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In smokers, Sonic hedgehog modulates
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Abstract

Background: Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic
hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has
a role in pulmonary endothelial dysfunction in smokers.

Methods: The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine
(Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage
of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH
activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary
artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase–quantitative
polymerase chain reactions.

Results: Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6%
and 50 ± 7% with 10−4M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings
from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the
pulmonary artery ring. Recombinant VEGF restored the ring’s endothelial function. VEGF gene and protein
expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced
relaxation and negatively correlated with the number of pack-years.

Conclusion: SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where
they modulate endothelial function through VEGF.

Background
Pulmonary vascular remodelling can occur in smokers,
regardless of whether the latter have normal or impaired
lung function [1]. These vascular changes may ultimately
lead to increased pulmonary vascular resistance and sub-
sequent pulmonary hypertension, which is a negative
prognostic factor. Pulmonary endothelial dysfunction is
thought to be an early pathophysiological determinant of
this vascular remodelling. Endothelial dysfunction has
been reported in patients with end-stage chronic ob-
structive pulmonary disease (COPD) [2], patients with

mild COPD, and smokers with normal lung function [3].
The pathophysiological mechanism is complex and still
poorly understood but seems to involve an imbalance
between vasodilating/anti-proliferative and constrictive/
pro-remodelling factors.
Sonic hedgehog (SHH) is a developmental pathway

that controls epithelial-mesenchymal interactions during
the morphogenesis of various organs (including the
lungs) and also influences lung branching [4]. The SHH
pathway also plays a key role in cell differentiation and
proliferation [5], and in tissue repair after ischaemia [6].
In the absence of SHH, the 12- transmembrane receptor
Patched-1 (PTCH1) represses the 7- transmembrane
protein Smoothened (SMO), which regulates activation
of the GLI family of transcription factors (GLI1, GLI2
and GLI3) [7]. SHH binding to PTCH1 de-represses
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SMO, which then promotes the formation of the GLI2
transcriptional factor. In the absence of SHH, suppressor
of Fused (SUFU) inhibits GLI transcriptional activity.
Upon pathway activation by SHH, Fused (STK36) coun-
teracts the suppressor of Fused (SUFU) activity, allowing
nuclear translocation of GLI2. The nuclear translocation
of this major transcription factor induces the expression
of SHH downstream target genes, including GLI1,
PTCH1, Hedgehog interacting protein (HHIP, an SHH
antagonist) and pro-angiogenic genes (such as the vascu-
lar endothelial growth factor (VEGF) and angiopoietins
(ANGPT 1 and 2) [8]. The signalling pathway involving
GLI is known as the canonical SHH pathway. A number
of non-canonical SHH signalling pathways exist, which
are independent of GLI transcription. For instance
SHH can induce anti-apoptotic effects in endothelial
cells and directly modulate endothelial cell phenotype
and angiogenic activity (migration and capillary for-
mation) [9–11]. Functional SHH is also expressed in
vascular tissues in adults, namely vascular smooth
muscle cells, endothelial cells and endothelial progenitor
cells [8]. SHH’s beneficial roles in the pathophysiology of
the systemic vasculature have recently been elucidated;
they include pro-angiogenic, pro-remodelling and prolife-
rative effects on vascular smooth muscle cells [12–16].
Activation of the SHH pathway also induces the release of
endothelial NO and corrects endothelial dysfunction
following ischaemia-reperfusion [17, 18] and hypertension
[19]. Several SHH pathway components (including SHH,
SMO, PTCH1 and GLI) are also expressed in human
pulmonary arteries, where SHH can induce the prolifera-
tion of vascular smooth muscle cells [20].
The observation of low HHIP expression in lung tissue

samples from COPD patients has suggested that the
disease is associated with changes in SHH signalling
[21–23]. Furthermore, tobacco smoking enhanced VEGF
expression and the proliferation of vascular smooth
muscle cells in the pulmonary artery of smokers (regard-
less of whether or not the smokers had moderate
chronic obstructive lung disease) [1]. VEGF induced
NO- and endothelium-dependent relaxation in isolated
systemic arteries [24] and bovine pulmonary arteries
[25], and VEGF inhibition induced pulmonary hyperten-
sion in an animal model [26]. However, the details of
SHH signalling in this context are not clear. Hence, the
objective of the present study was to establish whether
or not the SHH pathway (through its vascular effects
and its downstream target VEGF) is involved in pulmo-
nary endothelial dysfunction in smokers.

Methods
We obtained explants from current smokers, ex-
smokers or never-smokers undergoing resection for lung
cancer in a university hospital (Hôpital Foch, Suresnes,

France) and in the Clinique Val d’Or private clinic (Saint
Cloud, France). The study’s objectives and procedures
and the use of human lung tissue for in vitro experi-
ments were approved by the local independent ethics
committee (Comité de Protection des Personnes Ile de
France VIII, Boulogne-Billancourt, France). All patients
gave their informed consent to the use of the lung tis-
sues for research purposes.

Tissue preparation
Immediately after excision, lung tissue samples were
placed in Krebs-Henseleit solution (mM: NaCl 119, KCl
5.4, CaCl2 2.5, KH2PO4 1.2, MgSO4 1.2, NaHCO3 25,
glucose 11.7) and immediately transported to our labora-
tory. After intralobar arteries had been carefully dis-
sected free of parenchyma and adhering connective
tissue, several rings (3 to 5 mm in length, and 1.5 to
2 mm in internal diameter) were prepared from a single
artery. Some of the rings were used immediately for
pharmacological studies, whereas others were snap-
frozen and stored in liquid nitrogen for subsequent
protein extraction.
To assess endothelial function of pulmonary artery

rings isolated from smokers or never-smokers, we eva-
luated the relaxation produced in response to cumula-
tive, increasing concentrations of acetylcholine (Ach).
Under our experimental conditions, endothelial dysfunc-
tion was defined as an impaired response to Ach, i.e. a
relaxation that was 2 SD below the mean value in never-
smokers at an Ach concentration of 10−4M (a lack of
relaxation or, in some cases, even contraction),.

Pharmacological experiments
Pulmonary artery rings were mounted in bath organs, as
previously described [3]. Briefly, rings were suspended
on tissue hooks in 5 ml organ baths containing Krebs-
Henseleit solution (pH 7.4) maintained at 37 °C and
bubbled with 95% O2 and 5% CO2. Each preparation
was connected to a force displacement transducer
(Statham UF-1) and changes in isometric tension
were recorded. An initial tension of 1 g was applied
to the rings, which were then left to equilibrate for
30 min (with regular changes in fresh Krebs-Henseleit
solution) until a stable resting tension (RT1) was ob-
tained. The rings’ responsiveness was confirmed by
inducing contraction with KCl (40 mM). The rings
were then washed until full relaxation had occurred
(resting tension 2, RT2), and were left to rest for
20 min. The rings were then precontracted with L-
phenylephrine (PE) dichloride (10−5 M), so as to ob-
tain a stable plateau of contraction. Serial dilutions of
Ach were then added, in order to establish a cumulative-
concentration response curve (10−10 to 10−4 M). Relax-
ation induced by Ach was expressed as a percentage of
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the contraction induced by PE. A contractile response to
Ach was expressed as a negative value. Endothelium-
independent relaxation was assessed by measuring the
response to sodium nitroprusside 10−5 M at the end of
each experiment.
For each patient, some rings were incubated with va-

rious drugs for 45 min after PE precontraction. We used
two SHH pathway antagonists (cyclopamine: sc-200929,
Santa Cruz Biotechnology, Lexington, KY, USA) and
GANT61 (2,2′-[[dihydro-2-(4-pyridinyl)-1,3(2H,4H)-pyr-
imidinediyl] bis(methylene)]bis[N,N dimethylbenzena-
mine, Calbiochem, Darmstadt, Germany , ref. 373401))
and an SHH pathway agonist (SAG: 3-chloro-N-[trans-
4-(methylamino)cyclohexyl]-N-5[[3-(4-pyridinyl)-phenyl]
methyl]-1-benzothiophene-2-carboxamide, sc-212905,
Santa Cruz Biotechnology, Lexington, KY, USA).
Cyclopamine is a plant-derived alkaloid that binds to
the SHH pathway transducer SMO and stabilizes it in
an inactive form - thereby blocking SHH signalling
[27]. GANT61 inhibits the SHH pathway by specifi-
cally blocking the binding of GLI1 and GLI2 to their
DNA targets [28, 29]. GANT61 (5 μM) and cyclopa-
mine (0.1 μM) were dissolved in dimethyl sulfoxide
(DMSO.
The SHH pathway agonist SAG binds to SMO [27] .

SAG was dissolved in water. Certain rings were incubated
with recombinant human VEGF 165 (R&D Systems
Europe, Abingdon, UK; 1 ng/ml) for 45 min after incuba-
tion with PE.
The concentrations of these drugs used in the present

pharmacological experiments had previously been deter-
mined to be those producing 50% of the maximal effect
(i.e. the EC50) in pulmonary artery rings (data not
shown). All other drugs were purchased from Sigma Al-
drich (St Quentin Fallavier, France). All experiments
were performed in duplicate. The inter-ring variability
was always below 10%.

RNA isolation and reverse transcriptase – quantitative
polymerase chain reaction (RT-qPCR) analysis
Pulmonary artery rings were placed at −80 °C in TRIzol
reagent (Invitrogen, Carlsbad, CA) for subsequent mRNA
extraction. The RT-qPCR experiments were performed as
described in our previous work [30]. Pulmonary artery
rings were crushed and homogenized in TRIzol reagent,
using a Tissue-Lyser LT ball mill (Qiagen, Courtaboeuf,
France). Total RNA was extracted from arterial homoge-
nates using TRIzol. The amount of RNA extracted was
estimated by spectrophotometry at 260 nm (Biowave
DNA; Biochrom, Cambridge, UK) and the quality of the
preparation was assessed in a microfluidic electrophoresis
system (RNA Standard Sensitivity kits for Experion,
BioRad, Marnes-la-Coquette, France). After treatment
with DNase I (Life Technologies, Saint Aubin, France),

1 μg of total RNA was reverse-transcribed (SuperScript III
First-Strand SuperMix kit, Life Technologies). The resul-
ting cDNA was then used for RT-qPCR experiments with
TaqMan chemistry (Life Technologies). After initial
denaturation at 95 °C for 10 min, 20 ng of cDNA were
amplified (using Gene Expression Master Mix, Life
Technologies) in 40 annealing/extension cycles (95 °C
for 15 s and 60 °C for 1 min) in a StepOnePlus thermo-
cycler (Life Technologies). The sample’s fluorescence
was measured after each cycle, and the threshold cycle
(Ct) of the real-time PCR was defined as the point at
which a fluorescence signal corresponding to the ampli-
fication of a PCR product was detectable. The reaction
volume was 10 μl. The following genes were tested:
SHH, PTCH1, SMO, GLI1, GLI2, GLI3, HHIP1, VEGF,
ANG1, ANG2 and SUFU.
The expression of relevant transcripts in the pulmo-

nary artery rings was analyzed using a specific TaqMan
Array based on predesigned reagents (Assay-on Demand,
Life Technologies). In order to validate the extraction of
intact cellular mRNA and standardize the quantitative
data, three reference genes (hypoxanthine phosphori-
bosyltransferase (HPRT1), glyceraldehydes-3-phosphate
dehydrogenase (GAPDH) and β-glucuronidase (GUSB))
were amplified simultaneously.

Extraction of protein from pulmonary artery rings
At the end of the pharmacological experiments, pulmo-
nary artery rings were frozen in liquid nitrogen for
subsequent protein extraction. Total proteins were ex-
tracted with a lysis buffer containing NP 40 cell lysis
buffer (Invitrogen, Life Technologies), Protease Inhibitor
Cocktail for general use, Phosphatase Inhibitor Cocktail
1, Phosphatase Inhibitor Cocktail 2 and PMSF (Sigma-
Aldrich). Total proteins were measured with a bicincho-
ninic acid protein assay kit (Thermo Fisher Scientific,
Courtaboeuf, France) on a microplate, according to the
manufacturer’s instructions.

ELISA
The Quantikine ELISA Human VEGF Immunoassay kit
(R&D Systems Europe) was used to assay VEGF levels in
protein extracts from pulmonary artery rings. VEGF in the
samples was captured on microtiter plates precoated with
a monoclonal anti-VEGF antibody and detected by an
enzyme-linked polyclonal antibody specific for VEGF. The
minimum detectable dose of VEGF was below 5.0 pg/mL.

Statistical analysis
Results are expressed as the mean ± standard error of
the mean (SEM). Data were analysed with NCSS9 soft-
ware (NCSS LLC, Kaysville, UT and GraphPad Prism
software (version 5.00 for Windows, GraphPad Software,
San Diego, CA). For intergroup comparisons (smokers vs
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never-smokers), a non-parametric analysis of variance
(ANOVA) was followed by Dunn’s test for multiple com-
parisons. For comparisons of condition (i.e. Ach dose-
response curves in the presence and absence of another
drug), a repeated-measures ANOVA was followed by a
Tukey-Kramer test for multiple comparisons. Fischer’s
exact test or the Mann-Whitney test was used to compare
categorical variables. To search for a correlation between
2 parameters, a non parametric correlation (Spearman)
test was performed, followed by a linear regression. A p
value <0.05 was considered to be statistically significant.
The quantitative data obtained from RT-qPCR experi-
ments was expressed as the relative expression (2-ΔCt),
where ΔCt is the difference between the target gene Ct
and the mean Ct of the reference genes [31].

Results
Subjects
Lung tissues were obtained from 34 current or ex-
smokers and compared with a historical series of rings
from 8 never-smokers in which Ach-induced relaxation
(but not SHH activity or expression) had been character-
ized. Smoking history was the only demographic or clin-
ical factor that differed significantly when comparing
current/ex-smokers with never-smokers (Table 1).

Tobacco smoking impairs the relaxation response of
pulmonary artery rings
The Ach-induced relaxation was much less intense in
smokers than in never-smokers (respectively 24 ± 6% vs.
50 ± 7% at Ach 10−4M; p = 0.028) (Fig. 1).

SHH modulation alters pulmonary vasodilation
We tested the effect of SHH inhibition in pulmonary
artery rings from smokers. The downstream SHH in-
hibitor GANT61 strongly altered vasodilation (2 ± 7%
vs. 23 ± 6% at Ach 10−4M in the presence and ab-
sence of GANT61, respectively; n = 27, p < 0.001)
(Fig. 2a). In contrast, neither upstream SHH inhi-
bition by cyclopamine (n = 27; Fig. 2b) nor SHH
activation by SAG (n = 27; Fig. 2c) had a significant
effect on the relaxation response.

SHH genes are expressed in pulmonary artery rings
mRNAs from all known genes involved in the response
to SHH were expressed in pulmonary artery rings from
smokers (n = 11; Fig. 3).

Table 1 General characteristics and lung function measurements

Characteristics Smokers (n = 34) Never smokers (n = 8) p

Age, years (mean ± SEM, range) 64 ± 8 [49–87] 56 ± 25 [23–83] NS

Male/Female ratio 20/14 6/2 NS

Current smokers, n 17 NA NA

Tobacco, pack-years (mean ± SEM, range) 42 ± 25 [10–110] NA NA

COPD 4 0 NS

GOLD stage 1, n 3 0 NS

GOLD stage 2, n 1 0 NS

GOLD stage 3, n 0 0

GOLD stage 4, n 0 0

Prior chemotherapy, n 4 1 NS

Hypercholesterolemia, n 4 0 NS

Hypertension, n 5 1 NS

Diabetes mellitus, n 0 0 NS

Treatment with statins, n 2 0 NS

Treatment with vasodilators, n 4 0 NS

Pack-years: number of cigarette packs smoked per day multiplied by the number of years of smoking
COPD chronic obstructive pulmonary disease, defined by post bronchodilator FEV1/FVC < 70% (where FEV1 is the forced expiratory volume in 1 s and FVC is the
forced vital capacity), GOLD Global Initiative for Chronic Lung Disease - 2011, NS not significant, NA not appliable

Fig. 1 Pulmonary endothelial function, represented as cumulative
Ach dose response curves in pulmonary artery rings from smokers
(n = 34) and never-smokers (n = 8). Rings from smokers displayed
impaired relaxation in response to Ach, when compared with
rings from never-smokers (p = 0.028)
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VEGF restores vasodilation in pulmonary artery rings
To further assess the potential vascular effect of the SHH
pathway, we investigated one of its main targets: VEGF.
To this end, we tested the effect of recombinant VEGF on
the response to Ach in pulmonary artery rings from
smokers (n = 6). VEGF strongly increased Ach-induced re-
laxation, and restored the relaxant response to Ach (47 ±
7% vs. 24 ± 7% in the presence and absence of VEGF, re-
spectively; p < 0.05) to the level observed in non-smokers.
This relaxant response was NO- and endothelium-
dependent, as shown by the full inhibitory effect of either
endothelium removal or incubation with Nω-Nitro-L-ar-
ginine methyl ester hydrochloride (L-NAME) (Fig. 4).

Furthermore, levels of VEGF gene and protein ex-
pression in pulmonary artery rings from smokers were
correlated with the response to Ach (n = 7, r2 = 0.83,
p = 0.048, Fig. 5a, and n = 9, r2 = 0.34, p = 0.03, Fig. 5b,
respectively). Lastly, VEGF gene expression in pulmonary
artery rings was inversely correlated with the number of
pack-years (n = 7, r2 = 0.28, p < 0.01, Fig. 5c).

Discussion
Taken as a whole, the present results show that the SHH
pathway is involved in pulmonary endothelial dysfunc-
tion in smokers through the downstream target VEGF.
All known SHH pathway genes were found to be

Fig. 2 Effect of SHH modulation on pulmonary artery ring relaxation. Treatment with the downstream SHH inhibitor GANT61 altered
vasodilation (n = 27; p < 0.001) (a), whereas SHH upstream inhibition by cyclopamine (n = 27) had no effect (b). SHH activation with SAG
(n = 27) had no effect (c)

Fig. 3 SHH gene expression in pulmonary artery rings. All genes of the SHH pathway are expressed in pulmonary arterial rings from
smokers (n = 11)
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expressed in the pulmonary artery rings. The downstream
inhibition of SHH by GANT61 reduces pulmonary endo-
thelial–dependent relaxation by downregulating VEGF
gene expression. VEGF induces endothelium- and NO-
dependent pulmonary relaxation, and VEGF gene and
protein levels are correlated with the degree of the rela-
xation. Incidentally, these results confirmed our previous
observation of pulmonary endothelial dysfunction in
smokers (probably due to smoking itself ) - regardless of
the presence or absence of obstructive airway disease [3].
Indeed, there was no difference between the smokers and
the never-smokers in terms of clinical characteristics in
general and the cardiovascular risk factors usually

associated with systemic endothelial dysfunction (such as
diabetes or hypertension) in particular. Furthermore, al-
tered relaxant responses were observed in subjects with
no obstructive lung disease, and only 4 of the 34 smokers
were classified as Global Initiative for Chronic Obstructive
Lung Disease (GOLD) stages 1 and 2. Several mechanisms
underlie the abnormal relaxation observed in smokers.
We recently reported on the role of the ET-1 pathway via
enhanced ET-A expression [3]. We have also demon-
strated the role of arginase in this dysfunction [32]. SHH
is another potential mechanism in vascular dysfunction.
The beneficial vascular effects of SHH signalling (espe-
cially angiogenesis and neovascularization) were recently

Fig. 4 Effect of VEGF on endothelium- and NO-dependant pulmonary relaxation. Treatment with VEGF strongly enhanced the relaxant response
to Ach (n = 6). This effect was endothelium- and NO- dependent, as shown by the full inhibitory effect of either endothelium removal (Endoth-)
or incubation with a NO synthase inhibitor (L-NAME)

Fig. 5 VEGF gene and protein expression levels in pulmonary artery rings, and the effect of tobacco smoking on VEGF gene expression.
Levels of VEGF gene (a) and protein (b) expression in pulmonary artery rings from smokers were correlated with the response to Ach.
VEGF gene expression was inversely correlated with the number of pack-years (c)
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described [33]. Several studies have reported on the pro-
angiogenic effects of SHH in endothelial cells through
canonical or non-canonical pathways [9, 34]. Interestingly,
in the context of endothelial function, few studies have
shown that SHH carried on microparticles have beneficial
effects on endothelial dysfunction in a mouse model
through NO release [17, 19]. Our present data provide
evidence of a novel role of canonical SHH signalling in
tobacco-associated pulmonary endothelial dysfunction.
Previous observations of VEGF’s endothelium- and NO-
dependent vasorelaxant effects concerned the systemic
vasculature and pulmonary arteries from animals [24, 25].
To the best of our knowledge, the present study is
the first to show this type of effect in human pul-
monary artery samples. VEGF is one of the down-
stream targets for the canonical SHH pathway. We
showed that inhibition of GLI formation by GANT61
alters pulmonary endothelial function. Levels of
VEGF gene and protein expression in pulmonary ar-
tery rings were correlated with the ring’s degree of
relaxation in response to Ach. The expression and
role of VEGF in lungs exposed to cigarette smoke are
still subject to debate [35, 36]. Interestingly, vascular
VEGF gene expression was inversely correlated with
tobacco exposure (pack-years) in our patients; this
provides further evidence of a harmful effect of to-
bacco smoke on pulmonary endothelial function via
VEGF downregulation.
Interestingly, SHH activation by SAG had no effect on

endothelial dysfunction or VEGF expression, nor did
SMO inhibition by cyclopamine. There are very few
known SHH activators, and all have an effect on SMO or
upstream of SMO. The large variety of possible canonical
or non-canonical effects that follow SMO derepression
(including RhoA/ROCK activation and apoptosis) may ac-
count for SAG’s lack of action in our experiments [11, 23,
37]. Downstream activators of SHH are presently lacking.
One of the limitations of our study relates to the

fact that we could not assess SHH signalling down-
regulation in smokers relative to never-smokers (due
to the very low frequency of lung resection for cancer
in the latter group). We can only state that (i) SHH’s
downstream target VEGF has NO- and endothelium-
dependant relaxant responses and (ii) VEGF expres-
sion is inversely correlated with tobacco smoking
load. Another limitation is that the current lack of
downstream SHH activators prevented us from testing
the effect of downstream SHH activation on pulmo-
nary artery relaxation.

Conclusion
Our present results evidenced the pulmonary expression
of SHH in smokers and suggest that this pathway has
beneficial effects on the pulmonary endothelial

dysfunction in this setting via the downstream target
VEGF. Future research should establish whether (i)
this pathway is downregulated in tobacco smokers
and (ii) non-canonical pathways are involved in endo-
thelial dysfunction.
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