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Abstract 

Background Lung function throughout adulthood predicts morbidity and mortality even among adults with-
out chronic respiratory disease. Diet quality may represent a modifiable risk factor for lung function impairment later 
in life. We investigated associations between nutritionally-rich plant-centered diet and lung function across early 
and middle adulthood from the Coronary Artery Risk Development in Young Adults (CARDIA) Study.

Methods Diet was assessed at baseline and years 7 and 20 of follow-up using the validated CARDIA diet history 
questionnaire. Plant-centered diet quality was scored using the validated A Priori Diet Quality Score (APDQS), which 
weights food groups to measure adherence to a nutritionally-rich plant-centered diet for 20 beneficially rated foods 
and 13 adversely rated foods. Scores were cumulatively averaged over follow-up and categorized into quintiles. The 
primary outcome was lung function decline, including forced expiratory volume in 1 s  (FEV1) and forced vital capacity 
(FVC), measured at years 0, 2, 5, 10, 20, and 30. We estimated the association of APDQS with annual pulmonary func-
tion changes and cross-sectional differences in a repeated measures regression model, adjusting for clinically relevant 
covariates.

Results The study included 3,787 Black and White men and women aged 18–30 in 1985–86 and followed 
for 30 years. In multivariable repeated measures regression models, individuals in the lowest APDQS quintile (poorest 
diet) had declines in  FEV1 that were 1.6 ml/year greater than individuals in the highest quintile (35.0 vs. 33.4 ml/year, 
ß ± SE per 1 SD change APDQS 0.94 ± 0.36, p = 0.009). Additionally, declines in FVC were 2.4 ml/year greater in the low-
est APDQS quintile than those in the highest quintile (37.0 vs 34.6 ml/year, ß ± SE per 1 SD change APDQS 1.71 ± 0.46, 
p < 0.001). The association was not different between never and ever smokers  (pint = 0.07 for FVC and 0.32 for  FEV1). 
In sensitivity analyses where current asthma diagnosis and cardiorespiratory fitness were further adjusted, results 
remained similar. Cross-sectional analysis at each exam year also showed significant differences in lung function 
according to diet after covariate adjustment.

Conclusions In this 30-year longitudinal cohort study, long-term adherence to a nutritionally-rich plant-centered 
diet was associated with cross-sectional differences in lung function as well as slower decline in lung function, high-
lighting diet quality as a potential treatable trait supporting long-term lung health.
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Background
Lung function is an important predictor of morbidity and 
mortality even among adults without chronic respira-
tory disease [1, 2]. Across the general population, lifetime 
lung function trajectories have been categorized as per-
sistently poor, worsening, preserved impaired, preserved 
good, or preserved ideal lung health [3]. As lung function 
trajectory over the lifespan is a major determinant of the 
development of future chronic lung disease [3], the early 
identification of modifiable risk factors is critical.

Emerging evidence suggests that high quality plant-
centered diets are associated with improved respiratory 
health. For example, a diet high in fruits and vegetables 
has been demonstrated to be associated with improved 
lung function among individuals without respiratory dis-
ease [4]. In another study of smokers without respiratory 
disease, greater adherence to a Western diet pattern, with 
higher consumption of red and cured meats and sweets, 
and lower consumption of fruits, vegetables, legumes, 
and fish, was associated with increased risk of impaired 
lung function [5]. Diets high in fruits and vegetables were 
associated cross-sectionally with a lower prevalence of 
current wheeze in children [6] and higher  FEV1 [4] in 
adults. In a meta-analysis of mostly cross-sectional stud-
ies of fruit and vegetable intake on prevalent wheeze and 
asthma severity, fruit intake was negatively associated 
with prevalent wheeze and asthma severity, and vegetable 
intake was negatively associated with prevalent asthma 
[7]. While there is an established relationship between 
long-term consumption of a nutritionally-rich plant-cen-
tered diet and cardiovascular mortality throughout adult-
hood [8], its longitudinal association with lung health 
has not been explored. To address this gap, we tested 
the hypothesis that the consumption of a nutritionally-
rich plant-centered dietary pattern is associated with 
improved lung function trajectory across early and mid-
dle adulthood among participants from The Coronary 
Artery Risk Development in Young Adults (CARDIA) 
Study.

Methods
Study design, setting and participants
CARDIA is a prospective multi-center cohort study 
of 5,115 young adults from four United States cities: 
Birmingham, Alabama; Chicago, Illinois; Minneapo-
lis, Minnesota; and Oakland, California. Participants 
were 18–30  years old at baseline and were followed for 

30  years with 71% retention at year 30. There were no 
exclusion criteria. Participants were randomly selected 
and recruited by telephone from census tracts in Min-
neapolis and Chicago, by telephone exchanges within the 
Birmingham city limit, and from lists of the Kaiser-Per-
manente Health Plan membership in Oakland and Berke-
ley [9]. The study protocol has been published elsewhere 
[10].

Assessment of plant‑centered diet quality
Diet was assessed at years 0, 7, and 20 using the validated 
interviewer-administered CARDIA diet history. Adher-
ence to a nutritionally-rich plant-centered diet was cap-
tured using the validated A Priori Diet Quality Score 
(APDQS), which weights 46 food groups rated a priori 
as beneficial, neutral, or adverse on the basis of current 
understanding of their known associations with cardio-
vascular risk. Each food group is divided into quintiles of 
consumption, and then scores of 0 (quintile 1) to 4 (quin-
tile 5) are assigned to the beneficially rated food groups, 
whiles scores of 4 (quintile 1) to 0 (quintile 5) are assigned 
to the adversely related food groups. Higher scores, indi-
cating better diet quality, are driven mainly by intake of 
nutritionally-rich plant foods. Plant-based foods such as 
fruits, avocado, green and yellow vegetables, and whole 
grains contribute to a higher score and are scored posi-
tively, whereas negatively scored foods include refined 
carbohydrates, red meats, processed meats, soft drinks, 
and high-fat dairy products. While the main contributors 
to a higher score are plant foods, certain animal prod-
ucts, including nonfried fish and poultry, also contribute, 
in recognition of the nutritious value of some non-plant-
based foods. Details of the APDQS have been previously 
described [11].

Assessment of outcome variables
The primary outcome was lung function, includ-
ing forced expiratory volume in 1  s  (FEV1), forced vital 
capacity (FVC), and  FEV1/FVC ratio. Lung function was 
measured at years 0, 2, 5, 10, 20, and 30 using stand-
ard procedures per European Respiratory Society and 
American Thoracic Society guidelines [12]. Extensive 
quality control of the measurement devices was carried 
out during each exam as well as between examinations, 
using waveform analysis to check comparability when a 
different device was used in one exam than in another 
[13]. Annualized lung function decline was calculated 
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by subtracting spirometry parameters at year 30 from 
those parameters at each participant’s estimated peak 
lung function and dividing by the difference in years, as 
has been done previously in this cohort [14]. If year 30 
data were not available, year 20 data were used. Time of 
peak lung function was defined separately for FVC and 
for  FEV1 as the maximum among observations across 
all exams. Obstructive lung physiology was defined as a 
ratio of  FEV1 to FVC < 0.7.

Other covariates
Demographics and clinical data included age (years), sex, 
maximal educational attainment (highest grade com-
pleted), race (Black, White), cigarette smoking and pack 
year history, height, weight, field center, and total daily 
energy intake. Smoking status was assessed yearly. Previ-
ous studies of CARDIA participants have shown strong 
correlation between self-reported cigarette smoking and 
year 0 cotinine measurements [15]. Cardiorespiratory fit-
ness (assessed as treadmill time in seconds at years 0, 7, 
and 20) and history of asthma were included in sensitiv-
ity analyses.

Statistical analysis
Baseline descriptive statistics were reported according 
to quintiles of APDQS and whether the participant com-
pleted the study.

We identified the year of study at which each individu-
al’s maximum lung function was achieved and examined 
annualized change in lung function from peak through 
year 30 (year 20 if year 30 was missing). We ran a sim-
ple linear regression, adjusting for sex, education, race, 
smoking status (measured at every annual follow-up), 
pack-year history (years 0, 2, 5, 7, 10, 15, and 20), height, 
BMI, total energy intake (averaged over the time period 
prior to spirometry), and site, in which the independent 
variable of interest was APDQS (average of all available 
diet data at years 0, 7, and 20). As a sensitivity analysis, 
we additionally adjusted for current asthma and cardi-
orespiratory fitness, which we conceptualized as con-
founders with influence on both diet and lung function. 
Cardiorespiratory fitness has been previously shown to 
be associated with lung function trajectory [17]. In order 
to account for potential misclassification of diet quin-
tiles due to drop out, we performed a purely prospective 
sensitivity analysis using the year 0 APDQS rather than 
average.

In a more comprehensive analysis, we used a mixed 
linear model (SAS PROC MIXED) to evaluate associa-
tions between APDQS and pulmonary function and its 
changes, including  FEV1, FVC, and  FEV1/FVC. We used a 

serial averaging approach for APDQS, where dietary data 
is remeasured or carried forward and serially averaged up 
to and including each measurement of spirometry, which 
allows for minimization of random within-person error, 
better reflects the cumulative, long-term effect of diet, 
and preserves sample size. Specifically, year 0, 2, and 5 
lung function were paired with year 0 APDQS; year 10 
lung function was paired with the average of year 0 and 
7 APDQS; and years 20 and 30 lung function were paired 
with the average of years 0, 7, and 20 APDQS. Pulmonary 
function, including  FEV1, FVC and  FEV1/FVC, was esti-
mated per one standard deviation difference in APDQS 
(SD = 13 points) in repeated measures regression mod-
els, adjusting for the same covariates as in the simple 
linear regression. We adjusted models for age squared 
as prior work has shown lung function to have a quad-
ratic decline [16]. If data on exposures and outcomes of 
interest were missing, participants were excluded. For 
continuous covariates (height and cardiorespiratory fit-
ness), mean values were assigned if data were missing. To 
account for patients who had missing spirometry because 
of death before year 30, we evaluated the slope of  FEV1% 
predicted among participants who died before year 30 
by adding the interaction of death status with time to the 
main model. To characterize the change in pulmonary 
function and APDQS, we incorporated APDQS*time 
terms. To further understand the inverse APDQS* time 
interaction, we used annualized decline from peak lung 
function at each exam year as the dependent variables in 
additional separate linear regressions with overall aver-
age APDQS and the same covariates. Given that smokers 
may have important differences in both dietary pattern 
and susceptibility to environmental influences on lung 
function, we also tested for an interaction between smok-
ing status and diet.

Lifetime trajectories of percent predicted lung function 
were generated using a group-based trajectory modeling 
approach (SAS PROC TRAJ), previously described by 
Washko et  al. [3], which fits a mixture model via maxi-
mum likelihood. Participants were assigned a priori to 
one of the five trajectories derived from the model as per-
sistently poor, worsening, preserved impaired, preserved 
good, or preserved ideal lung health [3], then stratified by 
APDQS quintiles.

For the outcome of airflow obstruction, Cox propor-
tional-hazards regression models were created for inci-
dent obstructive lung physiology according to quintiles 
of the APDQS, stratified by smoking status (current, for-
mer, or never). Hazard ratios were adjusted for the same 
covariates. All analyses were conducted using SAS ver-
sion 9.4 (SAS Institute Inc., Cary, NC).
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Table 1 Baseline characteristics (Year 0) of participants according to quintiles of the Year 0 APDQS

APDQS, A Priori Diet Quality Score; BMI, body mass index; IQR, interquartile range; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; SD, standard 
deviation
a Evaluated with chi-square tests for categorical variables and ANOVA for continuous variables
b Cumulative data through Y30
c Exercise units, physical activity score derived from the CARDIA physical activity history

Total 
participants

APDQS P‑value a

Quintile 1
(n = 720)

Quintile 2
(n = 817)

Quintile 3
(n = 773)

Quintile 4 
(n = 737)

Quintile 5 
(n = 740)

APDQS, mean ± SD 63.5 ± 13.1 45.9 ± 4.5 55.5 ± 2.3 62.9 ± 2 70.6 ± 2.5 83.2 ± 5.8

Age Y0, mean ± SD, y 25.1 ± 3.6 23.2 ± 3.7 24.6 ± 3.7 25.3 ± 3.6 25.7 ± 3.2 26.5 ± 2.9  < 0.001

Female, no (%) 2150 (56.8) 378 (52.5) 432 (52.9) 426 (55.1) 404 (54.8) 510 (68.9)  < 0.001

Self-identified race, no (%)

 Black 1792 (47.3) 558 (77.5) 538 (65.9) 386 (49.9) 227 (30.8) 83 (11.2)  < 0.001

 White 1995 (52.7) 162 (22.5) 279 (34.2) 387 (50.1) 510 (69.2) 657 (88.8)

Maximal educa-
tional attainment, 
mean ± SD, grades b

15.7 ± 2.6 14.6 ± 2.4 15 ± 2.5 15.6 ± 2.6 16.4 ± 2.5 17.1 ± 2.2  < 0.001

Study center, no (%)

 Birmingham, AL 882 (23.3) 253 (35.1) 249 (30.5) 185 (23.9) 127 (17.2) 68 (9.2)  < 0.001

 Chicago, IL 836 (22.1) 163 (22.6) 178 (21.8) 158 (20.4) 168 (22.8) 169 (22.8)

 Minneapolis, MN 975 (25.8) 155 (21.5) 192 (23.5) 203 (26.3) 214 (29.0) 211 (28.5)

 Oakland, CA 1094 (28.9) 149 (20.7) 198 (24.2) 227 (29.4) 228 (30.9) 292 (39.5)

Height, mean ± SD, 
cm

170.3 ± 9.5 169.9 ± 10 170.3 ± 9.9 170.4 ± 9.3 170.9 ± 9.5 169.7 ± 8.7 0.16

BMI, mean ± SD, 
kg/m2

24.5 ± 4.9 24.9 ± 5.8 24.9 ± 5.3 24.9 ± 5.1 24.2 ± 4.4 23.5 ± 3.6  < 0.001

Smoking, no (%)

 Never 2247 (59.7) 463 (64.9) 477 (58.7) 455 (59.2) 435 (59.5) 417 (56.7)  < 0.001

 Former 521 (13.9) 50 (7) 79 (9.7) 99 (12.9) 117 (16.0) 176 (23.9)

 Current 994 (26.4) 201 (28.2) 256 (31.5) 215 (28) 179 (24.5) 143 (19.4)

Pack-years smoking 
at Y0, mean ± SD, 
pack-years

2.1 ± 4.3 1.9 ± 4.5 2.3 ± 4.3 2.2 ± 4.5 2 ± 4.3 1.9 ± 3.9 0.26

Pack-years smok-
ing through Y20, 
mean ± SD, pack-
years

5.1 ± 9.4 5.4 ± 10 6.2 ± 10.4 5.5 ± 10.1 4.6 ± 8.4 3.5 ± 7.1  < 0.001

Total energy intake, 
mean ± SD, kcal

2738 ± 1269 3050 ± 1351 2841 ± 1387 2785 ± 1334 2588 ± 1153 2420 ± 968  < 0.001

Physical activity, 
mean ± SD,  EUc

415.5 ± 292.9 349.7 ± 275.5 369.6 ± 289.6 406.5 ± 286.2 433.8 ± 272.5 521.6 ± 308.9  < 0.001

Cardiorespiratory 
fitness, mean ± SD, 
treadmill time, 
second

591.5 ± 170.9 560.2 ± 168.5 558.1 ± 172 576.5 ± 171.1 616 ± 164.2 649.4 ± 159.7  < 0.001

History of asthma, 
no (%)

179 (4.7) 32 (4.5) 39 (4.8) 32 (4.2) 34 (4.6) 42 (5.7) 0.77

FEV1, median (IQR), 
ml

3470 (2950–
4100)

3280 (2810–3950) 3350 (2850–4040) 3480 (2980–4110) 3640 (3080–4260) 3540 (3130–4170)  < 0.001

FVC, median (IQR), ml 4170 (3530–
5040)

3960 (3280–4780) 4020 (3370–4880) 4190 (3520–5105) 4370 (3670–5330) 4250 (3780–5130)  < 0.001

Ratio FEV/FVC, 
median (IQR), ml

0.835 (0.792–
0.873)

0.843 (0.797–0.885) 0.838
(0.796–0.878)

0.835
(0.793–0.872)

0.829
(0.784–0.863)

0.833 (0.788–0.865)  < 0.001

Ratio FEV1/FVC < 0.7 
(Obstructive lung 
disease), no (%)

125 (3.5) 22 (3.3) 22 (2.9) 34 (4.6) 26 (3.6) 21 (2.9) 0.39
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Results
Study population
A total of 3,787 participants were included in this study, 
as shown in Table  1. We excluded participants who 
withdrew consent (n = 1), lacked outcome measures 
(n = 1243), or lacked exposure measures at Y0 (n = 132), 
leaving 3787 participants as a final sample. Ten partici-
pants (0.3%) and 24 (0.6%) were missing data on height 
and cardiorespiratory fitness, respectively. At enrollment, 
compared with the participants in the lowest APDQS 
quintile, those in the highest quintile were older, were 
more likely to be female and White, had higher maximal 
educational attainment, lower BMI, and lower energy 
intake, were less likely to be a current smoker, and had 
higher baseline  FEV1 and FVC. Among all participants, 
2627 (69.4%) had dietary information at all three time-
points, 967 (25.5%) had 2 measurements, and 193 (5.1%) 
had 1 measurement. Compared to participants who were 
excluded, participants who completed the study had a 
better diet, were older, and less likely to smoke, as shown 
in Additional file  1: Table  S1. Dietary intake strongly 
tracked over time. For example, Year 0 APDQS had a 
correlation about 0.63 and 0.58 with Year 7 and Year 20 
APDQS, respectively. The correlation between Year 7 and 
Year 20 was 0.64.

Lung function trajectory groups
The groups of participants with preserved good and 
preserved ideal lung health had a greater proportion of 
highest quintile APDQS (21% and 22%, respectively) 
than the group with persistently poor lung health (12%), 
whereas the group with persistently poor lung health had 
the highest proportion (34%) of lowest quintile APDQS 
(Fig. 1).

APDQS and lung function
In multivariable repeated measures regression models, 
there were significant associations between APDQS and 
annual changes in both FVC and  FEV1 (Table  2). Indi-
viduals in the lowest (poorest diet quality) APDQS quin-
tile had declines in  FEV1 that were 1.6  ml/year greater 
than individuals in the highest (best diet quality) quintile 
(35.0 vs. 33.4  ml/year; ß ± SE per 1 SD change APDQS, 
0.94 ± 0.36, p = 0.009) and declines in FVC that were 
2.4  ml/year greater than those in the highest quintile 
(37.0 vs 34.6  ml/year; ß ± SE per 1 SD change APDQS, 
1.71 ± 0.46, p < 0.001). APDQS was not significantly asso-
ciated with  FEV1/FVC. The association was not differ-
ent between never and ever smokers  (pint = 0.07 for FVC 
and 0.32 for  FEV1). In sensitivity analyses where current 
asthma diagnosis and cardiorespiratory fitness were fur-
ther adjusted, results remained similar. When exposure 
was defined as year 0 APDQS, a weaker and marginally 

significant association was shown for FVC and no asso-
ciation was seen with  FEV1. (Additional file 2: Table S2).

Those with fewer  FEV1 measures had a higher death 
rate. In addition, those who died during follow-up had a 
faster decline in lung function than those who survived. 
Nevertheless, in a sensitivity analysis, accounting for 
those who died before year 30 and their trend in  FEV1 
or FVC predicted did not substantially alter the asso-
ciations between APDQS and change in  FEV1 or FVC 
(ß ± SE 0.91 ± 0.36 (p = 0.01) and 1.67 ± 0.46 (p < 0.001), 
respectively). Lastly, there was no significant difference in 
the development of incident obstructive lung physiology 
across quintiles of APDQS and smoking status in any of 
the models (Additional file 3: Table S3).

At cross-sectional analyses at each time point across 
young and middle adulthood, higher APDQS was associ-
ated with higher  FEV1 and FVC (Fig. 2 and Table 3) after 
covariate adjustment. In the repeated measures analysis, 
p = 0.0092 for an association of FVC with APDQS that is 
weaker later in the study than earlier. This inverse inter-
action is described in separate linear regression analyses 
of lung function decline at each exam year according to 
average APDQS, as shown in Table 4.

Discussion
In this 30-year follow-up longitudinal study, we found 
that a nutritionally-rich plant-centered diet was associ-
ated with significantly better lung function both cross-
sectionally and longitudinally, even after adjustment for 
demographic and lifestyle factors influencing lung health. 
We found a difference of 1.6  ml/year decline in  FEV1 
when comparing participants in the 1st and 5th quin-
tiles of APDQS. Putting this into context, one cohort 
study estimated the excess  FEV1 decline from every 10 
pack years of smoking at 2.5 ml/year [18], while current 
asthma has been associated with excess  FEV1 decline of 
3.7–9  ml/year [18–20]. Importantly, in our study smok-
ing status did not significantly modify the benefits of 
consuming a nutritionally-rich plant-centered diet. 
Consistent with these findings, a higher proportion of 
high quality APDQS was observed in participants with 
preserved good and preserved ideal lung health trajec-
tories than in patients with worsening or persistently 
poor lung health. Consequently, consumption of a typi-
cal American diet that is nutrient poor and rich in pro-
cessed, calorie-dense foods may substantially contribute 
to the population burden of excess lung function decline 
and associated morbidity and mortality throughout 
adulthood.

Cross-sectional analysis at each time spirometry was 
measured demonstrated substantial changes in lung 
function according to diet. We found that an increase of 
13 points in APDQS would be associated with a 47.18 ml 



Page 6 of 11Wharton et al. Respiratory Research          (2024) 25:122 

increase in  FEV1 for a 25-year-old Caucasian man of 
average height using Hankinson prediction equations. 
This is consistent with results of prior cross-sectional 
work: for example, the study by Tabak et al. [4] showed 
a difference of just 110 to 169  ml before energy adjust-
ment and from 53 to 118  ml after energy adjustment 
comparing fruit and vegetable consumption above and 
below median. It is worth noting that differences in lung 
function between APDQS quintiles were apparent at the 
beginning of the study period and remained relatively sta-
ble through the study’s completion, raising the possibility 
that higher lifetime lung function observed among those 
in the top quintiles of plant-centered diet intake may in 
part be a function of reaching and/or sustaining optimal 
peak lung health after adolescence, and hence may reflect 
nutritional exposures occurring in the prenatal or child-
hood life stages and altering respiratory programming 
[21]. Intriguingly, the effect of diet lung function decline 
from peak was strongest early in the study period, again 
supporting the hypothesis that while diet may contrib-
ute to reaching and sustaining lung health, it is unable 

to overcome pathologic processes that take over later 
in the lifecourse. Research on critical windows is neces-
sary to develop dietary recommendations for both chil-
dren and adults to prevent adverse long-term respiratory 
outcomes.

Mechanistically, plant-centered diets rich in fruits 
and vegetables contain antioxidants (vitamin C, flavo-
noids, and carotenoids), which attenuate oxidative stress 
and may play a role in the pathogenesis of COPD [22]. 
In addition, dietary fiber, a key component of plant-
based foods, has been shown to attenuate inflammatory 
responses [23], possibly through alterations in the gut 
microbiome and increased production of anti-inflamma-
tory metabolites such as short-chain fatty acids [24]. In 
a study of mice exposed to cigarette smoke, a high fiber 
diet decreased interleukin-6 and interferon-gamma in 
bronchoalveolar lavage and serum samples, attenuated 
development of emphysema, and was protective against 
alveolar destruction [25]. An analysis of plant-based fla-
vonoids and age-related decline in lung function from the 
Veteran’s Administration Normative Aging Study found 
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that anthocyanins, a subclass of flavonoids found pri-
marily in berries, were strongly associated with less age-
related decline in  FEV1 and FVC for the highest quartile 
of intake compared with the lowest [26]. On a micronu-
trient level, a nine-year longitudinal study of participants 
in Nottingham, England found that higher intake of vita-
min C—abundant in fruits and vegetables—was asso-
ciated with a lower rate of  FEV1 decline by 50.8 mL per 
100 mg of vitamin C [27]. Thus, individual components 
of a nutritionally-rich plant-centered diet, including vita-
mins, minerals, fibers, and phytochemicals may work 
synergistically to provide beneficial effects on lung func-
tion [28].

No association was observed between diet and  FEV1/
FVC. This is perhaps because of limitations of power, 
with compounding of measurement error in represent-
ing a derived quantity; it could also owe to the relative 
youth of the study participants, with most obstructive 
lung physiology developing later in life. Finally, it may be 
that the underlying inflammatory pathobiology of poor 

diet affects  FEV1 and vital capacity equally, and future 
research is needed to elucidate the link between cell and 
tissues effects of inflammation and mechanical changes 
in lung physiology.

Strengths and limitations
Our study has several important strengths. Follow-
up was over an extended period, with excellent reten-
tion and repeated spirometry over 30  years, as well as 
repeated diet information collected through an inter-
viewer-administered diet history. By capturing adults in 
early to middle adulthood, we gained insight into early 
influences on lung function decline. The APDQS pro-
vides pragmatic, achievable pathways to healthy eating, 

Table 2 Association between APDQS average and annual 
changes in pulmonary function measures

a (Year 30 FVC—peak FVC)/(30—peak year). Other measures were calculated in 
the same way. If measurements at Year 30 were not available, Year 20 data were 
used, with denominator (20—peak year)
b 1 SD = 13
c Multivariable-adjusted linear regression model. APDQS is a continuous 
variable, the average of Y0, Y7, and Y20, with infrequent missing Y7 or Y20 last 
value carried forward. The regression is adjusted for peak pulmonary function 
variable (depending on outcome of interest), age squared, sex, race (Black and 
White), center (Birmingham, Chicago, Minneapolis, and Oakland), maximal 
educational attainment, baseline height, averaged total energy intake, averaged 
BMI, and life-time pack years of smoking

Estimated slopes per 
1 SD higher updated 
average  APDQSa,b

ß ± SE P‑value

FVC annual absolute change, ml

 Mean ± SD − 35.8 ± 20

 MV  modelc 1.71 ± 0.46  < 0.001

 MV model + cardiorespiratory  fitnessd 1.32 ± 0.47 0.005

 MV model + current  asthmad 1.72 ± 0.46  < 0.001

FEV1 annual absolute change, ml

 Mean ± SD − 34.4 ± 15.8

 MV  modelc 0.94 ± 0.36 0.009

 MV model + cardiorespiratory  fitnessd 0.68 ± 0.36 0.06

 MV model + current  asthmad 0.98 ± 0.36 0.006

FEV1/FVC ratio, 100*annual absolute 
change in ratio

 Mean ± SD − 0.31 ± 0.25

 MV  modelc − 0.02 ± 0.06 0.67

 MV model + cardiorespiratory  fitnessd − 0.04 ± 0.06 0.49

 MV model + current  asthmad − 0.02 ± 0.06 0.66

Table 3 Cross-sectional associations between the APDQS and 
pulmonary function measures at each exam year

a Linear mixed effect models fitted to the repeated measures of lung function, 
with random intercepts and fixed slopes of HEI-2015 × time interaction. 
N = 3787 (no. of observations = 20,134). Covariates included current age, time 
variables (Years 0, 2, 5, 10, 20, and 30), and time interactions with race (Black and 
White), sex, center (Birmingham, Chicago, Minneapolis, and Oakland), maximal 
educational attainment, height, total energy intake (Years 0, 7, 20), BMI (Years 0, 
2, 5, 7, 10, 15, and 20), and lifetime pack-years of smoking (Years 0, 2, 5, 7, 10, 15, 
and 20). All covariates were time-varying except for race, sex, and height
b 1 SD was 13. APDQS Y0 was used for analyses of lung function at Y0, 2, and 5. 
APDQS average Y0, 7 (Y0 carried forward for missing Y7) was used for analyses 
of lung function at Y10. APDQS average Y0, 7, 20 (missing carried forward) was 
used for analyses of lung function at Y10, 20, and 30
c Including all years of peak lung function without adjustment for year of peak

Estimated slopes per 1‑SD higher of 
the  APDQSb

ß ± SE P‑value

FVC, % predicted

 Year 0 1.33 ± 0.20  < 0.001

 Year 2 1.16 ± 0.19  < 0.001

 Year 5 1.22 ± 0.19  < 0.001

 Year 10 1.38 ± 0.21  < 0.001

 Year 20 1.18 ± 0.23  < 0.001

 Year 30 1.35 ± 0.24  < 0.001

FEV1, % predicted

 Year 0 1.06 ± 0.21  < 0.001

 Year 2 1.15 ± 0.21  < 0.001

 Year 5 1.13 ± 0.20  < 0.001

 Year 10 1.31 ± 0.23  < 0.001

 Year 20 1.11 ± 0.25  < 0.001

 Year 30 1.27 ± 0.26  < 0.001

FEV1/FVC ratio, %

 Year 0 − 0.39 ± 0.13 0.003

 Year 2 − 0.11 ± 0.13 0.37

 Year 5 − 0.20 ± 0.12 0.10

 Year 10 − 0.14 ± 0.14 0.32

 Year 20 − 0.18 ± 0.15 0.23

 Year 30 − 0.21 ± 0.16 0.18
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reinforcing fruit and vegetable intake without excluding 
animal products. Smoking status was assessed annually 
with previous evaluations demonstrating a high degree 
of correlation between self-report of smoking status and 
cotinine concentrations [15].

There are a few limitations of the study worth not-
ing. While we carefully adjusted for relevant covariates, 
including accounting for both the time-varying presence 
and extent of smoking behaviors, residual confounding 
remains a possibility, mediated by neighborhood level 
factors such as air pollution and secondhand smoke. 
Future work should pay careful attention to neighbor-
hood as well as individual influences on lung function. 
Diet questionnaires, while administered by trained inter-
viewers, were ultimately self-reported and subject to 
recall bias. The CARDIA cohort comprised only White 
and Black participants, limiting generalizability to other 
races/ethnicities. The small number of years with com-
plete diet data limits assessment of change in diet over 

time, which might influence outcomes. The study had 
71% retention at year 30, and participants with missing 
data may have been prognostically different. Partici-
pants for whom year 20 lung function data were used 
may not have had time to develop significant lung func-
tion decline, since lung function is usually maintained to 
around age 40; however, this would be expected to bias 
toward the null. Finally, the trajectory analysis is limited 
by its descriptive nature and smaller numbers of par-
ticipants in the highest and lowest quintiles of APDQS. 
Further analyses could elucidate which specific foods 
contributed most to the primary outcome, the impact of 
dietary changes over the life course, and whether results 
differed by sex. Replication in an independent cohort 
would strengthen causal inferences. Since our study was 
not powered to determine the effect of plant-centered 
diet quality in smokers, future work should pay close 
attention to this vulnerable subgroup.
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Linear mixed effect models fitted to the repeated measures of lung function, with random intercepts and fixed slopes of APDQS × time interaction. 
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except for race, sex, and height. 1 SD was 13
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Conclusions
After adjustment for demographic and lifestyle factors 
impacting lung health, we found that adherence to a 
nutritionally-rich plant-centered diet was associated with 
cross-sectional differences in  FEV1 and FVC and a signif-
icant, modest attenuation in  FEV1 and FVC decline.
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