were upregulated in three ATII cell subtypes (Fig.  2D). 
Next, we identified the marker genes of three ATII cell 
subtypes, CCDC141 was upregulated in the ATII-1cell 
subtype and ATII-2 cell subtype (Fig. 2E), while DMBT1 
upregulated in ATII-1 (Fig. 2F). CCL20 was upregulated 
only in the ATII-3 cell subtype (Fig. 2G). As ATII-3 was 
a risk cell subtype associated with IPF patients’ prog-
nosis, we named ATII-3 as ATII-CCL20 to indicate 

Fig. 2 The correlation between the increased proportion of ATII-CCL20 cell subtype and poor prognosis in IPF patients. A–C The Kaplan–Meier 
survival curves for overall survival (OS) of IPF patients in GSE70866 (A), GSE27957 (B), and GSE28042 (C) showed worse survival outcomes for IPF 
patients with a high proportion of ATII-CCL20 cell subtype. D Typical marker genes of ATII cell: SFTPC and LAMP3. E, F Marker genes of ATII-1 
and ATII-2 cell subtype. G Marker genes of ATII-CCL20 cell subtype. H ROC curve of the binary classification model for the proportion of ATII-CCL20 
cell subtype in the training set GSE70866. I, J ROC curves of the binary classification model for the proportion of ATII-CCL20 cell subtype 
in the validation datasets GSE27957 (I) and GSE28042 (J)
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its specificity in the following research. CCL20 (C–C 
motif chemokine ligand 20) acted as a ligand for C–C 
chemokine receptor CCR6 and was expressed by epithe-
lial cells in various diseases [54, 55]. CCL20 was associ-
ated with the TGF-β pathway, which played a key role in 
fibrosis formation and inflammation development [56].

To confirm the repeatability and reliability of the ATII-
CCL20 cell subtype, we performed clustering on 24,891 
epithelial cells in the validation dataset, GSE135893. The 
results indicated that ATII cells were classified into 5 
cell subtypes, with a cell subtype (495 cells, constituting 
13% of the ATII cells) showing high expression of CCL20 
(Additional file 1: Figure S3). This finding is highly con-
sistent with the results obtained from GSE136831. It 
suggests that the identification of the ATII-CCL20 cell 
subtype is not a random occurrence.

Biological characteristics of ATII‑CCL20 cell subtype 
in single cell
To further investigate the differences in biological char-
acteristics between the ATII-CCL20 cell subtype and 
ATII-1, ATII-2 cell subtype, we performed differential 
analysis. 88 DEGs were identified between ATII-CCL20 
and ATII-1 cell subtypes based on a defined threshold, 
and these genes were significantly enriched in negative 
phosphate phosphorylation metabolic, cellular response 
to ion, maintenance protein location cell, chemical sur-
factant homeostasis tissue, and communication bio-
synthetic by respiratory (Fig.  3A). While 49 DEGs were 
identified between ATII-CCL20 and ATII-2 cell sub-
types, these genes were significantly enriched in positive 
MAP kinase activity, cell communication by coupling, 
cytoplasmic non-membrane-bounded organelle assem-
bly, negative regulation protein binding, and membrane 
vesicle depolarization endocytosis (Fig. 3B). These results 
indicated that there was obvious heterogeneity in biologi-
cal characteristics between the three ATII cell subtypes.

Studies have shown that IPF was usually accompanied 
by metabolic disorders of carbohydrates, lipids, proteins, 
and hormones, which might provide a new strategy for 
treating IPF [57]. Therefore, we conducted a metabolic 
analysis. Firstly, by evaluating the scores of different met-
abolic pathways among 10 major cell types, it was found 
that ATII cells were associated with some lipid metabo-
lism pathways, such as glycerophospholipid metabolism, 
fatty acid degradation, fatty acid biosynthesis, and ether 
lipid metabolism (Fig.  3C). Secondly, the scores of dif-
ferent metabolic pathways were analyzed in the ATII-
CCL20 cell subtype relative to ATII-1 and ATII-2, and 
it was found that the metabolic score of ATII-CCL20 
cell subtype was lower in sphingolipid metabolism, 
glycerophospholipid metabolism, galactose metabo-
lism, and fructose and mannose metabolism (Fig.  3D). 

Particularly, in the functions related to arginine biosyn-
thesis, fatty acid biosynthesis, fatty acid degradation, and 
glycerophospholipid metabolism (p < 0.05, Fig.  3E), the 
metabolic pathways scores of the aforementioned func-
tions in ATII-CCL20 cell subtype were lower than those 
in ATII-1 and ATII-2. This indicated that many meta-
bolic pathways in the ATII-CCL20 cell subtype might 
be depleted. The arginine biosynthesis has the highest 
metabolic score in ATII-1, a moderate score in ATII-2, 
and the lowest score in ATII-CCL20, even lower than the 
average metabolic score of arginine biosynthesis in ATII 
cells. Arginosuccinate synthase 1 (ASS1), a key enzyme in 
arginine biosynthesis [58], we found that ASS1 exhibits 
the lowest expression level in the ATII-CCL20 cell sub-
type. These findings suggest that the ATII-CCL20 cell 
subtype may influence arginine biosynthesis by down-
regulating ASS1 in IPF patients (p < 0.05, Fig. 3F). Studies 
had shown that lipid metabolism was a special metabolic 
pathway in the lungs, mainly utilizing fatty acid oxidation 
for energy supply under hypoxic conditions [59]. Triglyc-
erides, phospholipids, and sphingolipids were important 
components of the human body and were also important 
components of surfactants synthesized by alveoli cells, 
playing an important role in maintaining normal alveolar 
surface tension [29, 60, 61]. Dysregulation of lipid metab-
olism in IPF not only reduced the repair function of AT2 
cells but also promoted the transformation of fibroblasts 
to myofibroblasts [62]. Therefore, our study not only con-
firmed the critical role of lipid metabolism in IPF but also 
identified the cell subtype ATII-CCL20 that was closely 
related to lipid metabolism processes in IPF, which might 
be helpful for future treatment of IPF.

To reveal the developmental process of the ATII-
CCL20 cell subtype relative to the ATII-1 cell subtype 
and ATII-2 cell subtype, R package Monocle was used 
for pseudo-time-based cell trajectory inference analysis 
of all epithelial cells. It was noteworthy that the pseudo-
time distribution of the ATII-CCL20 cell subtype among 
all epithelial cells was in the last stage, indicating that 
the ATII-CCL20 cell subtype may be the final state of 
epithelial cell differentiation in IPF patients. Meanwhile, 
the ATII-1 cell subtype was closely adjacent to the ATII-
CCL20 cell subtype, meaning that the ATII-1 cell sub-
type was most likely to transform into the ATII-CCL20 
cell subtype (Fig.  4A). Next, to analyze the intercellular 
communication between ATII-CCL20 and other epithe-
lial cell subtypes, R package NicheNet was used to ana-
lyze the regulatory effects of ligands from the other 9 
major cell types as well as ATII-1 and ATII-2 on ATII-
CCL20 cell subtype. It was found that TGFB2 derived 
from abnormal stromal cells, PTPRT derived from PNEC 
cells, and NLGN1 derived from Ciliated cells, exhibited 
strong regulatory effects on the ATII-CCL20 cell subtype. 
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TGFB2 simultaneously regulated receptors such as 
ADGB, ARMC3, and DNAH12. Therefore, it was specu-
lated that the ATII-CCL20 cell subtype was regulated by 

abnormal stromal cells through its receptor expressing 
TGFB2, leading to functional changes and affecting the 
prognosis of IPF patients (Fig. 4B).

Fig. 3 Different biological characteristics between ATII-CCL20 cell subtype and ATII-1, ATII-2. A, B Enrichment analysis of DEGs between ATII-CCL20 
and ATII-1 cell subtype (A) and ATII-2 cell subtype (B). C, D Dot plots displayed metabolic pathways scores across 10 major epithelial cell types 
(C), ATII-CCL20 cell subtype and ATII-1, ATII-2 cell subtype (D). E, F A box plot showed differences in lipid metabolism scores (E) and ASS1 gene 
expression (F) between the ATII-CCL20 cell subtype and ATII-1, ATII-2 cell subtype
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Comprehensive functional analysis among ATII‑CCL20 
groups using IPF bulk RNA‑seq data
To explore the biological functions of IPF patients with 
high ATII-CCL20 cell subtype proportion, we merged 
the three datasets and removed batch effects (Fig.  5A). 
Based on the ATII-CCL20 proportion, 120 IPF patients 

were classified as a high-proportion group and 176 IPF 
patients were classified as a low-proportion group. The 
results showed that IPF patients with a higher propor-
tion of ATII-CCL20 had a worse prognosis (HR = 1.82, 
p = 0.00014, Fig. 5B). Next, differential analysis was per-
formed on the two groups of IPF patients, and 298 DEGs 

Fig. 4 ATII-CCL20 cell subtype was regulated by other epithelial cells. A Pseudo-temporal trajectory and box plot showed the high differentiation 
level of the ATII-CCL20 cell subtype. B Intercellular communication analysis indicated that the ATII-CCL20 cell subtype was controlled by other 
epithelial cells

Fig. 5 IPF patients with high ATII-CCL20 proportion in integrated data had a worse prognosis. A GSE27957, GSE28042, and GSE70866 data 
integration and batch effect removal were performed for the subsequent analysis. B The difference in OS between IPF patients with high and low 
ATII-CCL20 proportion in the integrated data. C, D GO enrichment analysis and KEGG pathway enrichment analysis of DEGs between IPF patients 
with high and low ATII-CCL20 proportion in the integrated data. E Box plots showed the different GSVA scores of hallmark pathways in IPF patients 
with high and low ATII-CCL20 proportion, *p < 0.05, **p < 0.01, ***p < 0.001. F Univariate Cox analysis revealed the correlation between the GSVA 
score of hallmark pathways and OS in IPF patients. G A Venn diagram showed 17 hallmark pathways that were useful for risk stratification of IPF 
patients based on ATII-CCL20 proportion

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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were identified based on a defined threshold, including 
61 upregulated DEGs and 237 downregulated DEGs. 
These DEGs mainly regulated inflammatory response-
related functions such as leukocyte chemotaxis, leuko-
cyte migration, myeloid leukocyte migration, and positive 
regulation of inflammatory response (Fig.  5C). KEGG 
pathway enrichment analysis of the DEGs showed that 
they were enriched in immune-related pathways such as 
the chemokine signaling pathway, IL-17 signaling path-
way, cytokine-cytokine receptor interaction, and leuko-
cyte transendothelial migration. Additionally, the DEGs 
were closely associated with rheumatoid arthritis, amoe-
biasis, and bacterial infections such as Legionellosis, and 
Yersinia (Fig. 5D). These DEGs were also enriched in the 
PI3K-Akt signaling pathway and TNF signaling pathway. 
Studies have shown that the PI3K-Akt signaling pathway 
was directly involved in the formation of IPF or cooper-
ated with other pathways to promote the development of 
IPF [63], while the TNF signaling pathway was upregu-
lated in bleomycin-induced fibrotic lung tissue and 
TNF-α-induced NF-κB activation promoted fibroblast 
differentiation and exacerbated bleomycin-induced pul-
monary fibrosis [64]. These results indicated that the IPF 
patients with a high proportion of ATII-CCL20 mainly 
activated immune-related functions to promote the for-
mation of IPF, resulting in poor prognosis.

To further explore the hallmark pathways associated 
with ATII-CCL20 proportion, GSVA was performed on 
IPF patients with a high and low proportion of ATII-
CCL20. Compared to IPF patients with a low proportion 
of ATII-CCL20, the GSVA scores of 26 hallmark path-
ways were increased in IPF patients with a high propor-
tion of ATII-CCL20 (p < 0.05, Fig.  5E). Kaplan–Meier 
analysis was used to evaluate the prognostic impact of 50 
hallmark pathways, and the results showed that 25 hall-
mark pathways were risk factors for the prognosis of IPF 
patients (HR > 1, p < 0.05, Fig. 5F). The intersection of dys-
regulated hallmark pathways and risk hallmark pathways 
yielded 17 hallmark pathways related to ATII-CCL20 
proportion, mainly affecting immune, metabolic, DNA 
damage, and multiple signaling pathways (Fig.  5G). The 
GSVA scores of 17 hallmark pathways were calculated in 
IPF patients with high and low ATII-CCL20 proportions 
in GSE47460. The results showed that out of 17 hallmark 
pathways, 10 were correlated with the ATII-CCL20 pro-
portion in lung tissues (Additional file 1: Figure S4A).

Next, we explored the differences in immune cell con-
tent between IPF patients with a high and low proportion 
of ATII-CCL20. The box plots showed that the infiltrat-
ing immune cells inferred by the ssGSEA algorithm were 
more immune cells infiltrated in IPF patients with a high 
proportion of ATII-CCL20 (p < 0.05, Fig.  6A). Among 
them, there were five types of adaptive immune cells, 

including activated CD4 T cells, regulatory T cells, etc. 
(red), which were correlated with high ATII-CCL20 pro-
portion, while innate immune cell types such as mast 
cells, eosinophils, neutrophils, etc. (blue) were corre-
lated with high ATII-CCL20 proportion. In addition, 
the correlation between infiltrating immune cells in the 
two groups of IPF patients was analyzed separately. The 
results showed that the correlations between infiltrat-
ing immune cells in IPF patients with a high proportion 
of ATII-CCL20 were stronger, such as positive correla-
tions between natural killer T cells, activated CD8 T 
cells, effector memory CD8 T cells, and activated CD4 
T cells (Fig. 6B), while the correlations between infiltrat-
ing immune cells in IPF patients with a low proportion 
of ATII-CCL20 was weaker (Fig.  6C). These findings 
strongly suggested that there were differential immune 
statuses among ATII-CCL20 groups and the infiltration 
of immune cells played a crucial role in the risk stratifi-
cation of IPF patients. At the same time, we found that 
the lung tissue samples in GSE47460, IPF patients with a 
high ATII-CCL20 proportion also exhibited higher levels 
of immune cell infiltration (Additional file 1: Figure S4B).

Establishment of the prognostic nomogram
To determine whether ATII-CCL20 proportion was an 
independent indicator of prognosis in IPF patients, 296 
IPF patients were selected, whose clinical annotations 
included gender and age. Univariate and multivari-
ate COX analyses were performed with three variables, 
including ATII-CCL20 proportion, gender, and age. In 
both univariate and multivariate COX analyses, the HR 
for ATII-CCL20 proportion were 1.82 (95% CI: 1.33–
2.49) and 1.78 (95% CI: 1.22–2.76), respectively, higher 
than that for gender and age (Fig. 7A). Importantly, the 
multivariate analysis showed that the ATII-CCL20 pro-
portion was an independent prognostic factor for IPF.

In the univariate COX analysis, we found that both 
age and ATII-CCL20 proportion affected the survival 
outcomes of IPF patients. Therefore, recursive par-
titioning analysis was performed using ATII-CCL20 
proportion and age to construct a survival decision 
tree and optimize the risk stratification of IPF patients. 
As shown in the decision tree (Fig. 7B), three different 
risk subgroups were defined based on two main com-
ponents, including ATII-CCL20 proportion and age 
(76 years old as the cut-off point for age). IPF patients 
with low ATII-CCL20 proportion and age < 76 were 
defined as the “low-risk” group, while those with high 
ATII-CCL20 proportion and age > 76 were labeled as 
the “high-risk” group. The remaining patients were 
defined as “intermediate-risk” patients. A significant 
difference in OS was observed among the three risk 
subgroups (HR = 1.7, p < 0.0001, Fig.  7C). To quantify 
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the risk assessment of IPF patients, a nomogram was 
generated using ATII-CCL20 proportion and age, and 
an example was shown by the red arrow (Fig.  7D). In 
the calibration analysis, the predicted lines of the nom-
ogram for 2-year and 3-year survival probability were 
very close to ideal performance (Fig.  7E), indicating 
that the nomogram had high accuracy. Compared with 
other clinicopathological characteristics, the nomo-
gram showed the strongest predictive ability for OS in 
IPF patients (Fig. 7F).

Discussion
IPF is a rare fibrotic lung disease with a poor progno-
sis and different clinical progression. Genetic studies 
have shown that changes in lung epithelial cells were 
the basis for the occurrence and development of IPF 
[65, 66]. Therefore, exploring the heterogeneity of epi-
thelial cell types would provide a new direction for 
studying IPF. Therefore, exploring the heterogeneity 
of epithelial cell types would provide a new direction 
for studying IPF. In this study, we utilized an integrated 

Fig. 6 ATII-CCL20 proportion was associated with immune cell infiltration estimated by ssGSEA. A Differences of immune cell infiltration 
between IPF patients with high and low ATII-CCL20 proportion. B, C Correlations between immune cell infiltration in IPF patients with high (B) 
and low (C) ATII-CCL20 proportion, respectively. *p < 0.05, **p < 0.01, ***p < 0.001
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transcriptomic framework incorporating bulk RNA-seq 
data and scRNA-seq data from IPF patients. Through this 
approach, we identified a cell subtype, ATII-CCL20, that 
is associated with poor survival outcomes in IPF patients. 
Moreover, we found that the lipid metabolism level in 
ATII-CCL20 was significantly lower than that in other 
ATII cells, and ATII-CCL20 was a highly differentiated 
epithelial cell subtype. The IPF patients with a high pro-
portion of ATII-CCL20 were more likely to experience 

inflammatory reactions and metabolic disorders. We 
constructed a prognosis model based on the proportion 
of ATII-CCL20 and clinical indicators to predict the sur-
vival time of IPF patients, which had significant implica-
tions for personalized management.

Alveolar epithelial cells (AECs), as key cells maintain-
ing the structure and function of the lung, were extremely 
important in the development of IPF [67]. AECs had two 
types: alveolar type I cells (ATI) and alveolar type II cells 

Fig. 7 Generated survival decision tree and nomogram to improve risk stratification and estimate survival probabilities of IPF patients. A 
Univariate and multivariate COX analysis of clinical characteristics and ATII-CCL20 proportion. B Construction of a survival decision tree using 
age and ATII-CCL20 proportion to optimize risk stratification. C The Kaplan–Meier survival curves of OS in three risk subgroups. D Details 
of the nomogram were used to predict the probability of 1-year, 3-year, and 5-year OS of IPF patients. E The calibration plot showed high accuracy 
of the nomogram. F Decision curve analysis showed that the nomogram had the best survival prediction ability compared to other clinical 
characteristics
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(ATII) [68]. Physiologically, ATII cells could proliferate 
and differentiate into ATI cells. The proliferation, differ-
entiation, and apoptosis of ATII cells were in a dynamic 
equilibrium to maintain the normal structure and func-
tion of the alveolar epithelium [68, 69]. Under condi-
tions of repeated and sustained injury stimuli, ATII cells 
underwent damage and repair, resulting in the secretion 
of various pro-fibrotic cytokines, further inducing fibro-
blast proliferation and differentiation into highly active 
myofibroblasts with the ability to synthesize ECM [19, 
70, 71]. Excessive deposition of ECM ultimately led to 
the deformation and destruction of the alveolar struc-
ture [67]. Therefore, ATII cells were key components of 
IPF initiation and progression. However, whether the 
changes in ATII cells were related to the prognosis of IPF 
patients and their related mechanisms were not yet clear. 
Our study showed that there was indeed a special ATII 
cell subtype (named ATII-CCL20), and the higher pro-
portion of ATII-CCL20 cell subtype in IPF patients was 
associated with poorer prognosis. We analyzed in detail 
the potential mechanisms by which the ATII-CCL20 cell 
subtype affected the prognosis of IPF patients, and found 
that the ATII-CCL20 cell subtype was closely associated 
with metabolic dysfunction, both at the single-cell level 
and at the individual patient level. Compared with other 
ATII cells, the lipid metabolism function of the ATII-
CCL20 cell subtype was downregulated. The higher the 
proportion of the ATII-CCL20 cell subtype, the more 
pronounced the lipid metabolism abnormalities, and 
the more severe the fibrosis and poorer prognosis in IPF 
patients. However, the potential mechanism by which 
ATII-CCL20 affected the prognosis of IPF patients based 
on genetic analysis remains to be validated through rel-
evant biological experiments for accuracy. Finally, con-
sidering the clinical applications, we constructed a 
prognosis model for IPF patients based on the propor-
tion of ATII-CCL20 and patients’ clinical indicators to 
address practical clinical problems, which had significant 
implications.

Research indicates that the progression of idiopathic 
pulmonary fibrosis (IPF) is associated with severe lung 
injury, leading to the accumulation of a large number of 
macrophages. These macrophages, through the produc-
tion of various cytokines, trigger inflammatory responses 
[72]. Additionally, in mouse models, it has been dem-
onstrated that targeting proteins in macrophages can 
improve the condition of IPF [73–76], highlighting the 
potential of macrophages as a therapeutic target for pul-
monary fibrosis. In our study, we observed a higher pres-
ence of macrophages in IPF patients with elevated levels 
of ATII-CCL20, suggesting that the increased abundance 

of macrophages may be a characteristic closely associated 
with disease progression and inflammatory responses in 
individuals with high ATII-CCL20 levels.

Given the poor survival outcomes of patients diag-
nosed with IPF, it is essential to further understand the 
factors that affect IPF survival outcomes. Currently, clini-
cal prognostic tools for IPF mainly rely on the patient’s 
GAP (gender, age, and physiology) index [77]. We dem-
onstrated that evaluating the cell composition of patients 
might predict the IPF patients’ prognosis, the high pro-
portion of ATII-CCL20 cell subtype associated with poor 
prognosis. The rare ATII-CCL20 cell subtype may poten-
tially become a therapeutic target in the future, high-
lighting the need for more in-depth research to improve 
current clinical treatment strategies. Meanwhile, our 
results showed that the proportion of ATII-CCL20 cell 
subtype in PBMC data was significantly associated with 
the prognosis of IPF patients, which indicated the poten-
tial of liquid biopsy to infer the IPF patients’ prognosis. 
In the end, we compared the BALF and PBMC data with 
the lung tissue data. BALF and PBMC data contained 
relatively few epithelial cells, whereas lung tissue data 
contained a large number of epithelial cells. However, 
the biological differences between patients with differ-
ent proportions of ATII-CCL20 in BALF and PBMC 
datasets were highly consistent with the biological dif-
ferences between samples with different proportions of 
ATII-CCL20 in lung tissue. This suggests that the identi-
fied risk cell subtypes in the BALF and PBMC datasets 
are reliable.

Research has shown that the risk of developing lung 
cancer in patients with IPF is nearly five times higher 
compared to the general population [78, 79]. It is note-
worthy that CCL20 exhibits a promotive role in tumor 
development, specifically in lung adenocarcinoma [80], 
by promoting the epithelial-mesenchymal transition pro-
cess. At the same time, the high expression of CCL20 in 
LUAD patients is closely associated with poor progno-
sis [81]. These results indicate that a high level of ATII-
CCL20 cell subtype may contribute to the occurrence 
and poor prognosis of IPF-related lung cancer. Simulta-
neously, PD-1 and PD-L1 inhibitors have achieved signif-
icant success in cancer treatment [82, 83]. Some studies 
indicate that Pembrolizumab can alleviate bleomycin-
induced lung fibrosis [84]. This suggests a potential ben-
efit of anti-PD-1 and anti-PD-L1 treatments in alleviating 
IPF. Nevertheless, further research is needed to confirm 
their effectiveness and safety.

Although this study improved our understanding of 
an alveolar type II cell subtype that was associated with 
the IPF patients’ prognosis, it had limitations. Firstly, 
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this study revealed the association between ATII-CCL20 
with survival outcomes in multiple IPF datasets and con-
structed a nomogram model to achieve prognosis pre-
diction. However, some clinically relevant factors (for 
example, smoking, metal/wood dust inhalation, genetic 
factors, physiological indicators, and comorbidities) of 
IPF patients were not explored in our nomogram model, 
as some of the IPF patients lacked these parameters. 
Therefore, larger-scale studies were needed to explore the 
IPF patients’ prognosis in different contexts, especially 
considering the differences in cell composition. Secondly, 
this study was based on retrospective data from GEO, 
and the sample size in each dataset was relatively small. 
The scRNA-seq data and bulk RNA-seq data in this study 
were not from the same sample, and the inferred epithe-
lial cell composition of IPF patients based on deconvo-
lution algorithms might differ from the actual situation. 
So more comprehensive studies based on scRNA-seq 
and bulk RNA-seq data from the same IPF sample were 
needed.
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