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Abstract

COPD and asthma are important chronic inflammatory disorders with a high associated morbidity. Much research
has concentrated on the role of inflammatory cells, such as the neutrophil, in these diseases, but relatively little
focus has been given to the endothelial tissue, through which inflammatory cells must transmigrate to reach the
lung parenchyma and cause damage. There is evidence that there is an abnormal amount of endothelial tissue in
COPD and asthma and that this tissue and its’ progenitor cells behave in a dysfunctional manner. This article
reviews the evidence of the involvement of pulmonary endothelium in COPD and asthma and potential treatment
options for this.
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Background
Chronic obstructive pulmonary disease (COPD) is an
important smoking related condition with 10.1% preva-
lence (with Forced expiratory volume in one second
(FEV1) < 80%) in adults over 40 years worldwide [1]. It is
also an important cause of morbidity and mortality,
resulting in over 3 million deaths globally in 2005 [2].
COPD is characterized by airflow obstruction which is
not normally fully reversible and is generally thought to
progress over time [3]. Only 20%–30% of smokers de-
velop COPD suggesting an important role for other fac-
tors in the development of the disease [4].
Asthma is a chronic respiratory condition characterised

by variable airflow obstruction and airway hyper-
responsiveness (AHR) in the presence of typical symptoms
such as wheeze or cough [5]. Approximately 235 million
people suffer from asthma worldwide and it is the most
common chronic disease in children [6].
Both asthma and COPD are disorders associated with

increased inflammation [7, 8]. Therefore, much research
into these conditions has concentrated on inflammatory
cells, such as the neutrophil or eosinophil, but relatively

little focus has been given to the endothelial tissue,
through which inflammatory cells must transmigrate
(transendothelial migration; TEM) to reach the lung par-
enchyma and cause damage. How the endothelium is
functioning is therefore critical to the process of TEM
and the level of inflammatory cells seen in the asthma or
COPD lung. It is possible that an abnormally functioning
endothelium could result in the increased inflammatory
levels and tissue damage seen in asthma and COPD.
This review aims to explore the evidence that the endo-
thelium in asthma and COPD does not function nor-
mally and potential treatment options for this. By
understanding the pathogenesis of obstructive lung dis-
ease further including the role of the endothelium it is
possible that new treatments may be developed and the
risk of asthma and COPD may be reduced.

The endothelium
The pulmonary vasculature is critical to gas exchange in
the lung, with a total pulmonary vascular surface area of
90m2 [9]. The entire vascular system is lined by endo-
thelial cells which form a continuous monolayer [9].
Endothelial cells are encased by a basement membrane,
a thin protein sheet (50nm thick) that consists of lami-
nins, collagen and proteoglycans [10]. Endothelial cells
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are also covered on the luminal side by the glycocalyx, a
network of proteoglycans and glycoproteins involved in
multiple processes such as cell-cell signalling and
haemostasis [11]. Finally, embedded in the basement
membrane are a non-continuous layer of pericytes which
are key mediators of several microvascular processes
such as endothelial cell proliferation and angiogenesis
[12, 13]. A diagram of the structure of the endothelium
is shown in Fig. 1.

Endothelial mechanisms of importance in asthma and
COPD
Transendothelial migration (TEM)
Transendothelial migration (TEM) is a mechanism by
which the endothelium may play a role in asthma or
COPD. Neutrophils play an important role in the in-
flammatory response in COPD [14]. In order to reach
the lung tissue neutrophils must bind to, and migrate
through, the endothelium [13]. Initially neutrophils ex-
tend part of themselves (pseudopod) to invaginate the
apical endothelial cell membrane. The neutrophil binds
to the endothelial cell through a variety of cell surface
proteins before migrating between the endothelial cells
[13]. This is known as paracellular transmigration and is
illustrated in Fig. 1 [13]. However, neutrophils can also
transmigrate through endothelial cells in a process
known as transcellular transmigration [13]. These cell
surface proteins (or cell adhesion molecules) extravasate
into inflamed tissue after TEM which means they are
detectable in the serum [15]. Soluble cell adhesion mol-
ecule levels also correlate with cellular adhesion mol-
ecule levels thereby enabling an indirect assessment of
cellular adhesion molecule levels [16].
TEM appears to be upregulated in COPD and

macrophage-1 antigen (MAC-1), a protein involved in
TEM is upregulated in neutrophils from COPD patients
[17]. MAC-1 binds to intracellular adhesion molecule-1
(ICAM-1) on the surface of endothelial cells. Serum
levels of ICAM-1 are inversely related to lung function
and are also associated with increased percentages of
emphysema on CT scan suggesting that this mechanism
may be clinically relevant [18, 19]. Blocking the action of

ICAM-1 in rodent models has also reduced pulmonary
inflammation further supporting the possibility that the
increase in ICAM-1 might be related to the increase in
inflammation seen in COPD [20]. In addition,
endothelial-leucocyte adhesion molecule-1 (ELAM-1)
(another adhesion molecule involved in TEM) is also up-
regulated in serum in COPD patients and is particularly
high in patients with chronic bronchitis further support-
ing the involvement of adhesion molecules in lung in-
flammation and COPD pathogenesis [21]. Another
possible explanation for the increase in TEM in COPD
is endothelial dysfunction (see below). Endothelial dys-
function is increased in COPD and appears to induce
the expression of cell adhesion molecules [22].
TEM also appears to be of importance in asthma. For

example, mice deficient in cell adhesion molecules L-
selectin and ICAM-1 show a reduced influx of inflam-
matory cells into the lung and a reduction in AHR on
exposure to an ovalbumin challenge [23]. In addition, in
vitro studies of sensitized human bronchial tissue have
demonstrated an increase in the expression of endothe-
lial adhesion molecules (such as ICAM-1) in response to
allergen exposure [24]. Gosset et al. also showed an in-
crease in endothelial adhesion molecules in bronchial bi-
opsies of patients with allergic asthma in comparison to
controls [25]. Cell adhesion molecules in eosinophils
also appear to be upregulated in asthma. Ohkawara et al.
showed that eosinophils in bronchial biopsies from asth-
matic patients strongly expressed MAC-1, Lymphocyte
function-associated antigen 1 (LFA-1) and Very Late
Antigen-4 (VLA-4) [26]. In a similar way to COPD, in-
flammation and underlying endothelial dysfunction
could also potentially provide an underlying cause of in-
creased adhesion molecule levels seen in asthmatic pa-
tients [20, 22].
The absolute level of adhesion molecules may not be

the only factor of importance in TEM in asthma. Differ-
ent alleles of adhesion molecules may predispose to
asthma. For example the PECAM-1 (platelet endothelial
cell adhesion molecule-1) 125 Val/leu polymorphism is
more frequent in asthma patients in comparison with
controls [27].

Fig. 1 Transendothelial migration (paracellular): Neutrophil passing along the endothelium before binding to an endothelial cell via adhesion
molecules (eg MAC-1). The neutrophil invaginates the endothelial cell membrane before migrating between endothelial cells
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In addition to inflammation and endothelial dysfunc-
tion, another possible mechanism of increased TEM in
asthma is upregulation of chemokines. Endothelial cells in
asthma appear to increase production of chemokines to
attract and activate circulating eosinophils. For example,
Eotaxin messenger ribonucleic acid (mRNA) expression is
increased in endothelial cells from bronchial biopsy speci-
mens in asthmatic patients and levels are associated with
AHR [28]. Pulmonary endothelial tissue transglutaminase
2 (TG2) is upregulated in asthma and appears to be re-
quired for eosinophil recruitment to the lungs. Mice with
endothelial deficient TG2 show a reduction in lung eo-
sinophil levels in response to an allergen challenge [29].
In summary, TEM appears to be upregulated in ob-

structive lung diseases and an increase in endothelial ad-
hesion molecules is seen in both COPD and asthma.
This is likely to play a role in the increased influx of in-
flammatory cells seen in both conditions and therefore
may be important in the development of inflammation
and the pathogenesis of obstructive lung disease.

Endothelial apoptosis
Apoptosis (programmed cell death) is a highly ordered
process which eliminates damaged or unwanted cells
[30]. In the 1950s Liebow demonstrated that alveolar
septa in COPD patients were almost avascular. This led
to the hypothesis that vascular atrophy resulted in the
destruction of alveoli [31]. Supporting this concept, in-
creased levels of apoptotic endothelial cells have been
identified in the lungs of patients with COPD [32].
Endothelial cells in COPD patients also demonstrate
intranuclear staining of fragmented DNA in comparison
to controls providing further evidence for this [33].
Animal studies provide support for apoptosis of endo-

thelial cells resulting in emphysema. For example, it is
possible to induce emphysema in rodents by deliberately
causing endothelial apoptosis by blockade of vascular
endothelial growth factor (VEGF) [34]. When the ro-
dents were given a caspase (proteins involved in apop-
tosis) inhibitor VEGF inhibition no longer resulted in
emphysema suggesting that apoptosis of endothelial cells
may be key in emphysema development [34].
In addition to VEGF other mechanisms have been pro-

posed for the development of endothelial apoptosis in
COPD patients. For example, Noe et al. demonstrated
that Cystic Fibrosis Transmembrane Regulator (CFTR)
in human pulmonary endothelial cells was required for
stress-induced apoptosis. CFTR inhibition resulted in
the attenuation of endothelial apoptosis in response to
treatment of cells with staurosporine or hydrogen perox-
ide [35]. Alpha-1-antitrypsin (A1AT) has also been
shown in vitro to prevent caspase-3 activation and there-
fore apoptosis in pulmonary endothelial cells [36]. This
would clearly be a possible relevant mechanism in

emphysema development in alpha-1-antitrypsin disease
(A1ATD) patients. However, smoking can induce post-
translational modification of A1AT which reduces its ac-
tivity suggesting that this mechanism may also be im-
portant in emphysema development in A1AT sufficient
individuals [37].
Whole lung gene expression studies which have dem-

onstrated that gene expression appears to differ between
emphysematous tissue and normal lung have shown that
angiogenesis-related genes are down-regulated in em-
physema. Also, SERPINF1 (an antiprotease) was elevated
in severe emphysema and this acts as an angiogenesis in-
hibitor by inducing endothelial cell apoptosis [38].
Therefore, perhaps changes in endothelial gene expres-
sion might underlie the development of emphysema.
Another gene which might also be of importance is
xanthine oxidase, a ROS-generating enzyme. Transcrip-
tion of this gene is higher in vitro in pulmonary micro-
vascular endothelial cells which are exposed to tobacco
smoke condensate (TSC). The increased oxidative stress
in response to xanthine oxidase upregulation could re-
sult in direct cell damage and apoptosis [39].
In conclusion, vascular atrophy due to endothelial

apoptosis may contribute to the destruction of alveoli
and consequently the development of emphysema. It
may therefore be an important mechanism of COPD
pathogenesis in this subgroup of patients.

Endothelial cell senescence
Senescent cells are unable to progress through the cell
cycle and divide, but remain metabolically active [40]. Sen-
escence occurs due to telomere shortening (replicative
senescence) and other, telomere-independent signals such
as DNA damage or oxidative stress [41]. Replicative senes-
cence is mediated via the p21 pathway and telomere-
independent signals via the p16 pathway [42]. Lung tissue
from COPD patients has an increased percentage of
senescent endothelial cells and cultured pulmonary endo-
thelial cells develop replicative senescence earlier [42].
Pulmonary endothelial cells from COPD patients have re-
duced telomerase activity, shorter telomeres and higher
p21 and p16 levels earlier than similar cells from control
subjects [42]. Oxidative stress and cigarette smoke both
appear to be important in the pathogenesis of senescence
in other pulmonary cells and thus are likely causes of sen-
escence in the pulmonary endothelium [41, 43]. Senescent
pulmonary endothelial cells also release more inflamma-
tory markers and therefore are important in the increased
level of inflammation seen in COPD patients [42].

Vascular endothelial growth factor (VEGF)
A reduction in endothelium in patients with emphysema
may be caused by reduced levels of Vascular Endothelial
Growth Factor (VEGF) [44]. VEGF is a highly specific
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growth factor for endothelial cells that is produced in re-
sponse to hypoxia [45]. It induces both cell proliferation
and migration and prevents endothelial cell apoptosis
[45]. VEGF levels might be reduced in such patients as
Hypoxia Inducible Factor-1α (HIF-1α), a major tran-
scription factor of VEGF, is also reduced in patients with
emphysema. HIF-1α mediates cellular and systemic re-
sponses to hypoxia and binds to the hypoxia responsive
element (HRE) on VEGF [46, 47]. Levels of HIF-1α and
VEGF may be related to disease severity: both are corre-
lated with FEV1 percentage predicted in patients with
emphysema [46]. In addition, other studies have demon-
strated that microRNAs -199a-5p and -34a (small non-
coding RNAs that regulate gene expression) were both
increased in lung tissue from COPD patients in com-
parison with controls. Transfection of human micro-
vascular endothelial cells with these microRNAs resulted
in decreased HIF-1α expression suggesting that epigen-
etic changes in COPD may also be important in COPD
development [48].
Interestingly, similar studies looking at the expression

of HIF-1α and VEGF in patients with chronic bronchitis
(rather than emphysema) have shown HIF-1α and VEGF
are increased in this patient group [49]. This suggests
that the endothelium might be involved in different ways
depending on the clinical presentation of COPD.
Kanazawa et al. similarly found increased VEGF in spu-
tum of patients with chronic bronchitis but decreased
levels in patients with emphysema. There was a negative
correlation between FEV1 and VEGF in the chronic bron-
chitis group but a positive association between VEGF and
gas transfer (DLCO) in the emphysema group [50]. It is
possible that the increased VEGF increases bronchial vas-
cularity and leakage of plasma proteins resulting in airway
narrowing in the chronic bronchitis group. However, in-
creased VEGF might also prevent endothelial apoptosis
and emphysema thus preserving gas exchange [51].
There is also evidence that vasculature may be altered in

the airways of patients with COPD, in addition to their
peripheral lung tissue – several groups have shown an in-
creased vascular area in the airways of patients with
COPD [52, 53]. It is possible that this might contribute to
airway narrowing [53].
Patients with asthma also demonstrate increased VEGF

expression in a similar way to chronic bronchitis patients.
For example, VEGF mRNA levels are increased in endo-
bronchial biopsies in patients with asthma in comparison
to normal controls [54]. VEGF is also increased in induced
sputum specimens in asthmatic patients and is negatively
correlated with FEV1 [55]. Certain polymorphisms of
VEGF (such as rs4711750 and rs3025038) also appear to
confer an increased risk of asthma and are related to lung
function [56, 57]. It is possible that this is due to different
ratios of active and inhibitory isoforms of VEGF.

Again, in a similar way to chronic bronchitis, patients
with asthma have increased vasculature in their airways
which might be important in the development of airway
narrowing [53]. Bronchial biopsies in asthma patients
consist of more vessels than control patients [58]. The
levels of vessels are related to disease severity suggesting
that vascular remodelling increases as asthma severity
worsens. These vessels are also associated with marked
eosinophil recruitment [58]. As increased vasculature is
seen in the airways of patients with mild asthma it is
possible that vascular remodelling may be important in
the early development of the disease [59]. Animal
models suggest that the vascular remodelling may be in
response to allergen exposure [60].

Endothelial dysfunction
Endothelial dysfunction in COPD
In addition to altered levels of endothelium in patients
with COPD, the endothelium appears to behave in a dys-
functional manner. Endothelial dysfunction is defined as
disturbed endothelial dependent vasodilatation. It results
in a breakdown of the microvascular endothelial barrier
and loss of the anti-adhesive and anti-thrombotic func-
tions of the endothelium [61]. Animal studies show that
endothelial dysfunction appears to occur in subjects ex-
posed to smoke before emphysema develops. This sug-
gests that endothelial dysfunction may be important in
the pathogenesis of COPD [62]. Supporting this theory
Peinado et al. demonstrated that endothelial dysfunction
is already present in the pulmonary arteries of patients
with early COPD suggesting that this process occurs at
the start of the disease process [63]. Endothelial dysfunc-
tion is associated with severity of COPD and is related
to FEV1 [64–66]. Dysfunction is also related to clinical
outcomes: patients with increased endothelial dysfunc-
tion have reduced 6 minute walk test (6MWT) results
and a worse overall prognosis [67, 68]. Endothelial dys-
function is also increased in patients with exacerbations
of COPD [69, 70]. Therefore it has been postulated that
increased endothelial dysfunction may induce the devel-
opment of systemic atherosclerosis and therefore the in-
creased cardiac events seen in these patients [68].

Flow mediated dilation as a measurement of endothelial
dysfunction
Endothelial dysfunction was previously measured by arter-
ial catheterization to identify the response of the artery to
acetylcholine. Patients with endothelial dysfunction re-
spond with vasoconstriction rather than vasodilatation as
expected [71]. However, due to the invasive nature of this
technique flow mediated dilation (FMD) of the brachial
artery was developed as an alternative measurement of
endothelial dysfunction [72]. FMD looks at the response
of the brachial artery to reactive hyperaemia using
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Doppler ultrasound and can be used as a surrogate meas-
ure of more central endothelial dysfunction [72]. It is re-
producible both within and between days when repeated
measures are made in COPD patients [73] and associated
with FEV1 and percentage of emphysema on CT scan
[65]. These associations were independent of smoking and
other major causes of endothelial dysfunction. The rela-
tionship between FMD and FEV1 is explained by the per-
centage of emphysema on CT. This suggests that
endothelial dysfunction might be involved in emphysema
pathogenesis and COPD. [65] FMD is also able to detect
changes in endothelial function in response to exacerba-
tions: patients with exacerbations have worse endothelial
function although this tends to improve after recovery
from the acute episode [74].

Other measurements of dysfunction
In addition to FMD endothelial dysfunction can also be
measured by serum markers. For example, one can look
at the blood level of von Willebrand factor (vWF) as an
indication of endothelial dysfunction [75]. This is a
glycoprotein synthesized by endothelial cells, with in-
creased levels being related to worsening endothelial
dysfunction. Elevated vWF levels have been found in pa-
tients with COPD exacerbations implying endothelial
damage occurs during these episodes [70]. Endothelial
microparticles (EMPs) in blood can also be used as a
measurement of endothelial dysfunction and are related
to FMD [76]. EMPs are membrane vesicles which are
shed by activated or apoptotic endothelial cells [69].
Gordon et al. have demonstrated that EMPs with apop-
totic characteristics are increased in smokers with signs
of early lung damage (normal spirometry, low DLCO) in
comparison to controls [77]. This supports the hypoth-
esis that endothelial apoptosis is an early event in the
development of emphysema. EMP levels are increased in
patients with COPD who have frequent exacerbations
[69] and also predict patients with rapid FEV1 decline
[78]. EMPs are positively correlated with the severity of
emphysema in patients with COPD again suggesting that
endothelial apoptosis might be an underlying mechan-
ism of emphysema [79].
Nitric oxide (NO) is reduced in endothelial dysfunction

due to a reduction in production and/or inactivation of
NO synthase by ROS [75]. Maricic et al. demonstrated
both increased vWF and reduced exhaled NO levels in pa-
tients with COPD [75]. Exhaled NO is also reduced in se-
vere COPD (especially with pulmonary hypertension) in
comparison to patients with mild COPD suggesting it
could be useful in assessing the severity of disease [80].
Similarly Cella et al. showed plasma NO levels were also
reduced in COPD as well as other markers of endothelial
function such as thrombomodulin (an endothelial surface
marker that binds and inactivates thrombin) [81].

However, the data for NO levels in COPD is conflictual
which may limit its’ use as a tool for monitoring endothe-
lial dysfunction. For example, during exacerbations of
COPD exhaled NO appears to increase [82]. Other groups
have also demonstrated a negative correlation between ex-
haled NO and lung function [83]. Increased plasma NO
levels have also been reported in COPD [84]. Therefore,
prior to any use of NO in monitoring endothelial dysfunc-
tion in the clinical setting in COPD further work must be
done to clarify the exact role of NO in endothelial dys-
function and its significance.

123I-metaiodobenzylguanidine (123I-MIBG) is an
analogue of guanethidine and is actively taken up and
metabolized by the lungs through a sodium-dependent
channel into the pulmonary endothelium. Therefore,
scintigraphic analysis of 123I-MIBG in the lungs can be
used to provide information on how well the pulmonary
endothelium is functioning. The washout rate of 123I-
MIBG is reduced in COPD patients suggesting injury to
the microvascular pulmonary endothelium. Interestingly
123I-MIBG washout rate was also correlates with the se-
verity of COPD (using FEV1 and DLCO) providing fur-
ther support for endothelial damage underlying COPD
development [85].
Finally, endothelial dysfunction of the airways can be

measured specifically using airway blood flow (Qaw)
measurements which should increase in response to in-
haled albuterol. Patients with COPD have reduced re-
sponse to albuterol suggesting endothelial dysfunction in
their airways. The responsiveness to albuterol does in-
crease after exposure of fluticasone/salmeterol for 4–6
weeks suggesting that current inhaled therapy might
help improve underlying endothelial dysfunction [86].

Endothelial dysfunction and cardiovascular disease in COPD
It is known that the prevalence of cardiovascular disease
in patients with COPD is greater than controls. The risk
of cardiovascular mortality also appears to be increased
in COPD patients [87]. It is not certain why this rela-
tionship exists although both diseases are related to
smoking [88]. However, as FEV1 percentage predicted is
independently associated with cardiovascular mortality
risk it is unlikely that the relationship between COPD
and cardiovascular disease is a result of smoking alone
[89]. It is possible that endothelial dysfunction in COPD
might provide a possible cause of increased cardiovascu-
lar disease. A recent systematic review of 22 studies has
demonstrated that patients with COPD have increased
levels of endothelial dysfunction in addition to increased
levels of subclinical cardiovascular disease such as in-
creased carotid intima media thickness (cIMT). The ma-
jority of the studies included in the review also
accounted for smoking suggesting a link between COPD,
endothelial dysfunction and subclinical cardiovascular
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disease that could not be explained by smoking alone
[90]. A possible reason for this link is the reduced levels
of soluble receptor for advanced glycation end-products
(sRAGE) seen in COPD patients. sRAGE have anti-
atherogenic properties and are significantly positively as-
sociated with FMD levels in COPD patients [91]. This
reduction may therefore help to explain the increase in
cardiovascular disease risk seen in COPD.

Endothelial dysfunction in asthma
The evidence for endothelial dysfunction in asthma is
not as great as that in COPD. However, one study has
demonstrated that asthma patients have reduced FMD
levels in comparison to controls [92]. FMD was also as-
sociated with disease severity suggesting that endothelial
function worsens as the disease progresses in a similar
manner to COPD [92].
Qaw is increased in patients with asthma which is

likely related to the increased vascularity seen in the air-
ways in asthma [93–95]. However, in a similar way to
COPD patients with asthma have a blunted Qaw re-
sponse to albuterol suggesting that the endothelium in
the airways is also dysfunctional [93–95].

Endothelial progenitor cells
Endothelial progenitor cells (EPCs) act to repair endo-
thelial injury and replace dysfunctional endothelium
after being mobilized from the bone marrow to circulat-
ing blood [96]. Therefore, circulating EPCs provide a
way to monitor endothelial damage. Animal studies have
demonstrated that EPC levels are increased in rat
models of emphysema in comparison to controls [96].
Conversely, in human studies, COPD patients appear to
have reduced numbers of EPCs compared to controls
[97]. When you look at COPD patients in isolation,
however, patients with worse endothelial function have
greater number of EPCs suggesting that vascular damage
in these patients is stimulating the release of EPCs from
the bone marrow [98]. It is possible that the endothelial
function and EPC release may follow different pathways
in COPD patients as similar studies in healthy controls
show positive correlations between EPCs and FMD [99].
There is also evidence that EPCs do not function nor-

mally in patients with COPD. EPCs isolated from COPD
patients had reduced proliferation rates and formed fewer
clusters in vitro compared to control patients. EPCs from
COPD patients had reduced chemotaxis levels and were
less able to form tubular structures (in Matrigel angiogen-
esis studies) than control EPCs suggesting that their ability
to repair endothelium was reduced. Expression of platelet/
endothelial cell adhesion molecule-1 (PECAM-1), an
adhesion molecule necessary for endothelial migration
and junctional integrity on the surface of EPCs was also
reduced in COPD patients further suggesting their

dysfunctional nature. This was supported in animal stud-
ies by the same group who showed that fewer EPCs from
COPD patients attached to injured arterial intima in mice
compared to controls [100]. Human studies also support
the dysfunctional nature of EPCs in COPD. One study
looked at the levels of EPCs in patients with and without
COPD before and after lung resection surgery. In control
patients EPCs increased after surgery suggesting a normal
response to injury. However, in COPD patients there was
not an increase in EPCs suggesting the mobilization cap-
acity of EPCs in COPD patients is reduced [101]. One ex-
planation for the dysfunctional capacity of EPCs in COPD
patients is the increased level of beta-2 adrenergic recep-
tors (β2ARs) on EPCs from COPD patients. The increased
β2AR level appears to alter the migration and proliferation
seen in these cells [102].
In contrast to COPD EPCs appear to be upregulated

in patients with asthma [103]. EPCs derived from pa-
tients with asthma also appear to have a higher prolifera-
tive capacity and an increased ability to form tubular
structures in vitro in comparison to controls [103]. Re-
cruitment of EPCs appears to be related to allergen chal-
lenge: in murine models of asthma circulating EPC
levels were increased in response to an allergen chal-
lenge and mobilised to the lungs [103]. Vessel density in
the lungs was also increased within 48 h of the challenge
suggesting that EPC recruitment is important for the in-
creased vascularity seen in asthma [103]. Similar findings
have been seen in humans. On exposure to inhaled aller-
gens, asthma patients show increased EPC mobilisation
from the bone marrow [104]. Another study also dem-
onstrated increased EPC levels in sputum 24 h after an
allergen challenge. There was also an associated increase
in the number and diameter of blood vessels in lung bi-
opsy specimens further supporting the hypothesis than
EPC mobilisation is important to the development of in-
creased vascularity in lung tissue in asthma [105].

Small vessel disease
Smoking is known to have widespread effects on the
microcirculation and may result in microvascular disease
in various organs such as the eye, heart and kidney
[106]. It has therefore been postulated that a similar
process might occur in the lungs in COPD. In support
of this, studies using magnetic resonance imaging (MRI)
have demonstrated that pulmonary microvascular blood
flow appears to be reduced in COPD [107]. These
changes were apparent in patients with mild COPD and
were worse in patients with severe COPD. This suggests
that microvascular disease may represent an early part
of the development of COPD and potentially is import-
ant in driving the progression of COPD to more severe
disease. There is evidence that pulmonary perfusion is
associated with the number of small pulmonary vessels
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present [108] and, in a similar fashion to perfusion, the
number of small vessels appear to be reduced in the
COPD lung. Studies have shown that the percentage of
vessels less than 5mm (%CSA <5) on CT scans appears
to be reduced in patients with emphysema and is related
to disease severity [109, 110]. In a similar way to micro-
vascular blood flow, reduction in %CSA < 5 also occurs
in patients with mild disease suggesting that this may
have a role in the pathogenesis of emphysema [110].
%CSA < 5 also appears to be associated with exacerba-
tions of COPD: patients with a history of exacerbations
have a significantly lower %CSA < 5 in comparison to
patients without exacerbations [111]. Perhaps exacerba-
tions result in tissue and vessel damage resulting in re-
duced %CSA < 5 although it is possible that a low %CSA
< 5 is a risk factor for the development of exacerbations
[111]. The underlying mechanism for this is not known
and would require further study. The potential mecha-
nisms for the development of small vessel disease in
COPD have been investigated recently in vitro. One
team looked at the expression of Krüppel-like factor 5
(KLF5) in the small pulmonary vessels in COPD pa-
tients. KLF5 is a zinc-finger transcription factor which
plays a role in the vascular remodelling seen in cardio-
vascular diseases. In a similar way to cardiovascular
disease KLF5 expression was increased in COPD pul-
monary vessels suggesting a possible role in the small
vessel disease seen in these patients [112].

Angiopoietins
Angiopoietins and their receptors (Tie-1 and Tie-2) are in-
volved in the late phases of angiogenesis. Angiopoietin 1
(Ang-1) is proangiogenic and acts in the development of
vascular networks [113]. Ang-2 appears to be an antagonist
of Ang-1 and Tie-2, but can also act to enhance the prolif-
eration and migration of endothelial cells [114, 115]. Stud-
ies have shown that the levels of angiopoietins appear to be
altered in patients with COPD. For example, García-Lucio
et al. showed that the expression of Ang-2 in pulmonary
arteries appeared to be increased in COPD patients in
comparison to healthy smokers [116]. Similarly, Bessa et al.
showed increased Ang-2 levels in patients with COPD in
induced sputum [117]. Ang-2 was also associated with vas-
cular permeability in COPD patients suggesting that the
increase in Ang-2 might stimulate leakage from vessels in
COPD [117]. Interestingly, the levels of Ang-2 in the blood
appear to be higher in patients with moderate COPD ra-
ther than severe COPD [113]. This could possibly suggest
that an increase in Ang-2 might be important in the early
stages of vascular remodelling in COPD, but not in later
phases of the disease when changes in vasculature are
already established. However, it is possible that levels of
Ang-2 fluctuate in patients with COPD during exacerba-
tions. Nikolakopoulou et al. demonstrated that serum

Ang-2 levels are increased at the onset of COPD exacerba-
tions and correlated with C-reactive protein (CRP) levels.
The levels of Ang-2 decreased after a week of treatment.
Patients with poorer outcomes also had significantly higher
Ang-2 levels [118]. This suggests that Ang-2 might be a
useful biomarker for COPD exacerbations and might help
clinicians identify patients at risk of worse outcomes at the
start of an exacerbation. Supporting this finding, another
group found that blood levels of Ang-1 are reduced during
COPD exacerbations and increased when patients are clin-
ically stable [119]. As Ang-2 acts as an Ang-1 antagonist
perhaps increased Ang-2 levels in these patients resulted in
a reduction of Ang-1.
Angiopoietins also appear to play a role in asthma.

Levels of both Ang-1 and Ang-2 in sputum are increased
in stable asthmatic patients in comparison to controls.
Smoking also increased angiopoietin levels in the asthma
group [120]. Angiopoietins appear to be related to dis-
ease severity in asthma. Sputum levels of both Ang-1
and Ang-2 are significantly increased in severe refractory
asthma patients in comparison to patients with moder-
ate asthma [121]. This might suggest that they are im-
portant in the vascular remodelling seen in asthmatic
patients. Similarly, serum Ang-1 and Ang-2 levels are
also increased in asthma patients in comparison to
healthy controls. However, only serum Ang-2 appears to
be related to disease severity and is higher in refractory
asthma cases. Serum Ang-2 (but not Ang-1) also corre-
lates with parameters of severe asthma including num-
ber of exacerbations, emergency medical trips and
number of hospitalizations [122]. Serum Ang-2 is posi-
tively correlated with exercise-induced bronchoconstric-
tion whereas Ang-1 does not show this association. This
suggests that Ang-2 might have a more important role
in remodelling and disease pathogenesis seen in asthma
and could potentially have use as a biomarker for severe
asthma [123]. In a similar way to COPD, angiopoietins
also appear to be altered acutely during asthma exacer-
bations. Lee et al. demonstrated that plasma Ang-2
levels were increased during exacerbations in compari-
son to patients with stable asthma whereas Ang-1 levels
were lower during exacerbations. Ang-2 levels also cor-
related with the level of eosinophils and neutrophils, two
important inflammatory cells involved in asthma [124].

Summary
In conclusion, the endothelium appears to behave in an
abnormal fashion in COPD and asthma. Multiple path-
ways involving the endothelium may have importance in
both conditions. In some cases such as TEM, pathways
appear to behave in a similar fashion in COPD and
asthma. However, other pathways behave differently de-
pending on the phenotype of the patient. For example,
increased angiogenesis in asthma/chronic bronchitis and
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decreased angiogenesis in emphysema. A summary of
the mechanisms involved in endothelial dysfunction in
COPD and asthma can be seen in Fig. 2.

Pathogenesis of endothelial dysfunction
COPD
Endothelial dysfunction may be a result of the increased
levels of oxidative stress seen in COPD. Patients with
COPD and low levels of FMD show improvements in
FMD when given anti-oxidants [125]. The RhoA/Rho-
kinase pathway which is upregulated in patients with
COPD may also result in endothelial dysfunction. RhoA
is a small G-protein and Rho-kinase is its’ downstream
effector. This pathway is important in a variety of cell
functions including migration and proliferation. Levels
of RhoA and Rho-Kinase are associated with the level of
endothelial dysfunction in patients with COPD [126].
Angiotensin-converting enzyme (ACE), a regulatory pro-
tein with both vascular and collagenolitic effects has dif-
ferent variants. The D variant is associated with both
endothelial dysfunction and number of exacerbations in
patients with COPD and thus may also play a role in the
development of endothelial dysfunction [127].

As systemic inflammation is increased in COPD patients
studies have been performed to investigate whether the
level of inflammation seen in these patients is related to
endothelial dysfunction. Eickhoff et al. demonstrated that
FMD was associated with C-reactive protein and
leukocyte levels suggesting an underlying association be-
tween inflammation and endothelial dysfunction [64].
However, other studies have had conflicting results and
have not been able to demonstrate a relationship between
endothelial dysfunction and inflammation [128]. It is pos-
sible that this might be a result of the patients included in
the different studies. Eickhoff et al. included COPD
patients without comorbidities whereas other studies in-
cluded patients with comorbidities such as cardiovascular
disease which may have masked the effect of COPD and
inflammation.
Insulin resistance may also have a role in the develop-

ment of endothelial dysfunction in patients with COPD.
One study followed up COPD patients over the course
of a year. During this time FMD decreased and fasting
blood glucose increased. FMD was significantly nega-
tively correlated with fasting blood glucose suggesting
that patients with worse glucose control also had worse
endothelial function [129]. Interestingly, other studies

Fig. 2 Different endothelial mechanisms important in COPD and asthma pathogenesis
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have demonstrated that uncontrolled diabetes mellitus is
also associated with worse lung function in COPD pa-
tients. This suggests that insulin resistance might have
several roles in COPD pathogenesis [130].

Asthma
There is a lack of evidence for why patients with asthma
might develop endothelial dysfunction. However, one
study demonstrated that vascularity in bronchial biopsy
specimens was reduced in asthma patients after a 6 month
course of inhaled corticosteroids (ICS) [131]. This sug-
gests that inflammation may be an important cause of the
increased vascularity and vascular remodelling seen in
these patients. These findings were repeated in another
study which also demonstrated that VEGF levels reduced
after a 6 month ICS trial thereby suggesting that inflam-
mation in asthma might result in increased airway vascu-
larity through upregulation of VEGF [132].

Potential for endothelial based treatments
COPD
Many of the above pathways have potential treatments
associated with them. For example, as above, patients
with COPD and reduced FMD have shown improvement
in FMD with the use of anti-oxidants [125]. Ginkgo
biloba extract (EGb) an agent with anti-oxidant proper-
ties has also been shown to reduced cigarette smoke ex-
tract (CSE) induced apoptosis in pulmonary endothelial
cells by upregulation of haem oxygenase-1 (HO-1, a
stress-responsive protein) [133]. Patients on long-term
ICS have both lower levels of VEGF in bronchial tissue
[134] and reduced endothelial dysfunction compared to
patients not on ICS [135]. Therefore, targeting inflam-
mation and may be important to improve endothelial
dysfunction in these patients [135]. A randomised con-
trol trial (RCT) of statin therapy in COPD patients also
demonstrated that statins reduced the level of systemic
inflammatory markers seen in these patients and also
improved endothelial function in patients with evidence
of raised systemic inflammation [136]. The ACE D vari-
ant is associated with increased production of ACE sug-
gesting that perhaps ACE inhibitor drugs (already
available for other conditions such as hypertension) may
provide another treatment option for this subgroup of
patients [127]. Rho-kinase inhibitors have also improved
NO release from endothelial cells in vitro suggesting that
blocking this pathway may provide another means to
improve endothelial dysfunction [137]. As FMD is asso-
ciated with poor glucose control screening COPD pa-
tients for fasting blood glucose and controlling abnormal
glucose levels might provide another method of improv-
ing endothelial function in these patients [129].
It is possible that some of the treatments already avail-

able for COPD might be able to improve endothelial

functioning. For example, one study observing endothe-
lial function in COPD patients demonstrated that pa-
tients with improved 6MWT scores had improved FMD
levels [128]. Therefore, it is possible that pulmonary re-
habilitation courses could provide one way of improving
endothelial function. In vitro studies have also demon-
strated treating the increased level of β2AR on EPCs
with β2 antagonists improves the proliferation and mi-
gratory capacity of these cells [102]. One RCT looking at
endothelial function in COPD patients observed an im-
provement in FMD after lung volume reduction surgery
(LVRS) (surgery to remove abnormal emphysematous
tissue). It is not clear why LVRS improves endothelial
functioning but one possibility is that improved cardiac
function seen after LVRS might stimulate the endothe-
lium, thus improving FMD [138].
Other studies have focused on treating the increased

levels of endothelial apoptosis seen in patients with em-
physema. For example, one study demonstrated that
CSE induced apoptosis and decreased prostacyclin syn-
thase levels in human umbilical vein endothelial cells
(HUVECs) in vitro [139]. Prostacyclin is a known vaso-
dilator and appears to possess anti-apoptotic effects.
Apoptosis on exposure to CSE was prevented by treat-
ment with the prostacyclin analogue beraprost sodium
[139]. Similarly, another treatment known to upregulate
prostacyclin levels, Honokiol (a compound extracted
from a Chinese medicinal herb) also reduced apoptosis
in endothelial cells in response to low-density-
lipoprotein (LDL) in vitro [140]. Human studies have
also shown lower prostacyclin expression levels in em-
physematous lung compared to normal lung and dem-
onstrated that another prostacyclin analogue (iloprost)
also prevented endothelial apoptosis in vitro [141]. A
summary of potential endothelial based treatments in
COPD can be seen in Table 1.

Asthma
As previously mentioned, targeting the inflammation
seen in asthma using ICS can reduce VEGF expres-
sion and airway vascularity [131, 132]. Animal studies
also support targeting VEGF as a potential treatment
strategy in asthma. For example, two inhibitors of
VEGF receptor were given to a murine asthma model.
Mice who received the inhibitors demonstrated re-
duced VEGF airway levels, reduced airway inflamma-
tion and reduced AHR [142]. This suggests that
targeting VEGF might be useful for both treating
underlying vascular remodelling and symptoms in
asthma. Another animal study also demonstrates that
reducing angiogenesis in asthma might be effective.
Vascular endothelial (VE)-cadherin antibodies were
given to a mouse model of asthma. VE-cadherin is an
endothelial adhesion molecule important in
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angiogenesis. Delivery of VE-cadherin antibodies re-
duced angiogenesis in the mouse model, but also re-
duced IgE production and eosinophil airway
infiltration both hallmarks of inflammation seen in
asthma [143]. AHR was also reduced in response to
the antibody [143].
Another potential treatment option is to target EPCs

in asthma. When a chemokine receptor antagonist
(AMD3100) was given to mice sensitized to ovalbumin
airway pulmonary EPCs, eosinophil accumulation, vas-
cularity and AHR was reduced [144]. However, when
AMD3100 was given to mice with established lung dis-
ease although the drug reduced EPCs, eosinophil levels
and vascularity, AHR was only partially reversed [144].
This shows that it is likely to be important to reduce
EPC accumulation early in asthma to prevent established
airway obstruction.
Finally, reducing TEM may be another treatment option

for patients with asthma. Theophylline (a methylxanthine
drug with bronchodilator and anti-inflammatory proper-
ties) was added to HUVECs in vitro. This reduced adhe-
sion of eosinophils to the HUVECs and also reduced the
expression of endothelial adhesion molecules such as
ICAM-1 [145]. This suggests that theophylline (which is

already in use in asthma) may have beneficial effects by
reduced TEM of eosinophils and consequently inflamma-
tion in asthma. A similar in vitro study was also per-
formed by exposing HUVECs to another drug used in
asthma: montelukast (a cysteinyl LT1-receptor anatago-
nist). Montelukast also reduced eosinophil transmigration
across HUVECs and may therefore partially act by redu-
cing TEM of eosinophils in patients [146]. There is also
evidence that new drugs may be of use by targeting TEM.
VUF-K-8788 (a histamine H1 antagonist) reduced eosino-
phil adherence to HUVEC in vitro. The same drug also re-
duced pulmonary eosinophil accumulation and
inflammation (such as perivascular oedema) in a guinea
pig model of asthma [147]. A summary of potential endo-
thelial based treatments in COPD can be seen in Table 2.

Conclusions
Pulmonary endothelium in asthma and COPD patients
appears to be altered in comparison to control subjects.
There is evidence that in some COPD patients with the
subtype of emphysema apoptosis of the endothelium
may result in alveolar destruction and reduced gas trans-
fer. In patients with asthma or chronic bronchitis in-
creased VEGF and vascular remodelling in the airways

Table 1 Potential endothelial based treatments in COPD

Pathway targeted Drug Outcome Stage of testing Reference

Anti-oxidant vitamin C, vitamin E, α-lipoic acid Improved FMD Phase II [125]

Ginkgo biloba extract Reduced endothelial apoptosis In vitro [133]

Inflammation ICS Reduced bronchial VEGF, reduced FMD Phase II [134]

Statin Reduced FMD Phase II (NCT00929734) [136]

Rho-kinase Hydroxyfasudil Increased NO release from endothelial cells In vitro [137]

Increased level of β2AR
on EPCs

β2 antagonists Improved proliferation and migration of EPCs In vitro [102]

Removal of abnormal tissue LVRS Reduced FMD Phase II (NCT01020344) [138]

Prostacylin Beraprost sodium Reduced endothelial apoptosis In vitro [139]

Iloprost Reduced endothelial apoptosis In vitro [141]

Where possible clinicaltrials.gov identifiers are in brackets

Table 2 Potential endothelial based treatments in asthma

Pathway targeted Drug Outcome Stage of testing Reference

Inflammation ICS Reduced airway VEGF and airway vascularity Phase II [132]

VEGF SU5614 Reduced airway VEGF, inflammation and AHR Murine model [142]

SU1498 Reduced airway VEGF, inflammation and AHR Murine model [142]

Angiogenesis VE-cadherin antibody Reduced angiogenesis, IgE production, eosinophil
infiltration and AHR

Murine model [143]

Chemokine
signalling

AMD3100 (chemokine receptor
anatagonist)

Reduced airway pulmonary EPCs, eosinophil accumulation,
vascularity and AHR

Murine model [144]

TEM Theophylline Reduced adhesion of eosinophils to endothelium in vitro [145]

Montelukast Reduced eosinophil transmigration across endothelium in vitro [146]

VUF-K-8788 (Histamine H1 antagonist) Reduced adherence of eosinophils to endothelium in vitro.
Reduction of pulmonary eosinophil accumulation.

Guinea pig
model

[147]
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may have a more important role. The endothelium also
behaves in a dysfunctional manner in COPD and endo-
thelial progenitor cells appear to be less effective at
repairing the damaged and dysfunctional endothelial tis-
sue. There is some evidence that endothelial dysfunction
also occurs in asthma and endothelial progenitor cells
are upregulated in these patients.
Multiple mechanisms such as inflammation may ex-

plain the underlying alteration in the endothelium in
these patients and some already existing treatments
could target these mechanisms and improve underlying
endothelial function. Very few studies looking into treat-
ment of endothelial dysfunction in COPD and asthma
exist and more work is required to evaluate whether or
not mechanisms of endothelial dysfunction researched
in vitro will lead to promising treatment strategies in
COPD and asthma.
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