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Abstract
Measurement of the effects of drugs, mediators and infectious agents on various models of lung
disease, as well as assessment of lung function in the intact mouse has the potential for significantly
advancing our knowledge of lung disease. However, the small size of the mouse presents significant
challenges for the assessment of lung function. Because of compromises made between precision
and noninvasiveness, data obtained may have an uncertain bearing on the mechanical response of
the lung. Nevertheless, considerable recent progress has been made in developing valid and useful
measures of mouse lung function. These advances, resulting in our current ability to measure
sophisticated indices of lung function in laboratory animals, are likely to lead to important insights
into the mechanisms of lung disease.

Introduction
Much of our current understanding of the normal func-
tioning of the lung and mechanisms of lung disease
comes from studies utilizing animals. As one clear exam-
ple, animal systems of a wide variety of species, including
humans, provided the essential mechanistic proof of a
link between inflammation and airways hyperresponsive-
ness that set the stage for current anti-inflammatory ther-
apy [1]. Mice are now widely employed in lung research
because of certain advantages this species is thought to
provide [2]. Advantages of using mice include a well-un-
derstood immunologic system, the vast array of available
reagents, a short reproductive cycle, a well-characterized
genome, the advent of transgenic technology, and eco-
nomic factors [2–4]. Using mice as models of human dis-
ease, in particular asthma, has certain shortcomings [2,5]
only some of which will be covered in this review. For any
animal system to yield useful and valid insights into dis-
ease it must exhibit an appropriate phenotype. It has be-

come apparent that the valid assessment of lung function
in an animal as small as the mouse requires that a number
of technical challenges be overcome.

The paucity of information on the measurement of lung
function in the mouse has largely reflected the difficulty of
measuring the necessary respiratory signals of flow, vol-
ume and transpulmonary pressure. This applies particu-
larly to the small gas flows involved [6,7]. However, the
work of Martin et al in 1988 demonstrated that measure-
ments of pulmonary resistance and compliance could be
made in this small species [8]. At about the same time,
Levitt and Mitzner clearly illustrated the utility of using
mice to explore the genetics of hyperresponsiveness
[9,10]. Since these studies, the use of mice to study lung
disease has increased dramatically and a number of ap-
proaches have been developed in the ensuing years for
measuring lung function in mice in vivo. In this review we
examine these various methods and discuss their
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respective attributes. Each approach represents a compro-
mise between accuracy, non-invasiveness, and conven-
ience [11].

Lung anatomy
One look through the microscope at a section of mouse
lung (Figure 1) demonstrates that the mouse lung is con-
siderably different in structure from the human lung, al-
though relatively little has been published about the
architecture of the mouse lung compared to other species.
What is known about the structure of the mouse lung
probably has important bearing on its function [12–14].
The total lung capacity (TLC) of the mouse is about 1 ml
compared to 10 ml of the rat and 6,000 ml of a human.
Like the human, there are 5 lobes in the right mouse lung,
but unlike the human the mouse has only a single left
lung. Also unlike the human lung, but similar to the rat,
the mouse pleura is thin, yet it is strong enough to be in-
flated to considerably higher pressures than the 30 cm
H2O normally associated with TLC (W Mitzner, personnel
communications). The parenchyma of the mouse lung oc-
cupies a smaller fraction of the total lung than that of the
rat but more than that of the human (mouse: 18%, rat:
24%, human: 12% lung volume). The alveoli of the
mouse lung are smaller (80 µm mean linear intercept
(MLI)) than those of the rat (MLI 100 µm) or human (MLI
210 µm). The blood-gas barrier thickness in the mouse
(0.32 µm) is similar to that of the rat (0.38 µm) but some-

what smaller than that of the human (0.62 µm), which
might have important implications for both gas exchange
and parenchymal lung mechanics. The airways constitute
a large percentage of the lung in mice (11%) compared to
rats (5.7%). Cartilage is present in the mouse trachea but
is less well organized than in other species; only the upper
part of the trachea has the complete rings seen in other
mammals and these rapidly change to plates as one pro-
ceeds distally. Mouse lungs have fewer respiratory bron-
chioles and airway generations (13–17 generations) than
do human lungs (17–21 generations) with the airways of
the mouse lung exhibiting a monopodial as opposed to
dichotomous branching pattern. Two other significant
features of the mouse lung are the thinness of the respira-
tory epithelium and the relatively large airway lumen
[12,14]. This large airway caliber is speculated to reduce
the flow-resistive load that would otherwise result from
the rapid respiratory rate (250–350 bpm) required by the
mouse to maintain body temperature [15]. An important
functional difference between mice and rats compared to
humans is the paucity, or even complete absence, of sub-
mucosal glands and the presence of high numbers of
Clara cells [12]. Exactly what significance all these ana-
tomical features of the mouse lung have for lung function
is speculative, but it has been our experience that the base-
line airway resistance of mice that have been sensitized
and challenged with antigen differs imperceptibly from
that of control animals [16,17]. This suggests that inflam-
matory processes that could compromise lung function in
larger animals (e.g. humans) might have little effect in
mice because of their relatively large airway size and/or
lack of mucous glands.

Basic mechanical models of the lung
Measurement of the function of the lung, especially as-
sessment of lung mechanics, is typically done in the con-
text of a model of the lung [18–20]. The simplest model is
a tube connected to a bellows (Figure 2A). This model
works well for a single breathing frequency, but has major
limitations when the changes in lung mechanics that oc-
cur with alterations in breathing frequency are considered.
This is because the resistive and elastic properties of the
lung are substantially dependent on breathing frequency.
For example, the resistance of the lung falls as frequency
increases over the range associated with normal breathing
[21]. To model this type of mechanical behavior, spring-
and-dashpot assemblies capable of simulating viscoelastic
behavior need to be included in the model (Figure 2B).
These basic models allow us to develop mathematical ex-
pressions, which can be used to quantitatively assess lung
mechanics. The parameters of the models, that is, the re-
sistive and elastic values of their individual components,
constitute the endpoints we use to assess lung function
experimentally.

Figure 1
Photomicrograph of the parenchyma and respiratory bron-
chioles of a mouse (20 gram female BALB/c) lung. Note the 
rapid branching from a conducting airway into alveolar ducts 
and the relatively large airways. Stain is H & E with 5 × 
magnification.
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The viscoelastic model in Fig. 2B does a substantially bet-
ter job of describing frequency-dependent nature lung
mechanics than the model in Fig. 2A. Nevertheless, the
simple model in Fig. 2A still serves as the conceptual plat-
form for most studies of lung mechanics and bronchial re-
sponsiveness. The mechanical behavior of this model is
described by its equation of motion. This equation is
based on simple physics and states that the force (pres-
sure) applied to the model is equal and opposite to the
opposing force (pressure) the model generates. The ap-
plied pressure, P, is that supplied either by the respiratory
muscles or a mechanical ventilator. The opposing pres-
sure is made up, in general, of three components: a resis-
tive pressure (Pres), an elastic pressure (Pel), and an
inertive pressure (Pin).

Thus,

P= Pres + Pel + Pin  (Equation 1)

Pres is described by Ohm's law:

Pres = R   (Equation 2)

where R is the resistance of the lung and  is flow of gas.
Pel is described by Hooke's law:

where E is lung elastance (equal to the inverse of compli-
ance, C) and V is lung volume relative to functional resid-
ual capacity. Pin comes into play only at frequencies well
above those of normal breathing, while both Pres and Pin
become negligible when frequency is extremely low. Thus,
the equation of motion relevant to normal breathing is

The parameters R and E are both profoundly dependent
on breathing frequency and lung volume.

Lung volume
The volume of the lungs has an important influence on its
pressure-flow relationships. For example, an increase in
lung volume stretches the airways open and so causes air-
way resistance to fall (tethering). This also makes it more
difficult for the airways to narrow when the airway
smooth muscle contracts, and represents an important
mechanism by which the challenged lung can defend air-
way caliber [18,22]. Unlike larger laboratory animals, the
measurement of lung volume in the mouse is particularly
problematic due to its small size. For example, when tho-
racic gas volume is measured using the conventional
Boyle's Law technique, the volumes of air in the transduc-
ers used to measure plethysmographic and airway-open-
ing pressures must be small relative to the lung volume, or
significant measurement errors will occur. It has only re-
cently been reported that measurement of functional re-
sidual capacity (FRC) by this approach is at all feasible
[23]. The measurement of FRC with gas dilution is equally
difficult, again due to the small size of the mouse lung,
and there are only a few reports in the literature on the use
of this technique [24]. Other studies of mouse lung vol-
ume have used a buoyancy approach [25], a degassing ap-
proach [26,27], and even a CT scanner method has been
reported [28]. None of these, however, is particularly
practical for most study designs. Better techniques for
measuring lung volumes in mice are certainly needed, so
this will be a fruitful area for future research.

Figure 2
Two common and basic mechanical models of the lung. A: A 
homogeneously ventilated model consisting of a single elastic 
balloon (elastance E) served by a single flow-resistive pipe 
(resistance R). B: A homogeneous model again with a single 
airway (resistance R1), but with a Kelvin body consisting of 
two springs (E1 and E2) and a dashpot (resistance R2) to 
account for the viscoelastic behavior of the lung tissue.
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Lung elastance (compliance)
The component of the transpulmonary pressure loss that
is out of phase with flow and in phase with volume, as
well as the recoil pressure exerted by the lung under static
conditions, are caused by the elastic forces within the
lung. The loss of elastic recoil within the lung defines em-
physema while an increase defines restrictive processes
[18,25]. The chest walls and other thoracic structures in
mice are extremely compliant, so most elastic recoil meas-
ured in an intact animal can be attributed specifically to
the lung. Moreover, the elastic recoil of the lung shows
considerable genetic variability that needs to be taken into
account in study designs [26]. The elastic recoil of the lung
is conveniently assessed in terms of the quasi-static pres-
sure-volume (PV) curve measured by inflating and deflat-
ing the lung in a step-wise fashion. The inspiratory limb
of the curve traverses a path through values of P that are
higher than those of the expiratory limb, the difference
between the two limbs being termed hysteresis. Changes
in the inspiratory limb of the PV curve that cause an in-
crease in hysteresis are taken to indicate enhanced airway
closure, such as that observed in humans after dry cold gas
inhalation [29] and recapitulated in mice with allergic in-
flammation [30]. These changes in PV characteristics can
be sensitive indicators of lung dysfunction and contribute
to the genesis of hyperresponsiveness. The shape of the
pressure volume relationship is one manifestation of the
nonlinear characteristics of lung mechanics in the normal,
unperturbed lung. Airflow resistance also exhibits alinear
behavior as the airflow reaches high rates of flow as sud-
den changes in lumenal dimensions occur (e.g. vocal
chords). The mouse lung exhibits alinear elastic (compli-
ance) behavior that increases following antigen challenge,
a change that is most consistent with reopening airways
that were closed [29,30]. Airflow is not alinear (i.e. lami-
nar flow regimes) in either condition as it is highly unlike-
ly turbulent flow occurs in mouse lungs due to the small
airway diameters, unlike humans where turbulent flow is
a common occurrence [30], pointing to a clear limitation
of this species in exploring complex airflow conditions.

Phenotyping uncertainty principle
Accurate and valid measurement of lung mechanics in
laboratory animals is a balancing act between measure-
ment precision and maintenance of "natural" conditions.
This situation is similar to the Heidelberg uncertainty
principle of quantum mechanics which states that the
measurement of a particle's position interferes with the
measurement of its movement, and vice versa [31]. In a
similar fashion, as we make more precise measurements
of lung function in an animal, we are forced to constrain
the animal's behavior in a way that departs from the
maintenance of natural conditions [11]. At the extreme
ends of this continuum are the measurements derived
from the free roaming animal in a closed chamber, known

as unrestrained plethysmography (UP), and the measure-
ment of input impedance using forced oscillations per-
formed in an anesthetized, tracheostomized animal
(Figure 3).

Unrestrained plethysmography
This approach to assess lung function involves placing the
subject into a small closed box and measuring the pres-
sure changes within the box that occur as the animal
breathes [7,11,32]. The animal is conscious and unre-
strained. This technique currently enjoys wide popularity
(for example see [33]) because 1) it is simple and 2) the
mouse remains unharmed after the experiment. The
endpoint is the heuristic variable known as Penh, which
stands for 'enhanced pause'. It is important to note that
there is no linkage between Penh and other variables that
are derived from mechanical principles – Penh is merely
an empirical derivative of the respiratory variations in box
pressure [11]. While an earlier publication demonstrated
reasonable correlations between Penh and invasive meas-
ures of lung mechanics [32], recent publications draw into
serious question the validity of using Penh to measure
lung function [7,11,34].

The pressure changes occurring within the box as the
mouse breathes are derived first from gas compression
and decompression within the thorax – an event linked to
the state of lung mechanics – and second from
humidification and warming of inspired gas – an event
unrelated to lung mechanics. During bronchoconstric-
tion, both components increase [7], but much of this
increase is likely due to the increased stimulation to
breathe that would arise from chemoreceptor receptors in
the lung. Hence box pressure changes should be
influenced by chemoreceptor sensitivity and genetics that
control responses to chemo- or irritant- receptor stimula-
tion and integration [11,35]. Recent studies show that

Figure 3
The non-invasiveness-precision continuum of the phenotyp-
ing uncertainty principle – see text for discussion.
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changes in Penh depart from mechanical changes during
a state of increased box temperature [7,34] in an exactly
opposite way during exposure to hyperoxic conditions
[34,35] and temporarily [36]. These findings show that
Penh is not a valid measurement of the lung function of
the mouse except as a measure of patterns of respiration,
and it has been known for a long time that patterns of res-
piration usually have little bearing on lung mechanics. Fi-
nally, a response in Penh may also be due to changes in
nasal cavity resistance, as the upper airways are very signif-
icant contributors (50%) to total lung resistance and their
contribution is likely to change depending on the experi-
mental situation [32].

Lung impedance magnitude
The next step on the phenotyping uncertainty continuum
(Figure 3) is the measurement of the magnitude of respi-
ratory system or lung impedance. Lung impedance is a
complex quantity having both real and imaginary parts
(see section 'Forced oscillations and the constant phase
model'), and its calculation requires rather sophisticated
methods. The magnitude of impedance (|Zrs|), however,
is easily determined simply as the ratio of the absolute val-
ue of the swing in pressure (∆P) to the absolute value of

the swing in flow (∆ ) occurring over a breath, thus

As seen in the example in Figure 4, pressure is obtained by
placing a pressure transducer at the airway opening, while
flow is assumed to be constant as the animal is mechani-
cally ventilated with a volume-cycled ventilator
[9,10,37,38]. When a bronchoactive agent is introduced,
the peak pressure with each breath goes up, so |Zrs| in-
creases commensurately. Hence, by merely measuring air-
way-opening pressure, a useful index of lung function is
derived. This technique has been used because it is simple
and gives a direct assessment of lung mechanics
[9,10,37,38].

The major disadvantage of this technique is that even
though a direct measure of lung function is made, no in-
sight is obtained as to where in the lung an abnormality
might be located. This is a significant limitation if one
wishes to explore the mechanisms of bronchoconstriction
and whether it reflects, for example, central versus periph-
eral airways dysfunction. Nevertheless, this simple
approach has produced significant advances in our under-
standing of the genetics of hyperresponsiveness [3,9,10].

Measurement of dynamic resistance (RL) and 
compliance (CL)
A classic approach to assessment of lung mechanics in an-
imals is the measurement of dynamic lung resistance (RL)
and compliance (Cdyn or CL) [3,8,20,38–40]. In the past,
this approach was often used to assess central versus pe-
ripheral alterations in lung mechanics – a topic of consid-
erable current interest. The calculation of RL and Cdyn
requires the measurement of intrathoracic pressure that,
in larger animals, is obtained with an esophageal balloon
or pleurel catheter, but in a mouse is obtained either by
opening the chest or by making the reasonable assump-
tion that the chest wall presents little mechanical load
compared to that of the lung [26,41,42]. Flow is usually
obtained with a pressure transducer but this approach is
problematic when miniaturized to the mouse [7,43]. Ac-
cordingly, flow is commonly derived from the differentia-
tion of a volume signal, usually obtained from a body
plethysmograph [8,40]. The values of RL and CL are then
derived by fitting the equation of motion (Equation 4) to
measurements of pressure, flow and volume.

The measurement of RL and CL, while technically chal-
lenging, does yield additional insight into the mecha-
nisms of bronchoconstriction over that provided by |Zrs|.
Generally speaking, an increase in RL reflects both narrow-
ing of the conducting airways and alterations in the lung
periphery (heterogeneous narrowing or closure of distal
airways together with changes in the intrinsic mechanical
properties of the parenchyma). Decreases in CL, on the
other hand, reflect only events in the lung periphery, par-
ticularly airway closure leading to lung unit derecruitment
[44]. If the response to an intervention is limited largely

Figure 4
Pulmonary impedance measurements in anesthetized mice. 
The diagram shows airway opening pressure plotted against 
time. Volume and flow excursions for each breath are main-
tained constant by use of a volume-cycled ventilator. 
Increases in the magnitude of lung impedance following 
acethycholine injection are assessed as the increase in pres-
sure above baseline. Note the increased responsiveness in 
the A/J compared the C3He/J strain of mouse. APTI: Airway 
pressure time index. Used with permission [38].

Z
P

V
rs =

∆
∆

( )! Equation 5
Page 5 of 9
(page number not for citation purposes)



Respir Res 2003, 4 http://www.respiratory-research/content/4/1/4
to RL, then a relatively proximal location is implicated for
the effect. By contrast, a selective change in CL is indicative
of a more distal site of action [3,8,45]. As an example of
this approach, RL and CL were clearly shown to be inde-
pendent variables in mice treated with an antibody ago-
nist for VLA-4, an adhesion protein of the eosinophil [45].
Furthermore, the genetic dependence of these variables

suggests that the factors that control central airway
function (reflected in RL) are different from those that
control peripheral airway function (reflected in CL) [46].

Forced oscillations and the constant phase 
model
At the far end of the phenotyping uncertainty principle
lies the forced oscillation technique (FOT) applied in an-
esthetized, paralyzed, tracheostomized animals to meas-
ure the complex input impedance (Zrs) of the lungs [21].
We have already covered the concept that the magnitude
of Zrs (|Zrs|) is a generalization of the changes of
resistance and compliance, and that Zrs consists of two
parts that are both functions of frequency. The real part of
Zrs is directly related to the resistance and provides essen-
tially the resistance of the respiratory system at the fre-
quency in question. The imaginary part of Zrs is called the
reactance and reflects respiratory compliance at frequen-
cies below 20 Hz in the mouse. Thus, the FOT essentially
provides RL and CL at each frequency contained in the
flow signal applied to the lungs. This requires that the an-
imal be oscillated with a complex flow wave produced by
either a loudspeaker [34,47,48] or a computer-controlled
piston [6,7,17]. The data of pressure and either flow or
volume are converted into the frequency domain by the
Fast Fourier transform, and their ratios calculated to yield
the real and imaginary parts of Zrs (Figure 5).

The key advantage of this approach, as compared to the
determination of RL and CL or |Zrs|, is that Zrs can be fitted
to a more complex model of the lung known as the con-
stant-phase model [49] which makes a clearer distinction
between central and peripheral events in the lung. The
equation of motion of the constant-phase model is

where Raw is the resistance of the airways that are attached
to the constant phase element, Iaw is the inertance of the
gas in the airways (which has negligible effect in the
mouse below 20 Hz and can be ignored [17]), Gti is tissue
resistance or damping, Hti is tissue elasticity, and i is

. As Raw is a measure of central airways resistance, it
would be expected to change if the airways are significant-
ly narrowed. By contrast, Gti reflects either changes in tis-
sue physical properties or regional airways heterogeneity.
If changes in Raw are small, then any changes in Gti most
likely represent changes in the parenchyma or very small
airways. Acute changes in Hti are likely to reflect lung dere-
cruitment (airway closure) [44], whereas chronic changes
in Hti would be expected to reflect changes in the intrinsic
mechanical properties of the parenchyma. This technique

Figure 5
The respiratory input impedance of the mouse. Open 
squares represent baseline conditions while closed circles 
show the result of administering an aerosol of methacholine. 
The solid and dashed lines are the fit provided by the con-
stant-phase model (Eq. 6). Used with permission [17].
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is now being successfully and extensively used to assess
lung mechanics of the mouse [17,33,50].

Tomioka et al [17] showed that Zrs can be used to track
changes obtained with an even more invasive technique
[51,52] – the alveolar capsule – where resistance is parti-
tioned into a central airway and a parenchymal tissue re-
sistance component through the direct measurement of
alveolar pressure (Figure 6). In this study, the disparate
behaviours of Raw, Gti and Hti clearly show that these three
quantities are independent parameters that access differ-
ent aspects of lung function. For example, antigen expo-
sure followed by methacholine challenge caused an
enhancement of both Gti and Hti – measures of peripheral
lung function – however, changes in Raw, reflecting central
airways, were not significantly altered. The enhanced
changes in G or H in this acute state may reflect three dif-
ferent mechanisms: derecruitment of lung units as airways
close, temporal shifts of tissue movement, and inhomog-
enities of airflow distribution. Moreover these data point
away from significant alterations in airway smooth mus-
cle function and more towards enhanced or altered secre-
tions that cause dysfunction in small airways.
Interestingly, antigen challenge in either sensitized or un-
immunized mice caused no significant changes in any of
the parameters at baseline before methacholine challenge,
likely due to the unique architecture of the mouse lung
(see above).

We believe that the well-founded theoretical basis of the
FOT, and its rigorous application in mice, will lead to con-
siderable insight into the functioning of mouse models of
lung disease.

Conclusion
Measurement of lung function in a creature as small as the
mouse presents considerable technical challenges. How-
ever, with the exception of the measurement of absolute
lung volume and the analysis of blood gases, we have now
conquered the challenge of miniaturizing the instrumen-
tation necessary for mouse lung function assessment. Ap-
plication of advanced techniques such as the FOT coupled
with constant-phase model analysis hold particular
promise for improved characterization of lung responses
to intervention and pathology. With these approaches, we
can now unravel the mechanisms of airways dysfunction,
the influence of genetics and the immunological factors
that define the physionome of the mouse.

Abbreviations
bpm breaths per minute

Cdyn dynamic compliance

CL lung compliance

Figure 6
The mechanical response of the mouse lung to methacholine 
in terms of the parameters of the constant-phase model (see 
Eq. 6 in text). The open squares correspond to control 
BALB/c mice, while the closed circles represent mice sensi-
tized to and challenged with ovalbumin. Taken from [17] with 
permission.
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E elastance

FOT forced oscillation technique

FRC functional residual capacity

G tissue damping or tissue resistance

H elasticity

MLI mean linear intercept

P pressure

Pres resistive pressure

Pel elastic pressure

Pin inertial pressure

Penh enhanced pause

RL resistance

TLC total lung capacity

UP unrestrained plethysmography

 Flow

ZRS or Z impedance of the respiratory system

|Zrs| Magnitude of impedance
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