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Abstract

Background: Pulmonary arterial hypertension (PAH) is a devastating disease that lacks sufficient treatment. Studies
have shown that the Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome contributes to
PAH pathogenesis, but the role of the upstream molecular P2X7 receptor (P2X7R) has remained unexplored. We
investigated the role of P2X7R in the pathogenesis of PAH.

Methods and results: PH was induced by a single subcutaneous injection of monocrotaline (MCT) (60 mg/kg) on
left pneumonectomised Sprague-Dawley rats, as validated by significant increases in pulmonary artery pressure and
vessel wall thickness. Marked P2X7R was detected by predominant PA immunostaining in lungs from PH rats.
Western blot revealed a significant increase in the protein levels of P2X7R as well as NLRP3 and caspase-1 in the
diseased lung tissue compared with normal tissue. The rats received A-740003 (a selective P2X7 receptor antagonist,
30 mg/kg) daily starting from 1 week before or 2 weeks after MCT injection. Consequently, A-740003 reversed
the NLRP3 inflammasome upregulation, significantly decreased the mean right ventricular (RV) pressure and RV
hypertrophy, and reversed pulmonary arterial remodelling 4 weeks after MCT injection, as both a pretreatment
and rescue intervention. Notably, A-740003 significantly reduced macrophage and pro-inflammatory cytokine levels,
as measured via bronchoalveolar lavage. The recruitment of macrophages as well as collagen fibre deposition in the
perivascular areas were also reduced, as confirmed by histological staining.

Conclusions: P2X7R contributes to the pathogenesis of PH, probably in association with activation of the NLRP3
inflammasome. Blockade of P2X7R might be applied as a novel therapeutic approach for the treatment of PAH.
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Background
Pulmonary arterial hypertension (PAH) is a rare but life-
threatening disease characterised by pulmonary vasocon-
striction, endothelial cell proliferation, smooth muscle cell
proliferation, and in situ thrombosis, leading to progres-
sive pulmonary hypertension and ultimately causing right
ventricular (RV) failure and death [1–3]. The current
therapies licensed for PAH focus on vasodilation [4].
Drugs targeting the prostacyclin, endothelin-1 receptor,
and phosphodiesterase pathways improve symptoms and

exercise tolerance, but persistent morbidity and mortality
indicate that important pathogenic mechanisms are
minimally affected [5, 6]. There is accumulating evi-
dence of a specific contribution of NLRP3 and related
inflammasomes, and their regulated cytokines or receptors
may represent novel diagnostic or therapeutic targets in
pulmonary diseases, including PAH [7–9].
The NLRP3 inflammasome comprising the apoptosis

speck-like protein containing a caspase-recruitment do-
main (ASC), NLRP3, and procaspase-1, plays a key role
in innate immunity and lung injury [10]. The NLRP3
inflammasome is activated in response to cellular stresses
through a two-component pathway involving a Toll-like re-
ceptor 4-ligand interaction (priming) followed by a second
signal. In particular, extracellular ATP is the best-known
danger signal in NLRP3 activation via stimulation of the
P2X7 purinergic receptor (P2X7R) [11]. Despite acting as a
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co‑stimulus or second signal for the formation of an
NLRP3 inflammasome, the role of P2X7R has not been pre-
viously characterised in models of PH. P2X7R is a highly
unusual ATP-gated non-selective cation channel expressed
primarily on cells of haematopoietic origin, such as macro-
phages and microglia. P2X7R signalling is involved in the
regulation of many physiological and pathophysiological
processes such as silica-induced lung-disease. High extra-
cellular ATP levels are released into the extracellular
medium due to cell damage, hypoxia or mechanical stress,
alerting the immune system to sites of cell damage/injury
[12]. Recently, there has been growing evidence to implicate
the ATP-P2X7-inflammasome-caspase 1-IL-1/18 axis in
lung diseases such as murine models of hyperoxia-induced
acute lung injury, smoke-induced airway inflammation and
patients suffering from COPD [13, 14]. P2X7R, based on its
role in the processing of the NLRP3 inflammasome and
IL-1β, represents a reasonable target in the study of the
pathogenesis of PAH.
Therefore, the purpose of this study was to determine

the extent to which the inhibition of P2X7R would sup-
press pulmonary vascular remodelling in an animal
model with neointimal lesions resembling the neointimal
lesions found in PAH. For pharmacological P2X7R in-
hibition, we applied A-740003, which is a competitive
antagonist of P2X7R and is more potent and selective
than any other antagonist with fewer species-dependent
differences in various preclinical disease models [12,
15, 16].

Methods
Animal models
Male Sprague-Dawley rats (weighing 300–330 g, obtained
from the Laboratory Animal Center, Chinese Academy of
Science, Beijing) were used in this experiment. The rats
were housed at 20 ± 3 °C under a 12-h light/12-h dark
cycle with free access to food and water. All procedures
were conducted according to approved protocols and
guidelines established by the Shandong University Institu-
tional Animal Care and Use Committee.
Rats were randomly assigned to one of four possible

groups: group A (n = 15) was the sham group; group B
(n = 30) was the P/MCT group, in which PH rats re-
ceived vehicle treatment; group C (n = 20) was the
P/MCT + CA group, in which PH rats received continu-
ous and early administration of A-740003; and group D
(n = 20) was the P/MCT +DA group, in which PH rats
received delayed administration of A-740003. PH was
induced by left pneumonectomy plus MCT injection. For
anaesthesia, the animals received 2% xylazine (4 mg/kg)/
ketamine (100 mg/kg) and were intubated. After con-
nection to a small-animal ventilator (HX-300S, TME,
Chengdu, China), the animals received an adjusted rate of

60 breaths/min and a tidal volume set to 1.1–1.3 mL/100 g
body weight, followed by a left unilateral pneumonectomy
as described previously [17]. MCT (Sigma, St. Louis, MO)
was prepared as previously described. MCT (60 mg/kg)
was injected subcutaneously 1 week later. All animals were
monitored daily until they developed pulmonary hyperten-
sion symptoms such as weight loss and tachypnea.
Animals in Group C received continuous and early

A-740003 (Sigma-Aldrich), a selective P2X7R inhibitor,
intraperitoneally at a dose of 50 mg/kg from the time
of pneumonectomy to day 28 [18–20]. Animals in Group
D received delayed administration of A-740003 drug 2
weeks before harvest (2 weeks after MCT). Once initiated,
A-740003 in Group D was continued until harvest. Sham
control animals received water alone. Haemodynamic,
morphologic, and biochemical assessments were per-
formed on day 28 after MCT injection.

Echocardiography and haemodynamic measurements
The rats in the experimental groups were anaesthetised by
intraperitoneal injection of sodium pentobarbital (30 mg/
kg). The room temperature was maintained at approxi-
mately 25 °C. A Visual Sonics Vevo 770 echocardiographic
machine (Visual Sonics, Toronto, Canada) equipped with
a 14-MHz linear transducer was used to assess cardiac
function. The measurements were performed in a blinded
manner by an echocardiographic expert. Short- and long-
axis B-dimensional parasternal views of both ventricles
at the level of the papillary muscles were acquired to
visualise the areas of the left ventricle (LV) and the
right ventricle (RV). Cardiac output and stroke volume
were obtained from the B-mode long axis according to
Simpson’s method, while the pulmonary artery diameter
and RV wall thickness were obtained in M-mode. Doppler
was applied to the pulmonary artery to obtain the pulmon-
ary artery acceleration time [21].
Blood pressure was evaluated with the tail-cuff method

using a non-invasive automatic blood pressure recorder
(BP-98A; Softron, Tokyo, Japan). Each value was the
average of at least three consecutive measurements [22].
Prior to sacrifice of the animals, RV systolic pressure
(RVSP) was transduced from the right jugular vein into
the vena cava and then into the right atrium followed by
the right ventricle using a 1.4 F Millar Mikro-Tip cath-
eter transducer (Millar Instruments Inc., Houston, TX).
The position of the catheter into the right ventricle was
validated by an acutely increased pressure wave accom-
panied by the loss of resistance, and RVSP was then
measured with Power Lab monitoring equipment (Millar
Instruments). Haemodynamic values were automatically
calculated using a LabChart 7.0 physiological data acqui-
sition system (AD Instruments, Sydney, Australia). The
animals were then euthanised prior to sacrifice.
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Tissue processing and histology
After acquiring the above measurements, cardiac arrest
was induced by injection of 2 mmol KCl through the
catheter. The left lungs were then weighed. The lung
was then separated longitudinally into two parts: one
was removed and frozen in liquid nitrogen for western
blot analysis, and the other was inflated with 0.5% low-
melting agarose at a constant pressure of 25 cm H2O,
fixed in 10% formalin for 24 h and used for small pul-
monary artery and IHC analyses. Next, the heart was ex-
cised, and the weight ratio of the right ventricle to the
left ventricle plus the septum (RV/LV + S) was determined
using Fulton’s index [23].

Western blot
For immunoblot analyses, modified RIPA buffer (Beyo-
time Institute of Biotechnology, Jiangsu, China) was used
to extract total protein from frozen lung tissue [24]. Ex-
traction proteins from tissues and cells were measured
using the BCA protein assay reagent kit (Pierce). An
equal amount of total protein (80 μg of protein/lane)
was resolved on a 5–12% SDS-PAGE gel and transferred
onto a polyvinylidene difluoride (PVDF) membrane. The
membranes were blocked with 5% nonfat dry milk in
PBST (containing 0.05% Tween 20). Incubation with the
antibodies was performed using the following dilutions:
1:750 for P2X7R (Abcam, USA) and 1:1000 for caspase-
1, procaspase-1, caspase-1, IL-1β (all of them from Cell
Signaling Technology, USA) and total NLRP3 (Bio-
source, Belgium). Primary antibodies were detected with
horseradish peroxidase-conjugated antibodies, 1:5000 for
anti-mouse (ZSJQ-BIO, Beijing, China) and 1:5000 for
anti-rabbit (ZSJQ-BIO, Beijing, China), at room
temperature for 1.5 h. Blots were developed using an
enhanced chemiluminescence (ECL) detection kit
(Millipore) and visualised using a FluroChem E Imager
(Protein-Simple, Santa Clara, CA, USA). Blot bands
were qualified using NIH ImageJ software.

RT-PCR
Total RNA was extracted from lung tissues with TRIzol
reagent (Invitrogen). cDNA was synthesised from 2 μg
RNA using a Prime Script RT Reagent Kit (TaKaRa,
Dalian, China) as described previously. mRNA expression
was determined using gene-specific primers and SYBR
Green 1 with a Bio-Rad iQ5 Multicolor Real-Time PCR
machine (Bio-Rad Laboratories). For each sample, both
GAPDH and the target gene were amplified in triplicate in
separate tubes. The relative gene expression was calculated
using the 2-ΔΔCT method [25] and normalised to GAPDH
expression. The primers used in this study were as
follows:
NLRP3: forward, 5′-CTGCATGCCGTATCTGGTTG-3′,

reverse, 5′-GCTGAGCAAGCTAAAGGCTTC-3′;

Caspase-1: forward, 5’-ACTCG TACAC GTCTTGCC
CTCA-3’, reverse, 5’-CTGGGCAGGCAGCAAATTC-3’;
P2X7R: forward, 5′-CTACTCTTCGGTGGGGGCTT 3′,

reverse, 5′- AACCCTGGTCAGAATGGCAC 3′;
IL-1β: forward, 5′-GCACAGTTCCCCAACTGGTA-3′,

reverse, 5′-TGTCCCGACCATTGCTGTTT-3′;
GAPDH: forward, 5′-AGATCCACAACGGATACATT-3′,

reverse, 5′-TCCCTCAAGATTGTCAGCAA-3′;

Immunohistochemistry
The left lung lobes were longitudinally cut and proc-
essed as described previously [21] by preparing standard
formalin-fixed, paraffin-embedded tissues for HE or
regular immunohistochemistry staining. Tissue samples
were sectioned at a thickness of 5 μm [26]. In each lung
section, 30 small PAs (50–100 μm in diameter) were
analysed at × 40 in a blinded manner. The medial wall
thickness was expressed as the summation of two points
of medial thickness/external diameter × 100 (%). Intra-
acinar (precapillary) PAs (20–30 μm in diameter, 25 ves-
sels each) were assessed for occlusive lesions as Grade 0
for no evidence of neointimal lesion, Grade 1 for less
than 50% luminal occlusion, and Grade 2 for more than
50% luminal occlusion [27]. There was no evidence of
neointimal lesion formation in any PAs from normal rats
(all PAs were graded as 0). Fibrosis was evaluated on
heart tissue sections stained with Masson’s trichrome
(Jiancheng, China) according to standard protocols [28].
Anti-P2X7R (1:100, Abcam), α-SMA (1:500; Abcam) and
anti-CD68 (1:150; Abcam) antibodies were used as pri-
mary antibodies. Subsequently, slides were incubated
using an ABC Elite Kit (Vector Laboratories) and DAB
substrate (Vector Laboratories) and counterstained with
haematoxylin.
For immunofluorescence, samples were incubated with

anti-P2X7R antibody (1:50; Abcam) and α-SMA (1:200;
Abcam) or FITC-CD68 (1:100; Abcam) overnight at 4 °C,
followed by a 2-h incubation with Alexa 545-conjugated
goat anti-rabbit (1:100; Peprotech) or FITC-conjugated
goat anti-rabbit (1:200; Abcam) and FITC-conjugated
rabbit anti-mouse (1:200; BioLegend) secondary anti-
bodies. The α-SMA -positive cells in each group were
double-immunostained with anti-proliferating cell nu-
clear antigen (PCNA) (1:300; Abcam). The sections
were counterstained with DAPI (Life Technologies) to
identify nuclei. The contribution of α-SMA to PCNA
expression was measured semi-quantitatively by the
proportion of colocalization cells (i.e. yellow staining in
merged images) divided by the number of correspond-
ing staining SMA cells.
A pathologist blinded to the study reviewed 10 sec-

tions per lung. All images were obtained using an Olym-
pus LCX100 Imaging System and analysed with ImageJ
software (version 1.38x; National Institutes of Health).
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The Institutional Review Board of Shandong University
approved the studies.

Bronchoalveolar lavage fluid (BALF)
Bronchoalveolar lavage was collected and analysed for
macrophage influx and cytokines such as TNF-α and
IL1-β as described previously [29]. Briefly, the trachea
was cannulated, and BALF was obtained by administer-
ing three consecutive injections of phosphate-buffered
saline (PBS) to a final volume of 1.0 mL. The BALF was
then centrifuged at 400 g for 10 min (Mikro 22 R, Hettich),
and the supernatant was stored at −20 °C. A double-
antibody sandwich enzyme-linked immunosorbent assay
(ELISA) kit (Peprotech, NJ) was used to detect serum TNF-
α and IL-1β concentrations according to the manufacturer’s
instructions. The intra- and inter-sample variability for each
kit was less than 8%.

Statistics
The data are presented as the mean ± standard deviation
(SD). The unpaired t-test was used to compare values
between two groups. Analysis of variance (ANOVA) was
used to compare differences among more than two
groups, followed by a Newman-Keuls test. Analyses were
performed using SPSS 17.0 software (SPSS Inc. Chicago,
IL, USA). A p-value < 0.05 was considered statistically
significant.

Result
Increased expression of P2X7R in lungs from PH rats with
pulmonary hypertension
We sought to examine the expression of P2X7R in dis-
eased PH lung vessels in rats receiving MCT plus left
pneumonectomy, in which the pattern of vascular re-
modelling resembled the physiology and pathology of

human PAH [30]. PH was validated by a significant increase
in RVSP at 4 weeks after MCT injection (Additional file 1:
Figure S1A). As a consequence of increased RVSP, the
vehicle-treated rats also developed significant right ven-
tricular hypertrophy. Progressive increases in RV/ (LV + S)
(Additional file 1: Figure S1B) were also observed. These
changes were associated with muscularisation and wall
thickening of the pulmonary arterioles (Additional file 1:
Figure S1C–H). P2X7R staining with both a diffuse pattern
in the smooth muscle layer and a punctate (indicated by
arrow) pattern on the outer wall of the vessel was observed
(Fig. 1b and c), while immunoreactivity was restricted to
rare inflammatory and lung structural cells and was barely
detectable in the pulmonary artery under normal condi-
tions (Fig. 1a), consistent with previous studies [31, 32]. Co-
staining of P2X7R with a-SMA further confirmed that
P2X7R was largely distributed in PA-SMCs from the hyper-
trophied media of pulmonary vessels in PH lung tissue
(Fig. 2), suggesting that P2X7R might be a novel risk factor
contributing to vascular damage.

Systemic blockade of P2X7R inhibits the NLRP3/ IL-1β
pathway in rats with MCT-induced PH
We applied the novel A-740003 for P2X7R inhibition to
explore the role of P2X7R in the pathogenesis of PH. We
tested the impact of P2X7 inhibition on a recently recog-
nised inflammatory pathway, NLRP3 inflammasome-
dependent activation of IL-1β. Western blot and RT-PCR
demonstrated that the expression level of NLRP3 (Fig. 3a)
and caspase-1 (we analysed the active subunit p20)
(Fig. 3b) were upregulated in MCT-treated pneumonec-
tomised rats compared with the sham group, which is
inconsistent with previous findings showing NLRP3
inflammasome activation during lung inflammation under
the pathologic condition of PH in rats [7]. In PH rats, both

Fig. 1 IHC staining of P2X7R in the sham group (a) and P/MCT group (b, c) at 4 weeks after MCT injection. Quantification of P2X7R-positive cells
per 20 high-power fields (HPFs) (d). Original magnification × 20. Scale bar = 50 μm for all images. IHC: Immunohistochemistry; P/MCT: MCT plus
left pneumonectomy
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Fig. 2 Representative double-immunostained images for P2X7R (Green), co-stained for α-SMA (Red), DAPI (Blue) for nuclei and merged images in
the sham group (a) and P/MCT group (b). Original magnification × 40. Scale bar = 50 μm for all images

Fig. 3 Activation of the P2X7R and inflammasome in PH rats. Animals were treated with P/MCT, P/MCT plus early and continuous A740003
(P/MCT + CA), or P/MCT plus delayed A740003 (P/MCT + DA) as described in the METHODS. The levels of P2X7R (70 kDa), NLRP3 (118 kDa) (a)
procaspase-1 (Pro-Casp1, 40 kDa), active caspase-1 (Casp1, 20 kDa) (b) and mature IL-1β (20 kDa) (c) were measured in total lung homogenates from PH
rats 4 weeks after MCT exposure using western blot. Quantification of protein expression is shown, respectively (c–f, h); GAPDH was used as a loading
control (37 kDa). Data are shown as the mean ± SD, n= 6, *p< 0.05 compared with the sham group; †p< 0.05 compared with the P/MCT vehicle group
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treatment and pretreatment with A-740003 efficiently
abolished the upregulation of P2X7R and greatly decreased
the increase in caspase-1 and IL-1β (Fig. 3B–H). Similar
results were observed with respect to the mRNA level of
P2X7/NLRP3 signalling protein (Fig. 4).

P2X7R inhibition suppresses cytokine levels
Inflammatory cell recruitment is a key feature in the de-
velopment of PAH. P2X7R is critical for macrophage in-
filtration and activation in lung infectious disease [33].
Co-staining of P2X7R and CD68 suggested an activation
of the P2X7R biosynthetic machinery in macrophages
(Additional file 1: Figure S2). Of note is CD68, which is an
important macrophage marker. Quantification of CD68-
positive macrophages by IHC analysis revealed signifi-
cantly reduced macrophage infiltration both by treatment
and pretreatment with A-740003 (Fig. 5a-b). Moreover,
BAL samples from P/MCT animals demonstrated a large
increase in the number of macrophages after monocrota-
line challenge; in contrast, treatment and pretreatment
with A-740003 largely reduced macrophage infiltration in
the BAL (Fig. 5c) compared with vehicle control animals.
Furthermore, pro-inflammatory cytokines, especially
TNF-α and IL-1β levels in lavage detected by an ELISA,
were significantly reduced in rats treated with A-740003
compared with those in vehicle controls (Fig. 5d and e).

A-740003 ameliorates pulmonary hypertension
Next, we analysed the haemodynamic changes at 4 weeks
to determine whether P2X7R inhibition affects RV pres-
sure and right heart hypertrophy. As a result, RVSP was
attenuated in rats that were pretreated with A-740003
(33.6 ± 2.9 mmHg, p < 0.05 vs. the P/MCT group) (Fig. 6a
and c).

The ratio of the right ventricular weight to the sum of
the left ventricular and septum weights (RV/[LV + S])
increased 3-fold in vehicle-treated rats relative to the
ratio observed in sham control rats (Fig. 6b). In con-
trast, pretreatment with A-740003 significantly re-
versed the elevated right ventricular systolic pressure
and the RV/(LV + S) and RV/BW ratios (p < 0.05, Fig. 6b
and p < 0.05, Table 1, respectively). While administration
of A-740003 after MCT injection significantly decreased
RVSP, it remained higher than that in the A-740003 pre-
treatment group. However, no further significant improve-
ment in RV hypertrophy was observed (p >0.05) (Fig. 6b),
perhaps due to the smaller decrease in RVSP and the short
observation period.
As shown in Table 1, the rats that received the A-

740003 treatment prior to or after MCT administration
showed significant reductions in RV wall thickness, RV
area, and pulmonary artery diameter compared with the
PH rats. We also observed an increased mean acceler-
ation time of the pulmonary artery in the A-740003
treatment group compared with the P/MCT vehicle group,
which correlated with a decreased pulmonary pressure.
In addition, cardiac output was slightly but not signifi-
cantly increased in these animals relative to the con-
trols (p > 0.05) due to an enhanced stroke volume while
the heart rate remained unaltered. Furthermore, the LV
area in the PH rats did not significantly change compared
with the sham rats. A lower death rate was observed in
the A-740003-treated PH rats, although this difference did
not reach statistical significance.

A-740003 reduces pulmonary vascular remodelling
PAH causes pulmonary vascular remodelling [34]. A-
740003 was administered to animals receiving MCT plus

Fig. 4 Quantification of mRNA expression of P2X7R (a), NLRP3 (b), caspase-1 (c), and IL-1β (d) as measured by RT-PCR. Quantitative RT-PCR results
represent reactions that were performed in triplicate and normalised to GAPDH expression. The data represent at least three independent
experiments. *p < 0.05 compared with the sham group; †p < 0.05 compared with the P/MCT vehicle group
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pneumonectomy to determine whether P2X7 inhibition
could suppress pulmonary vascular remodelling. We then
evaluated the remodelling by measuring the wall thickness
and occlusion score of the pulmonary arterioles. As shown
in Fig. 7, in vessels with diameters ranging from 50 to
100 μm, wall thickness significantly increased from
63.1% ± 2.6% (sham group) to 79.8% ± 4.5% (p < 0.05 vs.
sham group). Both continuous and delayed treatment
with A-740003 reduced the IPA wall thickness to
68.8% ± 3.1% and 73.5% ± 5.2%, respectively (p < 0.05 vs.
P/MCT-control; Fig. 7a and c). Decreases in Grade I
and II occlusion were also observed (15 and 71% in the
P/MCT group vs. 18 and 9% in the P/MCT+ CA group,
27 and 19% in the P/MCT+ DA group, respectively;
Fig. 7b and d).
The downregulated α-SMA expression and reduced

intrapulmonary artery (IPA) medial wall thickness and
vascular occlusion scores as a result of P2X7R inhibition
suggested that A-740003 decreased the severity of pul-
monary vascular muscularisation and reversed the
progression of pulmonary vascular remodelling.
The proliferation rates of SMCs were measured by

immunofluorescence staining with anti-PCNA antibody.

The mean rate of proliferation (percentage of PCNA-
positive a-SMA cells) in the A-740003 group was signifi-
cantly decreased compared to that in the vehicle-PH
group (Fig. 8). Furthermore, Masson trichrome staining
showed marked decreases in collagen deposition in the
lungs of animals treated with A-740003 relative to the
vehicle-treated controls (Fig. 9). These results indicate
that P2X7R upregulation is involved in MCT-induced
pulmonary vascular remodelling. Therefore, remodelling
was greatly reduced in the absence of P2X7R signalling,
outlining a critical role of the P2X7R axis in the estab-
lishment of lung artery hypertension. These findings
demonstrate that inhibition of P2X7R decreases RVSP
and RVH. These findings indicate that the increased
P2X7R expression plays an important role in the patho-
genesis of MCT-induced PH and RV dysfunction and
provide a potential therapeutic target.

Discussion
To our knowledge, this is the first study to demonstrate
the role of P2X7R in the pathogenesis of PAH. Pretreat-
ment with A-740003, a P2X7R inhibitor, attenuated the

Fig. 5 Effect of A-740003 on inflammatory status. a, b Immunohistochemical staining of macrophages with CD68 antibody in the (a) sham, (b) P/
MCT vehicle group, (c) P/MCT + CA group, and (d) P/MCT + DA group and the numbers of CD68-positive macrophage cells per 20 high-power
fields (HPFs). c Macrophage cell count in the bronchoalveolar lavage (BAL). d Tumour necrosis factor-α (TNF-α) and e interleukin-1β (IL-1β) in the
BALF of each treatment group. Original magnification × 40. Scale bar = 50 μm for all images. *p < 0.05, **p < 0.01 compared with the sham;
†p < 0.05 compared with the P/MCT vehicle group
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development and progression of MCT-induced pul-
monary hypertension, RV hypertrophy, and pulmonary
arterial neointimal formation in pneumonectomised rats.

Moreover, administration of A-740003 even at 2 weeks
after MCT could retard the progression of pulmonary
hypertension.

Fig. 6 Measurement of right ventricular systolic pressure (using a Millar catheter) shows a reduction in the RVSP in PH rats following pretreatment and
treatment of the animals with A-740003 (a, c). A-740003 also reduced the RV/LV + S ratio in the MCT-treated rats (b). The representative visual shape of
the RV is also presented (d). Kaplan-Meier survival curves show that A-740003-treated rats had a non-significantly higher survival rate than those in the
vehicle group (e). The data are presented as the mean ± SD. n = 15–18. **p < 0.01 compared with the sham group; †p < 0.05 compared with the P/MCT
vehicle group. RVSP, right ventricle systolic pressure; RV/LV + S ratio, weight ratio of the right ventricle to the left ventricle plus the septum
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Table 1 Hemodynamics and echocardiography data at 28 day after MCT injection

Parameters Sham Vehicle P/MCT + CA P/MCT + DA

No. of surviving rats 15 18 16 15

Body weight, g 458 ± 8 390 ± 6* 436 ± 7*,† 428 ± 7*,†

Heart Rate, bpm 432 ± 9 446 ± 15 440 ± 10 437 ± 17

LV Cardiac Output (ml/min) 145 ± 3 105 ± 4* 107 ± 4* 116 ± 3.4*

RV Ejection Fraction (%) 68.3 ± 3.6 48.2 ± 4.4* 65.6 ± 4.2† 62.5 ± 5.1†

Pulmonary artery acceleration time, ms 34.2 ± 1 25.8 ± 1.4* 33 ± 0.9† 30.6 ± 0.7†

Pulmonary artery, cm 0.32 ± 0.01 0.43 ± 0.04* 0.34 ± 0.02† 0.35 ± 0.03†

Mean blood pressure 97.3 ± 4.2 90.5 ± 3.8 92.3 ± 2.2 89.4 ± 3.3

RV/BW (mg/g) 3.8 ± 0.2 12 ± 1* 6.2 ± 0.8*,† 7.1 ± 0.9*,†

RV wall thickness, cm 0.14 ± 0.02 0.23 ± 0.03* 0.16 ± 0.04† 0.18 ± 0.02†

RV area, mm2 12.6 ± 0.4 26 ± 0.8* 14.2 ± 0.5† 15.6 ± 0.4†

LV area, mm2 23.8 ± 0.4 24.6 ± 0.6 24.3 ± 0.7 25.8 ± 0.4

All values are mean ± SD
Abbreviations: RV right ventricle, LV left ventricle, BW body weight
*p <0.05 compared with sham group
†p < 0.05 compared with respective PAH vehicle group

Fig. 7 A-740003 ameliorated pulmonary angioproliferation and the development of severe PH. a Haematoxylin and eosin and IHC staining of
b alpha-actin with α-SMA antibody. c Ratios of vascular medial thickness (i.e., smooth muscle thickness) to the outer diameter (total vessel wall
thickness) of the small pulmonary arteries (diameter 50–100 μm) in PH and normal rats. d Vascular occlusion score of the small pulmonary arteries
(diameter 20–30 μm) in PH and normal rats. Data are the mean ± SD, n = 6. *p < 0.05, **p < 0.01 compared with the sham group; †p < 0.05 compared
with the P/MCT vehicle group
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Considerable circumstantial evidence suggests that in-
flammation plays an important role in the pathobiology
of PAH. In clinical work, subjects with idiopathic or her-
itable PAH with higher levels of inflammatory cytokines
are associated with higher mortality in PAH [35]. In re-
sponse to injury and stress, lung vascular cells produce
inflammatory mediators, thereby recruiting monocytes/
macrophages. Inflammatory cells might continue the re-
lease of cytokines and growth factors, forming positive
feedback loops. These are characteristic features of the
pulmonary inflammatory process and could lead to
vascular remodelling by matrix remodelling, collagen
deposition, and vascular cell proliferation and migration in
PAH. Therefore, the control of inflammation is important
for the prevention or treatment of PAH.
In this study, MCT-challenged left pneumonectomised

rats showed a marked increase in the recruitment of
macrophages into perivascular and peri-alveolar areas of
pulmonary tissues and bronchoalveolar lavage samples,
consistent with previous reports [36]. Studies have shown
that the extracellular P2X7R axis contributes to the devel-
opment of lung inflammation [37], as well as the prolifera-
tion and migration of vascular smooth muscle cells [38].
The above data provide evidence for a potential role of
P2X7R signalling in the development of PAH. We ob-
served increased P2X7R activation in the lung tissues of
PH rats, most likely due to the early signal of ATP release
secondary to stretch-activated channels caused by the
elevated pulmonary pressure and MCT-induced lung
EC injury [39, 40]. Activated P2X7R co-localised with
both myeloid lineage cells and constitutive vascular cells.
Therefore, we further explored the extent to which P2X7R
participated in the process of pulmonary vessel remodel-
ling by P2X7R inhibitor—A-740003, which is broadly used
in preclinical disease models [12]. Our data showed
that either pretreatment or treatment with A-740003
could decrease macrophage recruitment. Furthermore,

Fig. 8 A-740003 decreased the expression of proliferating cell nuclear
antigen (PCNA). Immunofluorescence co-staining of PCNA (Red) with
α-SMA (Green) in the a sham, b P/MCT vehicle group, c P/MCT + CA
group, d P/MCT + DA group and e negative control. f The mean
percentage of PCNA-positive α-SMA cells (magnification × 40, bar =
50 μm). Data are the mean ± SD, n = 6. **p < 0.01 compared with the
sham group; †p < 0.05 compared with the P/MCT vehicle group

Fig. 9 A-740003 prevented lung fibrosis in pulmonary arterial hypertension. Masson trichrome staining for collagen in the lung tissue of the sham
group (a), P/MCT group (b), P/MCT + CA group (c), and P/MCT + DA group (d). Original magnification × 20. Scale bar = 50 μm for all images. All
values are the mean ± SD, n = 6. *p < 0.05 compared with the sham group; †P < 0.05 compared with the P/MCT vehicle group
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the downregulated expression of pro-inflammatory cy-
tokines identified by ELISA validated the suppressive
effect of P2X7R-targeted therapy on inflammation in
PAH, demonstrating a direct link between P2X7R and a
pro-inflammatory phenotype during the inflammatory
process of PAH. Eventually, A-740003 ameliorated pul-
monary vascular remodelling and pulmonary hypertension
in both preventive and therapeutic manners. However, the
exact mechanism by which A-740003 prevented PH and
inflammation remained elusive until the discovery of the
NLRP3 inflammasome/IL-1β pathway.
P2X7R activation acts as the second signal in NLRP3

inflammasome formation, which results in the cleavage
of procaspase-1 into active caspase-1 [41]. Caspase-1
could further cleave the IL-1β precursor to form the ma-
ture and secreted forms [42]. P2X7R is highly expressed
in mononuclear macrophage cell lines. Moreover, most
of the pharmacological evidence regarding the thera-
peutic potential of targeting P2X7R was focused on the
processing and release of IL-1β from activated mono-
cytes/macrophages and microglia [43–45]. Hence, P2X7

may orchestrate macrophage-dominated inflammation
during the PH process. In our study, activated P2X7R
highly co-localised with CD68 positive macrophages in
the lung tissue of PH rats. The blockade of P2X7 was
associated with the inhibition of NLRP3 activation and
the decrease of mature IL-1β release, compatible with a
scenario in which sustained P2X7R activation of alveo-
lar macrophages somehow provided the second signal
necessary for NLRP3/ASC/caspase-1 inflammasome ag-
gregation, proteolytic maturation/activation of caspase-
1, pro-IL-1β cleavage, and subsequent IL-1β release.
The mature IL-1β is a prototypic multifunctional cyto-
kine that is involved in pulmonary inflammation and
could stimulate chemokines and adhesion molecules,
such as MCP-1 and MIP-1α for macrophage recruitment
[46, 47]. Therefore, the mechanisms responsible for the
decrease in macrophage infiltration by A-740003 may be
caused by a specific decrease in IL-1β. Both caspase-1 and
IL-1β have been shown to participate in the pathogenesis
of experimental PH in gene knockout and specific antag-
onist studies [8, 48, 49]. Therefore, P2X7R potentially has
roles in PH by mediating NLRP3 inflammasome activation
and IL-1β secretion. In contrast, A-740003 likely de-
creased IL-1β production due to the loss of macrophage
infiltration and caspase-1 activation, participating in the
reversal of PH. We speculate that ATP release acts as an
early signal via P2X7R activation to trigger pulmonary cell
responses including inflammasome activation, leading to
mature IL-1β and factor expression remodelling.
Despite being the most important pathophysiological

response triggered by the activation of the P2X7R/NLRP3
inflammasome axis and release of IL-1β, we showed that
P2X7R was also strongly expressed by PA-SMCs. Therefore,

we could not rule out the possibility that P2X7 may func-
tion on PA-SMCs directly instead of through the NLRP3/
IL-1β pathway. The complex vascular lesions associated
with PAH appear to be governed by the same traits that
control cancer growth, the absence of apoptotic cells and
the presence of anti-apoptotic proteins in the lesion cells.
Recently, it has been clearly shown that P2X7R can also
support cell growth, mainly by increasing the endoplasmic
reticulum Ca2+ content and the mitochondrial potential,
thereby activating NFATc1, preventing apoptosis and pro-
moting cell proliferation [50, 51]. In addition, P2X7R has a
clear role in the activation of immune cells, and P2X7R also
mediates the release of factors that can modulate the in-
flammatory state of vessel wall P2 receptors, which are po-
tential targets for the treatment of hypertension [52].
Histological and molecular analysis revealed that A-740003
treatment abrogated significant ECM deposition (collagens)
and PA remodelling in the lungs, supporting the dual effect
of P2X7R on macrophage migration and activation as well
as on PA-SMC proliferation. Does P2X7R activation exert
direct proliferative and pro-survival roles for the pulmonary
artery? To answer this question, future studies focusing on
the effects of vascular P2X7R signalling on ECs and SMA
proliferation should be conducted.

Clinical implications
Our study proposes that P2X7R-specific inhibitors may
be a promising approach to improve the life span and
quality of life for patients with idiopathic PAH (iPAH).
In addition to iPAH, CTD-associated PAH accounts for
nearly half of patient disease aetiologies in the oldest age
group, which benefits less from iPAH-targeted therapy [53].
Therapy employing the blockade of P2X7R pathways has
been proven to be effective in various connective tissue dis-
eases (CTDs) [54]. Therefore, A-740003-directed thera-
peutic strategies also seem to be justified in other forms of
severe PAH. The poor prognosis of patients afflicted by this
disease despite treatment with currently available vasodila-
tor drugs makes the development of new treatment strat-
egies imperative. If vascular remodelling can be developed
from redundant mediators, a combination “cocktail”
consisting of anti-remodelling agents such as endothelin in-
hibitors, prostacyclin, and anti-inflammatory agents such as
A-740003 may be more beneficial for patients with PAH
than any single agent alone [55].

Limitations
First, our study lacked specific NLRP3 antagonist inter-
ference or NLRP3 gene deficiency analysis in animals to
confirm the role of NLRP3 in PAH. Second, other PH
models like hypoxia or pulmonary artery banding in ro-
dents must be further investigated in the context of anti-
P2X7R treatment. Third, A-740003 may function as an
off-target effect other than acting on P2X7R.
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Conclusion
In summary, the results of this study suggest that P2X7

may at least partly mediate PA hypertrophy via the
NLRP3/caspase-1 pathway, leading to inflammation and
vascular remodelling, which contributes to the develop-
ment of PH. Inhibition of P2X7 is a protective factor and
therapeutic target for the amelioration of P/MCT-in-
duced PH. Our results suggest that P2X7R inhibition
could be a novel therapeutic strategy for the treatment
of human PAH. These theories provide a strong impetus
for ongoing efforts to define the mechanisms of P2X7R
signalling.

Additional file

Additional file 1: Figure S1. Validation of the MCT plus -
pneumonectomy induced PAH model. (A-B) Rats were given a single
intraperitoneal injection of 60 mg/kg MCT one week after left
pneumonectomy or vehicle, and RV systolic pressure (A) and RV weight
(B) were measured 1, 2, 3, or 4 weeks after MCT challenge. (C–F) H&E
staining and a-SMA staining of lung tissue sections at 4 weeks after MCT
injection. (G) The % medial wall thickness was calculated as [(medial
thickness × 2)/external diameter] × 100. Scale bars = 50 μm. All data are
expressed as mean ± SD. n = 6 per group. **p < 0.01 and *p < 0.05.
Figure S2 Representative double-immunostained images of P2X7R (Red),
co-stained for FITC-CD68, DAPI (Blue) for nuclei and merged images
in the P/MCT (A), sham group (B) and negative control (C), Original
magnification × 40. Scale bar = 50 μm for all images. (DOCX 1872 kb)
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