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Abstract

Background: Both short and long-term exposure to traffic-related air pollutants have been associated with
asthma and reduced lung function. We hypothesized that short-term indoor exposure to fine particulate matter
<2.5 μm (PM2.5) and vanadium (V) would be associated with altered buccal cell DNA methylation of targeted
asthma genes and decreased lung function among urban children in a nested subcohort of African American
and Dominican children.

Methods: Six day integrated levels of air pollutants were measured from children’s homes (age 9–14; n = 163),
repeated 6 months later (n = 98). Buccal samples were collected repeatedly during visits. CpG promoter loci of
asthma genes (i.e., interleukin 4 (IL4), interferon gamma (IFNγ), inducible nitric oxide synthase (NOS2A), arginase 2
(ARG2)) were pyrosequenced and lung function was assessed.

Results: Exposure to V, but not PM2.5, was associated with lower DNA methylation of IL4 and IFNγ. In exploratory
analyses, V levels were associated with lower methylation of the proinflammatory NOS2A-CpG+5099 among
asthmatic overweight or obese children but not nonasthmatics. Short-term exposure to PM2.5, but not V,
appeared associated with lower lung function (i.e., reduced z-scores for forced expiratory volume in one second
(FEV1, FEV1/ forced vital capacity [FEV1/FVC] and forced expiratory flow at 25–75% of FVC [FEF25–75]).

Conclusions: Exposure to V was associated with altered DNA methylation of allergic and proinflammatory
asthma genes implicated in air pollution related asthma. However, short-term exposure to PM2.5, but not V,
appeared associated with decrements in lung function among urban children.
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Background
Both short-term and long-term exposure to fine particu-
late matter <2.5 μm (PM2.5) have been associated with
reduced lung function [1–5]. However, pediatric cohort
studies on short-term effects of PM2.5 on lung function
are relatively scarce. Further, it is far from evident what
components of PM2.5 cause these adverse health effects,

and their underlying mechanisms. These components
may include toxic agents like trace metals.
In the current study, we focused on vanadium (V) as

the trace metal PM component because previous studies
have shown that ambient levels of V, emitted from the
burning of residual oil fuel mainly from residential heat-
ing and shipping ports [6] and traffic emissions [7],
exhibited marked spatial variability in New York City
(NYC) [8]. Measures of V have been associated with
increased 1) cellular stress responses (i.e., Nuclear
Factor kappa B) in human bronchial epithelial cells [9],
2) risk of PM2.5-related respiratory and cardiovascular
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hospitalizations [10], 3) mortality among elderly individ-
uals [11], and 4) wheeze [12] and decreased lung function
(i.e., forced vital capacity (FVC)) among children [13]. In
the latter case, the V findings persisted after adjusting for
co-pollutants (e.g., PM2.5 or elemental carbon (EC)),
suggesting that V itself may be an important independent
contributor of adverse respiratory effects of PM2.5. More-
over, susceptibility to these pollutants may vary by asthma
phenotype, including obesity-related asthma [14, 15].
Overweight asthmatics exhibited more asthma-like symp-
toms in association with exposure to PM2.5, nitrogen
dioxide (NO2) and polycyclic aromatic hydrocarbons
(PAH) [16, 17], and greater declines in lung function in
association with exposure to ozone [14].
Environmental epigenetic regulation also may underlie

mechanisms of air pollution-associated asthma [18, 19].
As examples, recent ambient PM2.5 levels were associ-
ated with lower DNA methylation of the proinflamma-
tory gene inducible nitric oxide synthase (iNOS encoded
by NOS2A) [20], and chronic exposure to PAH was as-
sociated with methylation of the asthma regulatory gene
Forkhead box transcription factor 3 (FOXP3) [21]. In a
study of boilermakers, higher occupational levels of
PM2.5, presumably representing high levels of metals
[22], were associated positively with methylation of long
interspersed nuclear element-1 (LINE-1) in peripheral
blood leukocytes [23], indicating higher global methy-
lation. However, pediatric cohorts have not yet
investigated epigenetic changes of asthma genes in
response to measures of air pollutants, and specific-
ally for the V component.
Our objective was to delineate the association between

residential exposure to air pollution, including PM2.5

and its metal component V, on epigenetic regulation and
lung function in a nested cohort of asthmatics and
healthy urban children. We specifically targeted epigen-
etic loci previously implicated in air pollution-related
asthma [24–27]. We also quantified DNA methylation
levels in buccal cells, aerodigestive track epithelium
where air pollution-related molecular changes have been
documented [28], via pyrosequencing technology to
capture small differences [29–32]. We hypothesized that
exposure to PM2.5 and V, assessed by residential mea-
sures integrated over 6 days, repeated 6 months later,
would be associated with changes in buccal cell DNA
methylation of targeted CpG loci in the promoter region
of several asthma inflammatory genes (e.g., interleukin 4
(IL4), interferon gamma (IFNγ), NOS2A and arginase2
(ARG2)) among urban African American and Domin-
ican children. Further, we explored whether such
methylation would vary by obesity-asthma. We also
hypothesized that short-term residential exposure to
PM2.5 and V would be associated with decreased lung
function.

Methods
Study population and residential air monitoring
Seven hundred twenty seven nonsmoking mothers of
African-American and Dominican ethnicity living in
Northern Manhattan and the South Bronx were re-
cruited during pregnancy as part of the Columbia Center
for Children’s Environmental Health cohort (CCCEH)
birth cohort [33]. For this nested study, participants
were recruited in order based on age criteria (9–14 years
old still enrolled in CCCEH) and enriched for current
asthma status (57% asthmatic vs 43% non-asthmatic).
Children were classified as asthmatic if a specialized
physician (allergist, pulmonologist) diagnosed them with
asthma using study standardized and objective criteria,
and if they had symptoms or used asthma medication in
the 12 months prior to enrollment in the nested study
[34]. Children without any asthma-related symptoms be-
tween age 5 and enrollment, or determined not to be
asthmatic by our standardized criteria [34], in the nested
study were classified as non-asthmatic. Height, weight,
and body fat percentages (%BF) were measured at each
visit (Time 1 and Time 2, 6 months later) using a port-
able stadiometer (SECA, Hamburg, Germany) and a seg-
mental body composition monitor (Tanita Corporation,
Tokyo, Japan). Children with body mass index (BMI) ≥
the age- and sex-specific 85th percentile of the year 2000
CDC growth charts for age and sex were classified as
‘overweight’ [35]. Waist circumference (WC) was mea-
sured twice at a level midway between the top of the hip
bone and the lowest rib. High %BF and high WC, classi-
fied as the upper 33% of mean whole %BF and mean
WC, respectively, were further investigated based on the
strong correlations between BMI and %BF or WC in
studies with young adolescents [36, 37].
Indoor air monitors collected six-day integrated PM2.5

filter samples at each of the 163 homes between March
2012 and August 2015 (Time 1; initial set-up) (Fig. 1).
Samplings started on Wednesday or Thursday to
minimize variation in air pollution exposure by day of
the week [38]. The sampling was repeated approxi-
mately six months after the initial sampling period
(Time 2; n = 98) to capture the seasonal variability in
air pollution levels. Residential indoor monitors were
placed in a room where the child spent most of his or her
time. Data were analyzed for those children (n = 149) for
whom measures of residential PM2.5 and V were available
(Fig. 2). In order to perform a sensitivity analysis including
chronic exposure to PM2.5, we obtained residential indoor
PM2.5 data that were collected 4–8 years prior to Time 1,
using the same sampling methodology. Of 163 children,
106 children had previously available PM2.5. The study
was approved by the Columbia University Institutional
Review Board and written informed consent and assent
were obtained.
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Residential indoor assessment
PM2.5 was analyzed by weighing (post-pre weight) Teflon
filter samples collected from a cyclone with a 2.5 μm
aerodynamic-diameter cut point (model SCC 1.062, BGI,
Inc.) that operated at 1.5 L/min (±15% of standard
deviation; SD) for six days. V levels on the same filters
were analyzed using XEPOS Energy-Dispersive X-Ray
Fluorescence Spectrometer (XEPOS 3, Spectro, Kleve,
Germany) in specially-designed polytetrafluoroethylene
(PTFE) holders to keep the filters in a fixed flat geom-
etry [39]. The XEPOS had been calibrated for PM2.5

filters for V and other metals. Filter blanks and an

internal standard consisting of a NYC PM2.5 filter were
counted with each analysis batch of 10 filters.

Buccal sample collection, DNA extraction and methylation
Buccal samples were collected during in-home visits on
Day 0 (set-up day) and Day 6 (take-down day; Fig. 1) to
capture changes in DNA methylation over 6 days. The
participants were asked to rinse out their mouths with
water before buccal swabs sampling to avoid contamin-
ation from food and then brush the inside of each
cheek for fifteen seconds with a CytoSoft cytology
brush (Fischer Scientific, Pittsburgh, Pennsylvania). The

Day

Residential PM2.5 and 
vanadium (V)

Pulmonary function 
test (PFT)

Buccal DNA (BDNA)

b Time 2: Repeated 6 months later

PM2.5 and V

BDNA BDNA

1 2 3 4 5 6

  24 hrs

PFT PFT

a Time 1 (March 2012 and August 2015) 

0

Fig. 1 Study design. Residential indoor monitoring, pulmonary lung function test, and buccal sample collection over a 6 day sampling period,
repeated 6 months later, are displayed. a Time 1 (March 2012 and August 2015). b Time 2: Repeated 6 months later
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Fig. 2 Schematic demonstration of study data. Numbers in the box represent the number of participants. N:n = number of repeat subjects:
number of observations. Grey dotted box indicates two measures (both Time 1 and Time 2, 6 months apart) available and white box only one
measure (Time 1) available. N = 14 participants dropped due to invalid residential air pollution data, resulting in n = 234 (54 + 85 × 2 + 10) data
points available. N = 3 participants (equivalent to n = 5 observations as two participants with repeat measure had one invalid data) were excluded
from the analysis of DNA methylation due to technical failures in the laboratory and N = 5 more participants (equivalent to n = 14 observations)
were removed due to invalid pulmonary function tests
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brushes were placed immediately in cell lysis solution
(Qiagen Sciences, Germantown, Maryland) and stored
at room temperature until processing. To ensure a
homogenous cell population, brush smears were gener-
ated from twenty-five participants selected at random
and stained using hematoxylin and eosin. Eight fields
were randomly selected and imaged at 10X using a
Nikon Eclipse TS100 (Tokyo, Japan) brightfield micro-
scope. Two individuals independently counted and
determined that 94% percent of the total cells were
squamous epithelial cells among the 24 participants
(kappa agreement score 0.934).
DNA was extracted and isolated using the Gentra

Puregene Buccal Cell kit (Qiagen), qualified and quanti-
fied using a NanoDrop spectrophotometer (Thermo
Scientific, Waltham, MA). Extracted DNA was bisulfite
converted with the EZ-96 DNA Methylation-Lightning
Kit (Zymo Research, Irvine, CA). Targeted promoter
region CpG loci were selected based on their known
importance to allergy and to NOS2A-related inflamma-
tion [25, 40], and published epigenetic links to asthma-
related environmental exposures and/or asthma
outcomes (Additional file 1: Figure S1 and Table S1).
PCR primers were designed for the targeted regions
using Pyromark Assay Design SW 2.0 Software (Qiagen)
(Additional file 1: Table S2). PCR was performed using
Qiagen HotStarTaq DNA Polymerase (Qiagen), and
methylation levels for each of the targeted CpGs was
measured using the Pyromark Q96 MD pyrosequencing
instrument (Qiagen).
Quality assurance measures included: 1) methylated

and unmethylated DNA (Qiagen) was added to each
PCR plate as a control, and 2) the methylation level of a
duplicate buccal sample collected at the same time was
compared for 13% of the cohort (n = 23-29). The average
absolute percent differences for the IL4, IFNγ, and
NOS2A measures between the primary and duplicate
buccal sample ranged between 2% and 7%, indicating a
good agreement. The ARG2 loci exhibited greater aver-
age percent differences, ranging from 54% to 76% for
CpG -30 and CpG−32, respectively. One additional data
point was excluded due to PCR contamination.

Pulmonary function tests (PFTs)
PFTs were conducted during in-home visits on Day 1
and Day 6 using a portable spirometer (Koko, nSpire
Health, Longmont, Colorado), in accordance with ATS
and ERS guidelines [34] and repeated 6 months later
(Fig. 1). Tests were considered acceptable if they met the
following criteria: 1) rapid upstroke, 2) volume extrapo-
lated <5% of FVC, 3) minimal premature termination of
exhalation (premature termination = termination at
>15% of peak flow), and 4) smooth exhalatory limb [41],
as determined by two pulmonologists. PFTs that did not

meet the acceptability criteria were excluded (n = 14 out
of 229; Fig 2). Four spirometry outcome measures were
included for analysis: FVC, forced expiratory volume in
one second (FEV1), FEV1/FVC, and forced expiratory
flow at 25–75% of forced vital capacity (FEF25–75).

Statistical analyses
Chi-square and Mann–Whitney tests were used to
detect the difference in demographic characteristics be-
tween groups and air pollutant levels by heating season
(i.e. October-April), respectively. Consideration of heat-
ing season was to assess meteorological conditions such
as temperature, humidity, and cold/flu season which
could confound measures of air pollution and respira-
tory morbidity [12, 42, 43]. A spearman correlation
coefficient was computed for correlations between
PM2.5, and V while the intraclass correlation coefficient
(ICC) was calculated for correlations among repeated
measures of percent methylations. Air pollutant concen-
trations were log-transformed to assume normal
distribution for subsequent analyses.
Due to non-normal distribution of the log-transformed

methylation data, percent methylation of IL4, IFNγ, and
NOS2A were dichotomized at the upper tertile of each
individual CpG site [44]. Percent methylation of ARG2
were averaged across 3 selected CpG sites then further di-
chotomized as ‘unmethylated (0)’ vs ‘methylated (1)’ if the
average percent methylation was zero or > 0, as described
[25]. The associations among residential levels of PM2.5, V,
and changes in DNA methylation were analyzed using a
modified Poisson regression in generalized estimating
equations (GEE) models to estimate relative risks (RR)
[45]. The analyses were conducted using PM2.5 and V
(two-pollutant models), and DNA methylation on Day 6
with adjustment of Day 0 DNA methylation to assess the
independent effects of each pollutant on changes in DNA
methylation. Final models were further adjusted for com-
mon covariates, including race/ethnicity, sex, age, heating
season, asthma diagnosis, and overweight. Exploratory
analyses were conducted to examine differences in air
pollution-related DNA methylation by overweight asth-
matic phenotype, suggested in previous in cross-sectional
studies [26, 46]. Adjusted models stratified by overweight
and asthma (i.e., 4 groups: overweight asthmatics,
non-overweight asthmatics, overweight non-asthmatics,
and non-overweight non-asthmatics) were run. A similar
analysis was performed after replacing overweight with
obesity (BMI ≥ the age- and sex-specific 95th percentile),
high BF%, or high WC.
Spirometric variables were converted to ethnic-specific

z-scores, which were adjusted for sex, age, and height,
according to the Global Lung Initiative (GLI-2012) equa-
tions for African American and Dominican (mixed ethic
origin treated as ‘other’) children using the GLI-2012
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software for subsequent analyses (http://www.ers-educa-
tion.org/guidelines/global-lung-function-initiative/tools.
aspx) [47]. Multivariable linear regression analyses in
two-pollutant models were used to examine the ob-
served effects of PM2.5 on each lung function outcome
on Day 6, after controlling for V, Day 1 lung function
outcome, heating season, asthma diagnosis, and over-
weight. Of the 149 children with valid air monitoring
data, 3 and 8 children, respectively, were excluded due
to invalid methylation (i.e. failed pyrosequencing run)
and lung function data, resulting in a final sample of
146, and of 141 for the DNA methylation and lung func-
tion analysis, respectively (Fig. 2).
Sensitivity analyses were conducted as follow: (1)

reanalysis after controlling for time-spent at home to
address the impact of residential exposure vs other mi-
croenvironments (e.g., school and outdoors), (2) reanaly-
sis after replacing concurrent PM2.5 levels with those
measured 4–8 years prior to Time 1, as a surrogate for

chronic exposure to PM2.5 in methylation analysis, (3)
reanalysis after controlling for food intake, by asking the
question “In the past two hours, have you had anything
to eat or drink? (Yes/No)”, and (4) reanalysis after
replacing heating season with four seasons (i.e., spring,
summer, fall and winter), given the reported seasonal
variation in lung function outcomes [48]. All analyses
were performed using SPSS Statistic version 23.0 (SPSS
Inc., Chicago, IL, USA) where p < 0.05 was considered
statistically significant.

Results
Subject characteristics and residential exposure
There were no significant differences in demographic
variables by enrollment into the nested cohort, except
for a higher proportion of asthma and seroatopy, con-
sistent with our recruitment strategy (Table 1). On daily
average, children spent 68% (16.3 h) of their time at
home. At Time 1, children were exposed to the median

Table 1 Cohort characteristics

Characteristic Participants includeda

(n = 149)
CCCEH cohort not included
(n = 578)

P-valueh

Maternal ethnicity 0.57

Dominican 94/149 (63%) 379/578 (66%)

African American 55/149 (37%) 199/578 (34%)

Age mean [min-max], yrs 12.5 (9.2–14.3) -

Girls 76/149 (51%) 300/578 (52%) 0.85

≥Maternal high school degree 82/144 (57%) 374/569 (66%) 0.05

Maternal asthma (+) 42/149 (28%) 121/578 (21%) 0.06

Prenatal ETS exposureb (+) 48/147 (33%) 198/570 (35%) 0.64

Current ETS exposurec (+) 12/121 (10%) -

Daily time spent homed hrs, mean ± SD 16.3 ± 4.8

BMIe z score, mean ± SD 0.86 ± 1.11 -

Underweight (<5th %ile) 5/149 (3%) -

Normal weight (5th–85th %ile) 66/149 (44%) -

Overweight (85th–95th %ile) 40/149 (27%) -

Obesity (≥95th %ile) 38/149 (26%) -

% Body fat, mean ± SD 26.7 ± 8.4 -

Waist circumference cm, mean ± SD 71.5 ± 11.5 -

Asthmaf 87/149 (58%) 83/360 (23%) <0.001

Seroatopyg 74/134 (55%) 113/269 (42%) 0.01

CCCEH Columbia Center for Children’s Environmental Health, BMI Body mass index, ETS: Environmental tobacco smoke, IgE: Immunoglobulin E, SD:
standard deviation
The total number of CCCEH cohort participants enrolled at birth = 727; aIncludes only the children in nested study that had complete data available for current
analysis. Participants excluded if residential indoor sampling data not collected due to entry criteria (n = 564) and invalid air pollution data (n = 14)
bReport of any smoker in the house during pregnancy. All mothers were nonsmokers during pregnancy
cReport of any smoker during 1-week sampling period
dDetermined by 24-hour questionnaire by answering “Between the time we dropped off the monitor and when you went to bed, did you leave home (Yes/No);
then “What time did you leave home?”; “What time did you get home?”
eWeight (kg)/height (m)2, SD, standard deviation
fDetermined by a specialist physician using standardized criteria at age 5–12 year [34]
gTotal IgE ≥ 80 IU/mL
hChi-tests performed
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levels (Interquartile range IQR) of 11.9 (9.1) μg/m3 and
1.44 (1.34) ng/m3 of residential PM2.5 and V, respect-
ively. A significant seasonal pattern was detected for V.
Levels of V, but not PM2.5, were higher during the
heating compared to the nonheating season (Additional
file 1: Figure S2). While residential levels of PM2.5 at
Time 1 moderately correlated with those at Time 2,
6 months later, V weakly correlated with repeated
measures, possibly due to substantial seasonal variations
(Additional file 1: Figure S3). PM2.5 levels weakly
correlated with V levels (Fig. 3). Furthermore, indoor
levels of PM2.5 at Time 1 weakly correlated with those
measured 4–8 years prior to Time 1, on the same
children (Fig. 3), suggesting common chronic sources of
PM2.5 air pollution.

Buccal cell asthma gene methylation
In general, the targeted CpG sites in the IL4 promoter
were heavily methylated, while the CpG sites in ARG2
were largely unmethylated; the latter is consistent with
previous findings in buccal cells (Additional file 1: Figure
S4) [25]. IFNγ methylation levels also were comparable
to those reported in other urban cohorts [49]. Within
each gene loci, two targeted CpG sites weakly correlated
(Additional file 1: Figure S5). In general, repeated mea-
sures (Day 0 and Day 6) of percent methylation showed
low values of ICCs (Additional file 1: Table S3), indicat-
ing substantial within-subject variability in methylation
levels over the short-term, as previously described [50].

Associations among PM2.5, V exposures and DNA
methylation
Overall, PM2.5 levels were not associated with DNA
methylation at the CpG loci in IL4, IFNγ, NOS2A, and
ARG2 gene in two-pollutant models (Table 2). In com-
parison, the relative risk of higher (i.e. upper tertile) IL4

CpG−326 and IFNγ CpG−54 methylation decreased with
higher residential V exposure in adjusted models
(Table 2). Associations between V exposure and DNA
methylation in NOS2A and ARG2 loci were not
significant.
In exploratory analyses that stratified by overweight

and asthma (i.e., four groups), there were still no signifi-
cant associations between PM2.5 and DNA methylations
in the targeted asthma genes (Additional file 1: Table
S4). In comparison, a distinct methylation pattern
following V exposure was observed among the 4 groups.
A significant association between V levels and lower
methylation of NOS2A CpG+5099 was observed among
overweight asthmatic children (Additional file 1: Table
S5). Interestingly, the opposite pattern (higher methyla-
tion) was observed among the overweight non-asthmatic
children at the IFNγ CpG−186 locus. Further, among
non-overweight asthmatic children, V levels were associ-
ated with lower methylation of IFNγ CpG−54 (Additional
file 1: Table S5). Methylation of ARG2 and IL4 was not
associated with V levels among any of the phenotypes.
Furthermore, when overweight was replaced by obesity,
the observed associations of V with DNA methylation of
NOS2A CpG+5099, IFNγ CpG−54, and IFNγ CpG−186

shown in Additional file 1: Table S5, remained strong
(RR [95% CI]: 0.40 [0.26-0.63]; p = 0.03, 0.71 [0.54-0.92];
p = 0.001, 1.42 [1.02-1.97]; p = 0.039 for NOS2A CpG
+5099, IFNγ CpG−54, and IFNγ CpG−186 respectively).
Interestingly, a non-significant association, previously
observed between V and lower methylation of IL4
CpG−326 among overweight asthmatic children, be-
came significant when overweight was replaced by
obesity (RR [95% CI]: 0.40 [0.24-0.68]; p = 0.001),
high-BF (RR [95% CI]: 0.47 [0.27- 0.80]; p = 0.006), or
high-WC in asthmatic children (RR [95% CI]: 0.21
[0.08- 0.53]; p = 0.001).
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Fig. 3 Correlations between (a) PM2.5 and V measured at Time 1, and (b) repeated residential indoor measures of PM2.5, 4–8 years apart Of 139
children who had valid air pollution data at Time 1, 106 had previous residential indoor measurements that were collected 4–8 years ago using
the same sampling methodology
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PM2.5 and V exposures and lung function
In multivariable linear regression models, residential
PM2.5 levels, measured over 6 days, appeared associated
with decreased z-scores for FEV1, FEV1/FVC and FEF25–
75, including following adjustment for V levels (Table 3).
In comparison, significant associations between V and
lung function outcomes were not observed. Therefore,
analysis for mediation by methylation of V on lung
function was deferred.

Sensitivity analyses
First, after controlling for time spent home, the main
findings in Table 2 remained similar although the
association between V and methylation of IL4 CpG−326

became borderline significant (RR [95% CI]: 0.81
[0.66-1.00]; p = 0.052 for IL4 CpG−326 and 0.81 [0.67-
0.97]; p = 0.026 for IFNγ CpG−54). Second, with an
adjustment of residential chronic exposure, assessed
by previous PM2.5 levels measured 4–8 years prior to

Time 1, significant association between V and lower
methylation of IFNγ CpG−54 in Table 2 remained with a
smaller RR (RR [95% CI]: 0.76 [0.63-0.92]; p = 0.005) while
the association between V and methylation of IL4 CpG
−326 lost statistical significance (p = 0.10), possibly due to a
smaller sample (N[subjects] = 115 and n[obervations] = 172).
Third, when we controlled for food intake, the main find-
ings in Table 2, persisted (Data not shown). Lastly, when
the two heating vs nonheating season was replaced with
four seasons, the significant associations of PM2.5 and lung
function outcomes were replicated (data not shown).

Discussion
In this nested cohort of African American and Domin-
ican children living in NYC, we found that that 6 day-in-
tegrated residential V, but not PM2.5, was associated
with lower buccal cell promoter DNA methylation of
asthma T helper (Th) gene (i.e. IL4, IFNγ) loci, even
after controlling for methylation levels 6 days previously.
We also found that residential PM2.5 levels, but not V,
were associated with lower lung function (i.e., z-scores
for FEV1, FEV1/FVC and FEF25–75). To our knowledge,
this is the first study to report altered asthma gene DNA
methylation related to residential V exposure, and lung
function decrements associated with short-term residen-
tial exposure to PM2.5 among urban children.
The strengths of this study include the 1) direct

measurement of each child’s short-term (6 day) home
exposure to air pollution, that may reduce misclassifica-
tion of personal exposure and allow us to discern effects
of individual key air pollutants (e.g., V and PM2.5), 2) use
of repeat prospective measures of environmental air
pollutants, DNA methylation, and lung function, which
allow us to detect changes in each within the same chil-
dren and consider seasonal effects (6 months apart), 3)
targeted focus on the methylation of specific loci that
previously were implicated in air pollution-related
asthma. We did so by using pyrosequencing technology
to capture small differences in their DNA methylation in
order to validate the importance of these small differ-
ences to pediatric urban asthma, and 4) utilization of a
well-phenotyped prospective birth cohort study with
detailed data on children’s clinical status and past resi-
dential PM2.5 levels; the latter of which correlated over a
4–8 year time period (Fig. 3) and allowed us to use as a
surrogate for residential chronic exposure to PM2.5 in
sensitivity analyses.
We chose to focus on altered methylation of mechan-

istically relevant gene loci that were implicated previ-
ously in air pollution-related asthma, given the emerging
environmental epigenetic literature (Additional file 1:
Table S1). In cohort studies of electric furnace steel
plant workers, boilermaker welders, chronic obstructive
pulmonary disease (COPD) patients in China, and

Table 2 Associations between residential measures of PM2.5, V
and Day 6 DNA methylation in adjusted models (N:n = 146:229)

RRadj
a [95% CI]

Gene CpG sites PM2.5 V

IL4 −326 1.16 [0.84–1.61] 0.80 [0.65–0.98]*

−48 1.04 [0.76–1.43] 1.05 [0.83–1.34]

IFNγ −186 0.87 [0.64–1.19] 1.23 [0.96–1.58]

−54 1.03 [0.79–1.35] 0.81 [0.67–0.98]*

NOS2A +5099 1.07 [0.79–1.45] 0.97 [0.80–1.19]

+5106 1.07 [0.74–1.54] 0.98 [0.78–1.23]

ARG2 −32, −30, and −26b 1.07 [0.97–1.17] 0.96 [0.89–1.02]

N: number of repeat subjects included for the analysis and n: number of
observations from both Time 1 and Time 2
aAdjusted for race/ethnicity, sex, age, heating season, asthma diagnosis,
overweight, and DNA methylation at Day 0 (Two-pollutant models)
bAverage of ARG2 CpG sites of −32, −30, and −26
*p-value < 0.05

Table 3 Associations between residential levels of PM2.5 and V
and Day 6 lung function z-scores

Lung function Beta coefficient a (95% CI)
(N:n = 141:215)

z-scoreb PM2.5 V

FVC −0.07 (−0.19, 0.05) 0.07 (−0.02, 0.15)

FEV1 −0.15 (−0.29, −0.01)* 0.09 (−0.02, 0.19)

FEV1/FVC −0.17 (−0.31, −0.03)* 0.05 (−0.09, 0.19)

FEF25–75 −0.18 (−0.32, −0.04)* 0.03 (−0.12, 0.18)

N: number of repeat subjects included for the analysis and n: number of
observations from both Time 1 and Time 2
FVC Forced vital capacity, FEV1 Forced expiratory volume in one second,
FEF25–75 Forced expiratory flow at 25–75% of Forced Vital Capacity
aTwo-pollutant models adjusted for heating season, asthma diagnosis,
overweight, each lung function z- score measured on Day 1
bBased on reference equation from the Global Lung Initiative 2012 [47]
*p < 0.05
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children in Southern California, exposure to PM2.5 was
associated with altered NOS2A promoter region DNA
methylation [20, 27, 51, 52], suggesting environmental
epigenetic mechanisms. We found that residential V, but
not PM2.5, was associated with lower methylation of sev-
eral Th gene promoter loci, including IL4 CpG−326 and
IFNγ CpG−54. The findings may be supported by obser-
vations in mouse CD4+ splenic T cells following con-
comitant exposure of Aspergillus fumigatus and diesel
exhaust particles (DEP) [24], mouse CD4+ T cells from
lung-draining lymph nodes following chronic ovalbumin
challenge [53], and numerous human cohort experimen-
tal studies [54] (Additional file 1: Table S1). Because
DNA methylation in promoter regions is usually critical
to gene silencing in human cells [55], its decrease is con-
sistent with upregulated expression of the proallergic
immune response. In comparison, lower methylation of
IFNγ CpG−54, while considered important to suppressing
allergic immune responses in some mouse models [56],
also has been observed paradoxically to enhance allergy
or airway hyperresponsiveness [53, 57]. We did not iden-
tify associations between residential PM2.5 and altered
DNA methylation. One explanation may be the lack of
short-term variability in PM2.5 compared to V, given the
moderate correlation over time (Additional file 1: Figure
S3), thus making it hard to capture a methylation signal
due to smaller variations in PM2.5 levels. Alternatively,
our results suggest that instead of PM2.5, a complex
particle mixture of various chemical constituents from
multiple sources, a specific individual metal component,
V, may be one of the important drivers of epigenetic
changes despite V only contributes an average of less
than 1% to total PM2.5 mass.
Further, in exploratory analyses, we observed the

associations between V and select DNA methylation
differed by overweight asthma stratum. In particular, V
was associated with lower methylation (and presumed
greater gene activation) of NOS2A CpG+5099 only among
overweight or obese asthmatic children. Also, the associ-
ation between V and IL4 CpG−326 among overweight
asthmatic children gained statistical significance when
restricted to obese, high BF or high WC in asthmatics.
These findings appear consistent with one small cross-
sectional study that showed dysregulated DNA methyla-
tion in peripheral blood mononuclear cells (PBMCs) that
varied by the asthma and obesity phenotype [46]. This
group found that obese asthmatics, when compared to
obese non-asthmatics, exhibited altered methylation in
many pathways related to IL4, IFNγ and NOS2A gene
functions (as shown in Additional file 1: Table S5), in-
cluding IgE signaling, and interferon and chemokine
activity [58, 59]. Interestingly, in the absence of asthma,
the overweight or obese children were instead suscep-
tible to hypermethylation of IFNγ CpG−186 following V

exposure. This may be consistent with enhanced inflam-
mation and differential regulation of T helper responses
previously observed in obesity [60]. Despite the smaller
sample size in stratified analysis, our results were con-
sistent across overweight, obese, high BF and high WC
classification, suggesting that obesity may enhance
susceptibility to the effect of V on epigenetic changes.
Another objective was to evaluate adverse effects of a

specific metal component of V on lung function in
relation to PM2.5. Our findings that PM2.5 seemed to
drive decrements in lung function are novel because 1)
to date, no studies have looked at lung function in rela-
tion to short-term exposure in children. We did this by
controlling for previous lung function z-scores measured
on Day 1 to assess changes in lung function over a short
period, and 2) we used direct measurement of PM2.5

through residential indoor monitoring, rather than esti-
mates from land-use regression models employed in
most studies [3, 61]. In comparison, counter to our
prediction based on recent reports of V effects on lung
function in children [13, 61], we were not able to detect
any associations between residential V levels and lung
function z-scores. But our study differed in terms of the
shorter timeline of exposure to V and by the differences
detected in the obstructive airway physiology character-
istic of asthma (i.e., reduced FEV1), and not FVC.
The focus on quantifying differences in pre-selected

CpG specific targets also allows us to compare their po-
tential differential impact across loci, across a short
timeline of exposure, and in limited case, across studies.
For example, we observed relatively weak correlations
between neighboring CpG sites within the same gene at
Time 1 (Additional file 1: Figure S5). This observation
may challenge previous reports that DNA methylation at
adjacent CpG sites tends to display similar amounts of
methylation [62]. However, they are consistent with
emerging evidence in humans that suggest individual
CpG sites may methylate to a different extent [49]. An-
other group also reported, in a controlled exposure
study of allergen and diesel exhaust, substantial differ-
ences in single CpG site methylation in human bronchial
epithelial cells [32]. This suggests that neighboring CpG
sites may respond to exposures independently.
We acknowledge several limitations. First, methylation

was measured in buccal cells, previously shown to in-
form on airway molecular changes [20, 25], and did not
compare to the target lung tissue. However, lung tissue
cannot be accessed repeatedly in children, and previous
studies have documented high correlations in gene ex-
pression between tissues obtained from the buccal mu-
cosa and lung [63, 64]. The cells themselves represent a
relatively homogenous population of epithelial cells, as
we demonstrated. Second, we monitored residential in-
door air for exposure assessment, but not outdoor or
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school environments that may have important confounding
effects. However, urban children in this study spent the ma-
jority (68% on daily average) of their time home, and stud-
ies have shown that outdoor PM2.5 and V readily penetrate
indoors [65, 66]. Further, sensitivity analysis with an adjust-
ment of time-spent home showed that our findings per-
sisted. Third, we recognize that other CpG loci upstream or
downstream of targets, and certainly other genes, may con-
tribute to the air pollution epigenetic effects, and that the
presence of single nucleotide polymorphisms (SNPs) could
impact methylation levels. However, the effect sizes of vari-
ants measured in genome-wide association studies also
seem small, driving our approach to capture additional
small epigenetic responses. Last, other metal components
of PM2.5 such as nickel and iron, that may important along
with V in respiratory health [9, 12, 13], were not available.
Nonetheless, with targeted epigenetic loci previously impli-
cated in asthma and the use of pyrosequencing technology,
we demonstrated for the first time that short-term residen-
tial V exposure is associated with changes in the degree of
methylation of important asthma genes in children. This
furthers our understanding of epigenetic regulation and its
susceptibility to exposure to a specific air pollutant. Further,
we explored associations between V and methylation by
asthma-obesity and observed differential DNA methylation
patterns by asthma phenotype. While intriguing, the inter-
pretation of these results should be considered with caution
due to a relatively small sample size in stratified analyses.
Additional discussions of the ambient air pollution

levels, DNA methylation values, and the further study
limitations are presented in Additional file 1.

Conclusions
We found associations between short-term V exposure
and DNA methylation of asthma gene loci. Short-term
residential indoor measures of PM2.5, but not V, may
have been associated with lower lung function among
urban children. While previous studies have suggested
possible links between metal exposure and particulate
matter and differences in DNA methylation pattern rele-
vant to asthma, none to our knowledge have specified
the key component of these pollutants. Further, to the
best of our knowledge, this is the first study to investi-
gate the effect of short-term V exposure on altered DNA
methylation of asthma genes, and suggests that V may
be important to urban asthma via epigenetic regulation.
Although requiring further investigation in a large co-
hort, our results suggest asthma phenotypes may need
to be considered in environmental and epigenetic studies
of asthma. In turn these findings ultimately may help
guide policy-related or medical interventions against
specific pollutants, and against obesity, as well as pro-
vide methods for early identification of at-risk children.
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