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Abstract
Background Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), 
which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies 
have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. 
In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity 
for HDAC6 in COPD.

Methods Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at 
doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against 
CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin 
and eosin (H&E) staining, Masson’s trichrome staining, immunohistochemical staining, and western blot. The human 
lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of 
CAY10603.

Results HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. 
Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the 
mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The 
expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. 
Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 
treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin 
expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level 
of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. 
CAY10603 significantly attenuated the release of TGF-β1 induced by CSE. CAY10603 significantly increased the 
E-cadherin levels in TGF-β1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was 
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Background
Chronic obstructive pulmonary disease (COPD) is a 
chronic inflammatory airway disease mainly charac-
terised as a chronic airway limitation caused by nox-
ious particles and gases [1, 2]. The small airways are the 
major sites of obstruction in patients with COPD [3]. The 
number of patent terminal and transitional bronchioles 
is reduced in patients with COPD, but the damage can 
accumulate without being noticed [1, 4]. The remaining 
small airways are thickened and become more obstructed 
with disease progression as small airway remodelling 
[5–7], while emphysema is reported to be a later variable 
secondary phenomenon [5, 8]. Epithelial barrier dysfunc-
tion in COPD underlies the impaired repair response of 
the injured epithelium and its inability to redifferentiate 
into a functionally intact epithelium, thus leading to small 
airway obstruction [9–11]. Epithelial-mesenchymal tran-
sition (EMT) is a pathophysiological process observed 
in COPD wherein epithelial cells lose their polarity and 
transform into mesenchymal cells [10]. EMT promotes 
the progression of small airway remodelling and fibrosis 
in patients with COPD. Therefore, exploring therapies 
targeting epithelial barrier dysfunction and small air-
way remodelling in COPD may be beneficial for COPD 
management.

Genome wide studies of lung tissue from patients with 
COPD have revealed that epigenetic changes contribute 
to individual susceptibility to COPD, representing one of 
key mechanism of COPD progression [1, 12]. The activ-
ity of histone deacetylase (HDAC), as a key molecule in 
many inflammatory processes [13, 14], is reported to be 
reduced in the lungs of affected patients in proportion 
to the severity of airflow limitation [15]. However, the 
mRNA expression of HDAC2, HDAC5, and HDAC8 and 
the protein expression of HDAC2 are decreased in lung 
tissues with increasing disease severity [15]. Notably, 18 
HDACs have been identified in mammals, and specific 
HDACs appear to be differentially regulated by differ-
ent groups of genes [16]. HDAC6, different from other 
HDAC isoenzymes, is ubiquitously expressed and pre-
dominantly located in the cytoplasm, where it mediates 
deacetylation and regulates microtubule-dependent cell 
motility [17]. Inhibition of HDAC6 has been shown to 
attenuate the disruption of lung endothelial barrier integ-
rity induced by cigarette smoke (CS) [18]. Another study 
[19] indicated that HDAC6 inhibitors protect against 

CS-induced mucociliary clearance disruption. However, 
the effects of HDAC6 inhibitors on CS-induced EMT 
and small airway remodelling remain unclear.

In this study, we hypothesised that HDAC6 inhibitors 
play a protective role against CS-induced EMT and epi-
thelial barrier dysfunction in the small airway, thereby 
thus inhibiting small airway remodeling. CAY10603, a 
small molecule inhibitor that is highly potent for HDAC6 
and has a good selective profile, was used in this study. 
The protective effects of CAY10603 against CS-induced 
EMT and small airway remodelling were evaluated using 
a CS-exposed mouse model and in vitro experiments.

Materials and methods
Chemicals and reagents
For in vivo and in vitro experiments, the highly selective 
HDAC6 inhibitor, CAY10603 (molecular weight: 446.5), 
was purchased from Selleck Chemicals (Shanghai, China) 
with purity > 99.04%.

Animals
Male C57BL/6J mice 8–10 weeks of age were purchased 
from Liaoning Changsheng Biotechnology Company 
(Benxi, China). The mice were housed and fed at the First 
Hospital of China Medical University, the Institute of 
Respiratory Disease, under quiet and controlled specific 
pathogen-free conditions with a temperature of between 
21 and 22 °C and humidity between 50% and 60% under 
a 12-h/12-h light/dark cycle. Forty-eight mice (weight 
range between 18 and 20  g) were randomly selected 
and divided into four groups (n = 12 per group): (I) con-
trol (CON); (II) CS exposed (CS); (III) CS + 2.5  mg/kg 
CAY10603 (CS + L-CAY); (IV) CS + 10 mg/kg CAY10603 
(CS + H-CAY). Mice were passively exposed to CS for 
12 consecutive weeks (20 cigarettes/exposure session, 
60 min per session, twice/day, 6 days/week) or room air 
(AIR), beginning at 8 weeks of age, using –the HOPE-
MED8050 inhalation exposure system (HOPE Company, 
Tianjin, China), a whole-body smoke exposure system, 
as previously described [20–22]. Non-filtered Marlboro 
cigarettes (Philip Morris Companiy, 0.8  mg of nicotine, 
10  mg of Tar, and 10  mg of carbon monoxide per ciga-
rette) were used for the CS. The total particulate matter 
concentrations in the exposure chamber were between 
150 and 180 mg/m3. Mice in the control group were 
exposed to room air for 12 weeks. In the groups receiving 

achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-β1 induced 
cell migration.

Conclusions These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating 
epithelial barrier dysfunction and reversing EMT via the TGF-β1/Smad2/3 signalling pathway.
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CAY10603 treatment, mice were intraperitoneally 
injected with CAY10603 on alternate days. CAY10603 
was dissolved in DMSO, and the dose of CAY10603 
was determined from the literature [23]. The mice were 
euthanised at the end of 12 weeks, 24  h after the last 
exposure to CS, and the lungs were harvested for subse-
quent experiments.

The experimental protocol was approved by the Ethics 
Committee of China Medical University, and Shengjing 
Hospital of China Medical University, and all animal 
care and procedures were performed according to the 
recommendations of the Guide for the Care and Use of 
Laboratory Animals (IACUC Issue No. KT2018061 and 
2019PS369K).

Lung tissue and sample preparation
In each group, the left lungs of 6 mice were infused with 
0.3 mL PBS for three times to harvest harvest of bron-
choalveolar lavage fluid (BALF), while the left lung tissues 
of the other 6 mice were ligated, removed, and immersed 
in 10% neutral formaldehyde for 7-day fixation, followed 
by paraffin embedding using standard procedures. The 
paraffin sections (4 μm) were prepared and used for sub-
sequent histopathological studies. The left lungs of some 
mice were perfused with 0.3mL of ice-cold PBS/time × 3 
times, and BAL fluid was harvested. To obtain BAL fluid, 
the trachea was exposed using scissors and the left main 
bronchus was ligated. A 23G needle was used to inject 0.3 
mL of cold PBS containing 0.1 mM EDTA into the right 
lung, followed by the retrieval of BALF from the lungs. 
The right lung tissues were removed and stored at -80 ℃ 
until required for analysis.

Tissue histology
Tissue Sect.  (4 μm) were stained with haematoxylin and 
eosin (H&E), Masson’s trichrome and periodic acid–
Schiff (PAS) staining to examine thehistological changes. 
The morphology of emphysema changes was compared 
by measuring the mean linear intercept (MLI) and mean 
alveolar number (MAN), as previously described (×100 
magnification), with a smaller value indicating more 
severe emphysema [24].

Airway remodelling assay
All slides were examined using light microscopy at ×400 
magnification to assess airway remodelling. Bronchi-
oles with a 150–200 μm internal diameter were selected 
in a blinded manner before observing and photograph-
ing. The perimeter of the bronchial basement mem-
brane (Pbm) was measured as a calculation reference 
for the airway [25]. The airway epithelial (µm2) and col-
lagen deposition area (µm2) were assessed in a minimum 
of four small airways (basement membrane perim-
eter < 1000  μm) per section according to the previously 

described method [22, 26]. Peribronchial collagen depo-
sition was examined by Masson’s trichrome staining, and 
goblet cell hyperplasia was examined using PAS staining 
[22, 25]. Data were quantified using ImageJ software (ver-
sion 1.50; National Institutes of Health, Bethesda, MD, 
USA) and normalised to the basement membrane perim-
eter (µm) [22, 25, 26].

Airway inflammation evaluation
We employed an inflammation score based on H&E 
staining and the level of inflammatory cytokines in the 
BALF to evaluate the airway inflammation status. The 
inflammation score was determined based on the degree 
of peribronchial and perivascular inflammation scored 
on a subjective scale of 0 (no) to 4 (severe) in a blinded 
manner by three examiners, as previously described [27]. 
Scoring was performed by comparing standardised fig-
ures presenting the grades. The inflammation score was 
defined as the sum of the peribronchial and perivascular 
scores (0–8). Assessment of the level of pro-inflamma-
tory cytokines TNF-α and IL-6 level was conducted in 
BALF supernatant samples and quantified using com-
mercially available ELISA kits (R&D System, Minneapo-
lis, Canada).

Immunohistochemistry
Lungs were perfused, inflated, formalin-fixed, paraffin-
embedded and sectioned (4–6  μm). Longitudinal sec-
tions of the left lung were rehydrated,deparaffinised, and 
stained with antibodies against ZO-1, occludin, Muc5ac, 
α-SMA, and E-cadherin (1:200 dilution, Abcam), fol-
lowed by incubation with HPR-linked secondary anti-
body (1:1,000 dilution, Abcam) for 30  min at room 
temperature. DAB (Maixin Technology Co., Ltd. Fuzhou, 
China) solution was used for the chromogenic reactions. 
Sections were observed under a microscope. Quantifica-
tion of the immunohistochemistry positive staining area 
was assessed with ImageJ software and normalised to the 
basement membrane perimeter (µm) [22, 25, 26].

Western blot analysis
Western blot analysis was performed as previously 
described [28]. The primary antibodies were as follows: 
HDAC6 rabbit monoclonal antibody (1:1000; Cell Signal-
ing Technology, 7612), ZO-1 rabbit monoclonal antibody 
(1:1000; Cell Signaling Technology, 13,663), Occludin 
rabbit monoclonal antibody (1:1000; Cell Signaling Tech-
nology, 91,131), E-cadherin mouse monoclonal antibody 
(1:1000; Cell Signaling Technology, 14,472), α-smooth 
muscle actin rabbit monoclonal antibody (1:1000; Cell 
Signaling Technology, 19,245), Acetyl-α-tubulin Anti-
body (1:1000; Cell Signaling Technology, 3971), α-tubulin 
rabbit monoclonal antibody (1:1000; Cell Signaling 
Technology, 2125), SMAD2 rabbit polyclonal antibody 
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(1:1000; Proteintech, 12570-1-AP), Phospho-SMAD2 
rabbit polyclonal antibody (1:1000; Cell Signaling Tech-
nology, 18,338), SMAD3 mouse monoclonal antibody 
(1:1000; Proteintech, 66516-1-Ig), Phospho-SMAD3 rab-
bit polyclonal antibody (1:1000; Cell Signaling Technol-
ogy, 9520), β-Actin mouse monoclonal antibody (1:1000; 
Santa Cruz Biotechnology, sc-8432).

Cigarette smoke extract (CSE) preparation
CSE was prepared based on a previous report [28]. 
Briefly, one cigarette (Marlboro, Longyan Tobacco 
Industrial Co. Ltd., Fujian, China; tar: 10  mg/cigarette; 
nicotine: 0.8 mg/cigarette; carbon monoxide: 11 mg/cig-
arette) was lit and the smoke was slowly pumped into a 
10mL medium for a total of 5 min. The pH of the solu-
tion was adjusted to 7.4. After filtering the CSE (0.22 μm; 
Merck Millipore, SLGS033SS) twice to remove insoluble 
particles, the resulting solution was defined as having a 
100% CSE concentration. Subsequently, the 100% CSE 
was diluted to the required concentration of the working 
solution with the medium. The CSE working solution was 
considered effective within 1 h.

Cell culture
The human lung bronchial epithelial cell line (HBE) was 
purchased from the China Infrastructure of Cell Line 
Resources and cultured in PRMI 1640 medium contain-
ing 10% fetal bovine serum (FBS) at 37  °C in a 5% CO2 
atmosphere. In the TGF-β1 treatment experiments, the 
cells were Subsequently, t with 5  µg/mL TGF-β1 (Bio-
source, Camarillo, CA, USA) for TGF-β1 treatment 
experiments or 6% CSE for CSE treatment experiments, 
either in the presence of CAY10603 at the indicated 
concentrations and time points. After centrifugation, 
the cells and supernatant were collected for subsequent 
experiments. The release of TNF-α and IL-6 was assessed 
using commercially available ELISA kits (FANKEW, 
Shanghai, China).

Transwell assay
The cell migration ability was measured using the Tran-
swell migration assay as previously described [29]. 
Briefly, HBE cells were cultured in a serum-free medium 
in the upper chamber, while a growth medium contain-
ing FBS was added to the bottom chamber as a chemi-
cal attractant. Cells were incubated with 5% CO2 at 37 °C; 
24 h later, the cells were fixed and then stained with 0.1% 
crystal violet. The number of migrating cells was quanti-
fied under a microscope.

Statistical analysis
The results are depicted as the mean ± SEM. Statisti-
cal analysis was performed using a one-way analysis of 
variance (ANOVA) test, followed by a Newman-Keuls 

comparison using GraphPad Prism software (San Diego, 
CA, US). p < 0.05 was considered significant.

Results
CAY10603 alleviated CS-induced pulmonary emphysema 
in mice
The HDAC6 levels in the lung homogenates of mice in 
CS group were higher than those in the control group 
(Fig. 1A). Lung sections from the mice in the CS group 
showed alveolar enlargement and alveolar septum rup-
ture, which are typical features of pulmonary emphy-
sema. Similar pathological features were observed in 
the CS + 2.5  mg/kg CAY10603 group. Conversely, lung 
sections of the CS + 10  mg/kg CAY10603 group showed 
characteristics analogous to those of the control group, in 
which the alveoli arrangement was regular and the alve-
olar septa was thin (Fig.  1B). The MLI in the CS group 
was significantly from the mice in the CS group, the 
MLI in the CAY10603 treatment group was lower than 
that in the CS group. Moreover, the MLI in CS + 10 mg/
kg CAY10603 group was similar to that in the control 
group (Fig. 1C). The MAN measurements exhibited the 
opposite trend, in that the MAN of the CS group was 
significantly lower than that of the control group, while 
CAY10603 treatment increased the MAN, indicating 
that CAY10603 improved emphysema in the lungs of CS-
exposed mice (Fig. 1D).

Effect of CAY10603 on epithelial barrier dysfunction
The expression levels of the barrier function-related 
protein, ZO-1 and occludin, were detected by IHC and 
Western blot. Compared with the control group, the 
expressions of ZO-1 and occludin was markedly down-
regulated in the CS group, both of which increased sig-
nificantly after CAY10603 treatment (Fig.  2A). Western 
blot results revealed similar results (Fig.  2B). The above 
results indicate that CAY10603 affects epithelial barrier 
function by affecting the tight junction protein expres-
sion of ZO-1 and occludin.

CAY10603 attenuates airway inflammation, airway mucus 
hypersecretion, and airway remodelling in the CS mouse 
model
CS-induced oxidative stress produces inflammatory fac-
tors, such as IL-6 and TNF-α, which amplify the inflam-
matory process and induce changes in airway structure. 
The measurement of inflammation scores revealed that, 
compared to the control group, inflammatory cell infil-
tration around the peribronchia was observed in the CS 
group but was significantly reduced in the CAY10603 
treatment groups (Fig.  3A–B). Next, the expression of 
IL-6 and TNF-α in BALF after 12 weeks of CS exposure, 
was measured. The results revealed that the TNF-α lev-
els in the BALF of CS mice were significantly increased 
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compared to those in the control group and were 
reversed by CAY10603 treatment (Fig.  3C). The con-
centrations of IL-6 showed similar results (Fig. 3D). The 
results demonstrated that CAY10603 reduced airway 
inflammation.

PAS staining microscopy images were shown in Fig. 4A. 
The results showed that goblet cell hyperplasia increased 
in the CS group and was subsequently suppressed in the 
CAY10603 treatment groups. Similarly, the expression 
of the major airway mucus protein Muc5ac was elevated 

following CS exposure; however, this upregulation was 
mitigated by CAY10603 treatment (Fig. 4B). The results 
demonstrated that CAY10603 effectively reduced airway 
mucus hypersecretion.

Associated changes in the small airways occur in 
patients with COPD. Representative H&E and Masson 
stained microscopic images were shown in Fig.  5A–B. 
Lung sections from mice in the CS group showed small 
airway wall thickening and collagen accumulation out-
side the airways, while similar pathological features were 

Fig. 1 CAY10603 alleviated CS-induced pulmonary emphysema in mice model. (A): Western blotting analysis of HDAC6 protein expression in the lung 
tissue from mice from different groups (n = 3 mice/group). (B): Micrographs of mice lungs stained with H&E (×100): (1) control group, (2) CS exposed 
group (CS), (3) CS + L-CAY group with 2.5 mg/kg CAY10603, (4) CS + H-CAY group with 10 mg/kg CAY10603; (B): Mean linear intercepts (MLI) in each group; 
(C): Mean alveolar number (MAN) in each group (n = 6 mice/group). Bars represent mean ± SEM values. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 2 CAY10603 affected CS-induced epithelial barrier dysfunction in mice model. (A): The IHC staining was performed to ZO-1 and Occludin protein 
expression (brown) in the sections of lung tissue (scale bar: 50 μm ): (1) control group, (2) CS exposed group (CS), (3) CS + L-CAY group with 2.5 mg/kg 
CAY10603, (4) CS + H-CAY group with 10 mg/kg CAY10603; The amount of expression was quantified by AOD (n = 6 mice/group); (B): Western blot was 
performed to ZO-1 and Occludin protein expression in the sections of lung tissue (n = 3 mice/group). The expression levels of related proteins were ex-
pressed by relative fold change. All data were shown as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 4 CAY10603 reduced CS-induced airway mucus hypersecretion in mice model. (A): PAS-staining of lung tissue sections of mice were shown at 
100× magnification. (1) control group, (2) CS exposed group (CS), (3) CS + L-CAY group with 2.5 mg/kg CAY10603, (4) CS + H-CAY group with 10 mg/kg 
CAY10603; (B): The IHC staining was performed to assess the expression of Muc5ac protein (brown) in the lung tissue sections of mice

 

Fig. 3 CAY10603 reduced CS-induced airway inflammation in mice model. (A): Micrographs of mice lung tissue sections of stained with H&E; (B): Inflam-
mation scores of the HE-staining results; (C): Effects of CAY10603 on TNF-ɑ in BALF; (D): Effects of CAY10603 on IL-6 in BALF. The comparison was between 
two groups, (I) control group (CON); (II) CS exposed group (CS); (III) CS + L-CAY group with 2.5 mg/kg CAY10603; (IV) CS + H-CAY group with 10 mg/kg 
CAY10603. (n = 6 mice/group) *p < 0.05, **p < 0.01, ***p < 0.001. Bars represent mean ± SEM values
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observed in the CS + 2.5  mg/kg CAY10603 group. Con-
versely, lung sections of the CS + 10  mg/kg CAY10603 
group were analogous to those of the control group, in 
which the small airway wall was approximately a mono-
layer. Compared to the control group, the epithelial area, 
nuclei, and collagen area of CS group were significantly 
increased (Fig.  5C-E). The epithelium area, nuclei, and 
collagen areas of CAY10603 group were lower than those 
of the CS group, indicating that CAY10603 could reduce 
stinginess, wall thickening, and collagen deposition.

CAY10603 attenuated CS-induced EMT in mice
The expression levels of EMT-related protein molecules, 
such as E-cadherin and α-SMA, were detected by IHC 
and western blot. Compared to the the control group, the 
expression of α-SMA was markedly upregulated in the CS 
group and reversed by CAY10603 treatment. Conversely, 
E-cadherin expression was downregulated. Upregu-
lated expression was observed in the groups treated with 
CAY10603 (Fig.  6A). The western blot results showed 
similar results (Fig.  6B). These changes in EMT marker 

Fig. 5 CAY10603 reduced CS-induced small airway remodeling in mice model. (A): H&E staining of small airway (scale bar: 50 μm ): (1) control group, (2) 
CS exposed group (CS), (3) CS + L-CAY group with 2.5 mg/kg CAY10603, (4) CS + H-CAY group with 10 mg/kg CAY10603; (B): Massion-staining of small 
airway; (C): The epithelium area by H&E staining was assessed in small airway and standardized by airway basement membrane (µm); (D): The cell (nuclei) 
number of the epithelium by H&E staining was assessed in small airway and standardized by airway basement membrane (µm); (E): The peribronchio-
lar collagen deposition rate in each groups, standardized by airway basement membrane(µm). Bars represent mean ± SEM values (n = 6 mice/group). 
*p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 6 CAY10603 attenuated CS-induced EMT in mice model. (A): The IHC staining was performed to E-cadherin and α-SMA protein expression (brown) in 
the sections of lung tissue (scale bar: 50 μm ): (1) control group, (2) CS exposed group (CS), (3) CS + L-CAY group with 2.5 mg/kg CAY10603, (4) CS + H-CAY 
group with 10 mg/kg CAY10603; The amount of expression was quantified by AOD (n = 6 mice/group). (B): The protein expression of α-SMA, and E-
cadherin in mice lung tissue was shown by Western blot. The expression levels of related proteins were expressed by relative fold change (n = 3 mice/
group). All data were shown as means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001
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expression suggested that inhibition of HDAC6 could 
reverse the airway EMT process and HDAC6 might play 
an important role in airway remodelling and EMT.

The expression of TGF-β1, which plays an impor-
tant role in EMT, was detected in BALF. The ELISA 
results showed that compared to control mice, the con-
tent of TGF-β1 in the BALF of mice in the CS group 
and CS + 2.5  mg/kg CAY10603 group was significantly 
increased. The content of TGF-β1 in the CS + 10  mg/kg 
CAY10603 group was significantly decreased, indicating 
that CS increased the level of TGF-β1 in the lungs, while 
CAY10603 inhibited this change (Fig. 7).

CAY10603 suppressed the release of inflammatory factors, 
cell migration, and the TGF-β1-induced EMT process in HBE 
cells
First, we investigated CSE-induced HDAC6 expression 
in HBE cells. The results showed that the HDAC6 levels 
in the CSE-treated cells were significantly higher than 
those in the control group (Fig.  8A). Correspondingly, 
we observed a decrease in the acetyl-α-tubulin level 
(Fig. 8A), which is widely recognised to be the first sub-
strate of HDAC6 [30].

CAY10603 inhibited the CSE-induced release of 
inflammatory factors in HBE cells. The ELISA result 
showed that the TNF-α and IL-6 levels in the CSE-treated 
group were significantly increased compared to those 

in the control group and were reversed by CAY10603 
(Fig. 8C–D).

EMT contributes to airway remodeling and is consid-
ered a critical mechanism in the pathogenesis of COPD 
[9, 31]. It is known that disruption of airway epithelial 
barrier triggers EMT [32, 33], in which TGF-β1 is a key 
inducer [34]. The result showed that CAY10603 attenu-
ated TGF-β1 level in CSE-treated HBE cells (Fig.  8D) 
and protected against CSE-induced decrease in the epi-
thelial barrier function-related protein level (ZO-1 and 
E-Cadherin) (Fig. 8E). We next investigated the effect of 
CAY10603 on EMT in airway epithelial cells. Compared 
to the control group, TGF-β1 induced the EMT process 
in HBE cells, which showed downregulation of E-cad-
herin expression and upregulation of α-SMA expression 
level; meanwhile, the phosphorylation levels of smad2 
and smad3 were significantly upregulated by TGF-β1 
(Fig. 8F). Importantly, CAY10603 could rescue the TGF-
β1 induced EMT process and upstream regulatory path-
way. Extensive studies have shown that TGF-β1-induced 
EMT processes enhance the migratory capacity of airway 
epithelial cells. Therefore, we next investigated the effects 
of CAY10603 on the migratory capacity of HBE cells. As 
expected, CAY10603 significantly inhibited the TGF-
β1-induced enhancement of HBE cell migratory capac-
ity (Fig.  8G). In conclusion, these results suggest that 
CAY10603 inhibits the TGF-β1-induced EMT process 
and cell migration.

Discussion
In the present study, we demonstrated that CAY10603 
improved emphysema and airway inflammation induced 
by CS, both in vivo and in vitro. The mechanism of action 
of HDAC6 may be associated with regulating epithelial 
barrier dysfunction and reversing EMT via the TGF-β1/
Smad2/3 signaling pathway.

EMT is the process by which epithelial cells lose polar-
ity and transform into mesenchymal cells under specific 
conditions [35]. Recent studies [36] have suggested that 
airway remodelling in COPD is mainly related to type 
2 EMT, which involves tissue fibrosis. Similar to EMT, 
endothelial to mesenchymal transition (EndMT) has 
been reported to be involved in vascular remodeling in 
COPD [37]. The mechanism of EMT has been exten-
sively studied in the pathogenesis of tumour cell infil-
tration and metastasis. Moreover recent studies have 
found that EMT occurs in the small airway epithelium of 
patients with COPD [38], and may play an important role 
in the occurrence and development of airway remodel-
ling. Smoking is one of the most important causes of 
COPD [39], and current studies have mainly focused on 
the effects of CS on the EMT in COPD. CS acts on EMT 
through various pathways, including oxidative stress, 
destruction of cell connections, and destruction of the 

Fig. 7 Effects of CAY10603 on TGF-β1 in BALF. The level of TGF-β1 in the 
mice BALF was detected by ELISA assay: (I) control group; (II) CS exposed 
group (CS); (III) CS + L-CAY group with 2.5 mg/kg CAY10603; (IV) CS + H-CAY 
group with 10 mg/kg CAY10603. Bars represent mean ± SEM values (n = 6 
mice/group). *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 8 Effect of CAY10603 on TGFβ1 induced EMT in vitro. (A): Western blotting analysis of HDAC6, Acetyl-α-tubulin and α-tubulin level in HBE cells treat-
ed with CSE or PBS (n = 3). (B-D): The level of TNF-ɑ (B), IL-6 (C) and TGF-β1 (D) released from HBE cells treated with CSE or/and CAY10603 was detected 
by ELISA assay (n = 5). (E) Western blotting analysis of ZO-1 and E-Cadherin level in HBE cells of different groups (n = 3): (I) control group; (II) CSE treatment 
group (CSE); (III) CS + L-CAY group with 25 nMol CAY10603; (IV) CS + H-CAY group with 50 nMol CAY10603. (F): Protein expression of E-cadherin, α-SMA, 
p-smad2, smad2, p-smad3, smad3 was shown by Western blot (n = 3). (G): The transwell migration assay examined TGFβ1-induced cell migration in HBE 
cells with CAY10603 (n = 3). The number of cells was shown by crystal violet staining. Bars represent mean ± SEM values. *p < 0.05, **p < 0.01, ***p < 0.001
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cytoskeletal structure. Apoptosis mediated by reactive 
oxygen species (ROS) can also act on EMT through the 
PI3K/AKT/NFKB/MMP-9 signalling pathway in cancer 
[40]. In COPD, ROS could promote epithelial phenotypic 
transformation, resulting in abnormal proliferation and 
differentiation of epithelial cells, leading to subepithelial 
collagen deposition [41]. Recent studies have observed 
that CS can lead to EMT in both alveolar and airway 
epithelium. CS has also been shown to promote EMT in 
alveolar epithelial cells through the WNT/β-catenin sig-
naling pathway, resulting in impaired alveolar repair abil-
ity [42]. As COPD begins with small airway dysfunction 
our study focused on changes in the small airways and 
airway epithelium in COPD. The mechanism by which 
CS promoting EMT in airway epithelial cells is also under 
study, which may involve the TGF-β/Samd [43], WNT/
β-catenin, Hedgehog (Hh) [44], urokinase plasminogen 
activator receptor (uPAR) [45], and Notch signaling path-
ways [46]. Among them, the TGF-β/Samd pathway has 
been relatively studied. TGF-β mainly phosphorylates the 
Smad complex, which can translocate into the nucleus 
and promote the expression of EMT transcription-
induced genes [11]. In our study, similar manifestations 
were found, including increased TGF-β in BALF after CS 
exposure and increasedpSmad2/3 in cell experiments.

Multiple previous studies have demonstrated that 
HDAC6 inhibitors effectively suppress TGF-β1/Smad 
pathway activation [47–49]. However, the specific 
mechanism by which HDAC6 facilitates the activation 
of Smad3 remains unclear. One potential mechanism 
involves the regulation of Smad7 expression. In a study 
conducted by Chen et al. [49], Acy-1215, a specific inhib-
itor of HDAC6, significantly suppressed the increased 
expression of TGF-β1 and p-Smad3 induced by unilateral 
ureteral obstruction and partially restored the expression 
of Smad7. Smad7 acts as a negative regulatory factor in 
the TGF-β1/Smad3 pathway, where its upregulation can 
attenuate the recruitment of Smad3 to phosphorylated 
TGF-β1 receptors, resulting in the downregulation of 
Smad3 phosphorylation [50]. Therefore, the upregulation 
of Smad7 induced by HDAC6 may attenuate the effects 
of the TGF-β1/Smad3 signalling pathway. However, fur-
ther investigation is required to test this hypothesis.

The barrier function of the airway epithelium, a struc-
ture of interconnected cells that form the first barrier 
against environmental damage e and is maintained by 
tight junctions (TJs) and adherens junctions (AJs), limits 
the permeability to inhaled pathogens and environmental 
stressors [51]. TJs, the apical portion of the cell surface, 
are composed of the transmembrane proteins claudin 
(CLDN), occludin (OCLN), and junction adhesion mol-
ecules (JAMs) [52]. In addition, zonula occludens (ZO)-
1, ZO-2, ZO-3, Par-3, and Par-6 are also associated with 
TJ formation [53]. TGF-β1 has been shown to prevent 

CSE-induced tight junction disruption and barrier func-
tion loss. TGF-β1 treatment of CSE human bronchial 
epithelial cells (16HBE14o−) has been shown to restore 
ZO-1 and ZO-2 protein levels [54]. Other cell experi-
ments [55] have shown that HDAC6 deacetylates the 
promoters of tight junction genes in the nucleus, leading 
to the dissolution of tight junction. Our experiment also 
revealeda decrease in ZO-1 and occludin in the CS group 
according to the results of IHC and western blot, whereas 
CAY10603 treatment showed a significant improvement, 
indicating that CAY10603 can adjust TJs by regulating 
the expression of ZO-1 and occludin.

In the present study, HDAC6 expression in the lungs 
increased after CS exposure, which may be a response 
to enhanced protein ubiquitination and acetylation. The 
expression of NRF2 [56] and SIRT1 [57] is decreased 
in the lungs of patients with COPD. Lam et al. [19]con-
ducted a study in which Nrf2–/– mice exhibited elevated 
baseline HDAC6 expression in the lungs that was further 
augmented upon exposure to CS, while increased basal 
and CS-induced protein ubiquitination was observed 
in the lungs of Nrf2–/– mice. Additionally, the acetyla-
tion of HDAC6 was increased in lung homogenates 
from Sirt1+/– mice, suggesting that SIRT1 functions as a 
deacetylase of HDAC6. Exposure of Sirt1+/– mice to CS 
also resulted in increased expression of HDAC6 in lung 
homogenates. Collectively, these findings suggest a rela-
tionship between the regulation of HDAC6 expression 
and the acetylation state, as well as the clearance of ubiq-
uitinated proteins in the lung.

As a member of the histone deacetylases, HDAC6 
functions as a deacetylase that mainly targets non-his-
tone proteins in the cytoplasm and non-enzymatic func-
tions regulated by the ubiquitin-proteasome system [58]. 
Various substrates of HDAC6 have been found, includ-
ing α -tubulin, cortactin, Hsp90, β -catenin, RIG-I, Ku70, 
HSPA5, HMGN2, PrxI, and Tat [30]. HDAC6 is associ-
ated with the occurrence and development of a variety 
of diseases, including neurodegenerative diseases [59], 
cancer [60], cardiovascular diseases [61], renal fibrosis 
[49], cystogenesis [62], and inflammation [63]. Studies on 
respiratory diseases have mainly focused on lung cancer, 
whereas there have been few studies related to COPD. 
Wang et al. [64]. found that HDAC6 deacetylates the 
epidermal growth factor receptor (EGFR) and plays an 
important role in the control of cell proliferation in lung 
adenocarcinoma. Moreover, a study by Deskin et al. [65]. 
found that HDAC6 regulated EMT in non-small cell lung 
cancer (NSCLC) by the mediating TGF-β-Notch signal-
ing cascade. These signaling pathways also regulate EMT 
in COPD; therefore, we explored the role of HDAC6 in 
regulating EMT in COPD. Lam et al. [19]. reported that 
HDAC6 is an important regulator of autophagy-medi-
ated ciliary shortening during CS exposure. Su et al. [66] 
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suggested that HDAC6 upregulated collagen synthesis 
and the proliferation of bronchial smooth muscle cells 
(BSMCs), leading to airway remodelling in patients with 
COPD. In this study, we found that CAY10603 treatment 
reduced the expression of E-cadherin and increased the 
expression of α-SMA induced by TGF-β1 in HBE cells, 
which was mediated via the suppression of Smad2 and 
Smad3 phosphorylation. CAY10603 attenuated TGF-β1-
induced EMT in HEB cells and is expected to be a poten-
tial treatment for COPD in the future.

However, this study has some limitations that war-
rant discussion. For instance, we did not fully clarify 
how HDAC6 acts on tight junction proteins. Whether 
HDAC6 regulates EMT in airway epithelial cells through 
other mechanisms, such as adherens junctions, will be 
the focus of our subsequent research.

Conclusion
In conclusion, our results revealed that the HDAC6-
selective inhibitor CAY10603 inhibited CS-induced small 
airway remodelling by regulating epithelial barrier dys-
function and reversing EMT via the TGF-β1/Smad2/3 
signalling pathway and CAY10603 treatment could sig-
nificantly protect against CS-induced airway remodeling 
and emphysema.
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